Purpose

This module is an example operator how to implement a convolution filter with multiple inputs and outputs.

It contains all options and parameters which are available from the KernelBaseOp and KernelOp classes.

Windows

Default Panel

../../../Modules/ML/MLKernelExamples/mhelp/Images/Screenshots/Kernel3In2OutExample._default.png

Input Fields

input0

name: input0, type: Image

input1

name: input1, type: Image

input2

name: input2, type: Image

Output Fields

output0

name: output0, type: Image

output1

name: output1, type: Image

Parameter Fields

Visible Fields

Border Handling

name: borderHandling, type: Enum, default: PadSrcClamp, deprecated name: edgeMode

Defines the border handling of the kernel operation.

see also KernelExample.borderHandling

Fill Value

name: fillValue, type: Double, default: 0

Sets a fill value that is used for filling the border in certain modes of Border Handling.

see also KernelExample.fillValue

X

name: kernelX, type: Integer, default: 3

Sets the size of the kernel in x-direction.

see also KernelExample.kernelX

Y

name: kernelY, type: Integer, default: 3

Sets the size of the kernel in y-direction.

see also KernelExample.kernelY

Z

name: kernelZ, type: Integer, default: 1

Sets the size of the kernel in z-direction.

see also KernelExample.kernelZ

C

name: kernelC, type: Integer, default: 1

Sets the size of the kernel in c-direction.

see also KernelExample.kernelC

T

name: kernelT, type: Integer, default: 1

Sets the size of the kernel in t-direction.

see also KernelExample.kernelT

U

name: kernelU, type: Integer, default: 1

Sets the size of the kernel in u-direction.

see also KernelExample.kernelU

Make kernel spherical

name: makeSpherical, type: Bool, default: TRUE

If checked, the used kernel has an approximately spherical shape.

Otherwise, the kernel has a rectangular shape.

see also KernelExample.makeSpherical

Normalize kernel

name: normalize, type: Bool, default: TRUE, deprecated name: autoNormalize

If checked, the kernel values are normalized, so they all add up to 1.

see also KernelExample.normalize

Input

name: externalKernel, type: String, deprecated name: kernelInput

Sets a kernel from another module as a string.

see also KernelExample.externalKernel

Use (useExternalKernel)

name: useExternalKernel, type: Bool, default: FALSE

If checked, an attached external kernel is used.

see also KernelExample.useExternalKernel

Info

name: kernelInfo, type: String, persistent: no

Shows information about the module.

see also KernelExample.kernelInfo

Kernel Output

name: kernelOutput, type: String, persistent: no

Shows the used kernel as a string.

see also KernelExample.kernelOutput

Min (intervalMinOfFilteredVoxels)

name: intervalMinOfFilteredVoxels, type: Double, default: 30, deprecated name: ImageIntervalMin

Sets the minimum voxel value for the post-filtering interval.

see also KernelExample.intervalMinOfFilteredVoxels

Max (intervalMaxOfFilteredVoxels)

name: intervalMaxOfFilteredVoxels, type: Double, default: 50, deprecated name: ImageIntervalMax

Sets the maximum voxel value for the post-filtering interval.

see also KernelExample.intervalMaxOfFilteredVoxels

Use (useIntervalOfFilteredVoxels)

name: useIntervalOfFilteredVoxels, type: Bool, default: FALSE, deprecated name: UseImageInterval

If checked, a post-filtering interval is defined by Min and Max.

see also KernelExample.useIntervalOfFilteredVoxels

Min (intervalMinOfVoxelsForFiltering)

name: intervalMinOfVoxelsForFiltering, type: Double, default: 30, deprecated name: KernelIntervalMin

Sets the minimum voxel value for the pre-filtering interval.

see also KernelExample.intervalMinOfVoxelsForFiltering

Max (intervalMaxOfVoxelsForFiltering)

name: intervalMaxOfVoxelsForFiltering, type: Double, default: 50, deprecated name: KernelIntervalMax

Sets the maximum voxel value for the pre-filtering interval.

see also KernelExample.intervalMaxOfVoxelsForFiltering

Use (useIntervalOfVoxelsForFiltering)

name: useIntervalOfVoxelsForFiltering, type: Bool, default: FALSE, deprecated name: UseKernelInterval

If checked, a pre-filtering interval is defined by Min and Max.

see also KernelExample.useIntervalOfVoxelsForFiltering

Determine min/max from calculated pages

name: autoCalcMinMax, type: Bool, default: TRUE

If checked, the minimum and the maximum values of the output image is determined by all values of the actually filtered voxels.

see also KernelExample.autoCalcMinMax

Set

name: setAutoMinMax, type: Trigger

If pressed, the determined minimum and maximum values are set to the output image.

see also KernelExample.setAutoMinMax

Minimum Value for Output Image

name: outputMin, type: Double, default: 1

Sets the minimum value for the output image manually.

NOTE: the actual image values MUST be within the minimum and maximum values in the image!

see also KernelExample.outputMin

Maximum Value for Output Image

name: outputMax, type: Double, default: 0

Sets the maximum value for the output image manually.

NOTE: the actual image values MUST be within the minimum and maximum values in the image!

see also KernelExample.outputMax

Use min/max values for output image

name: useMinMax, type: Bool, default: FALSE

If checked, the manually set minimum and maximum values are set to the output image.

see also KernelExample.useMinMax

Hidden Fields

referenceExtentMode

name: referenceExtentMode, type: Enum, default: Overlap

Values:

Title Name
Overlap Overlap
Input0 Ext Without Fill Input0_ExtWithoutFill
Input0 Ext With Fill Input0_ExtWithFill
Max Extents Without Fill MaxExtentsWithoutFill
Max Extents With Fill MaxExtentsWithFill

numKernelElements

name: numKernelElements, type: Integer, persistent: no

kernelElementsSum

name: kernelElementsSum, type: Double, persistent: no