Purpose

This module is an example operator how to implement a convolution filter.

It contains all options and parameters which are available from the KernelBaseOp and KernelOp classes.

Windows

Default Panel

../../../Modules/ML/MLKernelExamples/mhelp/Images/Screenshots/KernelExample._default.png

Input Fields

input0

name: input0, type: Image

Output Fields

output0

name: output0, type: Image

Parameter Fields

Visible Fields

Border Handling

name: borderHandling, type: Enum, default: PadSrcClamp, deprecated name: edgeMode

Defines the border handling of the kernel operation.

Values:

Title Name Description
No Pad NoPad Only those voxels are passed to the output which can be filtered correctly by the entire kernel. So the output image usually shrinks by the extents of the kernel - 1.
Pad Src Fill PadSrcFill

The input image is virtually expanded by so many voxels that all input image voxels can be filtered correctly with the kernel.

The area added around the input image is filled with the value specified in the Fill Value field.

Pad Dst Fill PadDstFill

All pixels of the output image which can be filtered correctly with the kernel without accessing voxels outside the output image are filtered with the kernel.

All other voxels in the image are filled with the value specified in the Fill Value field.

Pad Dst Fill With Orig PadDstFillWithOrig

All pixels of the output image which can be filtered correctly with the kernel without accessing voxels outside the output image are filtered with the kernel.

All other voxels in the image are filled with their corresponding values from the input image.

Pad Src Undefined PadSrcUndefined

The input image is virtually expanded by so many voxels that all input image voxels can be filtered correctly with the kernel. The area added around the input image is not filled with a certain value and remains undefined.

Note that this mode saves time for border filling but causes unpredictable values in the border regions of the output image.

Pad Dst Undefined PadDstUndefined

All pixels of the output image which can be filtered correctly with the kernel without accessing voxels outside the output image are filtered with the kernel. All other voxels in the image are left undefined.

Note that this mode saves time for border filling but causes unpredictable values in the border regions of the output image.

Pad Src Clamp PadSrcClamp

The input image is virtually expanded by so many voxels that all input image voxels can be filtered correctly with the kernel.

The contents of the area added around the input image is filled with those voxels of the input image which are nearest to the filled ones.

Fill Value

name: fillValue, type: Double, default: 0

Sets a fill value that is used for filling the border in certain modes of Border Handling.

X

name: kernelX, type: Integer, default: 3, minimum: 1

Sets the size of the kernel in x-direction.

Y

name: kernelY, type: Integer, default: 3, minimum: 1

Sets the size of the kernel in y-direction.

Z

name: kernelZ, type: Integer, default: 1, minimum: 1

Sets the size of the kernel in z-direction.

C

name: kernelC, type: Integer, default: 1, minimum: 1

Sets the size of the kernel in c-direction.

T

name: kernelT, type: Integer, default: 1, minimum: 1

Sets the size of the kernel in t-direction.

U

name: kernelU, type: Integer, default: 1, minimum: 1

Sets the size of the kernel in u-direction.

Make kernel spherical

name: makeSpherical, type: Bool, default: TRUE

If checked, the used kernel has an approximately spherical shape.

Otherwise, the kernel has a rectangular shape.

Normalize kernel

name: normalize, type: Bool, default: TRUE, deprecated name: autoNormalize

If checked, the kernel values are normalized, so they all add up to 1.

Input

name: externalKernel, type: String, deprecated name: kernelInput

Sets a kernel from another module as a string.

Use (useExternalKernel)

name: useExternalKernel, type: Bool, default: FALSE

If checked, an attached external kernel is used.

Info

name: kernelInfo, type: String, persistent: no

Shows information about the module.

Kernel Output

name: kernelOutput, type: String, persistent: no

Shows the used kernel as a string.

Min (intervalMinOfFilteredVoxels)

name: intervalMinOfFilteredVoxels, type: Double, default: 30, deprecated name: ImageIntervalMin

Sets the minimum voxel value for the post-filtering interval.

Max (intervalMaxOfFilteredVoxels)

name: intervalMaxOfFilteredVoxels, type: Double, default: 50, deprecated name: ImageIntervalMax

Sets the maximum voxel value for the post-filtering interval.

Use (useIntervalOfFilteredVoxels)

name: useIntervalOfFilteredVoxels, type: Bool, default: FALSE, deprecated name: UseImageInterval

If checked, a post-filtering interval is defined by Min and Max.

Min (intervalMinOfVoxelsForFiltering)

name: intervalMinOfVoxelsForFiltering, type: Double, default: 30, deprecated name: KernelIntervalMin

Sets the minimum voxel value for the pre-filtering interval.

Max (intervalMaxOfVoxelsForFiltering)

name: intervalMaxOfVoxelsForFiltering, type: Double, default: 50, deprecated name: KernelIntervalMax

Sets the maximum voxel value for the pre-filtering interval.

Use (useIntervalOfVoxelsForFiltering)

name: useIntervalOfVoxelsForFiltering, type: Bool, default: FALSE, deprecated name: UseKernelInterval

If checked, a pre-filtering interval is defined by Min and Max.

Determine min/max from calculated pages

name: autoCalcMinMax, type: Bool, default: TRUE

If checked, the minimum and the maximum values of the output image is determined by all values of the actually filtered voxels.

Set

name: setAutoMinMax, type: Trigger

If pressed, the determined minimum and maximum values are set to the output image.

Minimum Value for Output Image

name: outputMin, type: Double, default: 1

Sets the minimum value for the output image manually.

NOTE: the actual image values MUST be within the minimum and maximum values in the image!

Maximum Value for Output Image

name: outputMax, type: Double, default: 0

Sets the maximum value for the output image manually.

NOTE: the actual image values MUST be within the minimum and maximum values in the image!

Use min/max values for output image

name: useMinMax, type: Bool, default: FALSE

If checked, the manually set minimum and maximum values are set to the output image.

Hidden Fields

referenceExtentMode

name: referenceExtentMode, type: Enum, default: Overlap

Values:

Title Name
Overlap Overlap
Input0 Ext Without Fill Input0_ExtWithoutFill
Input0 Ext With Fill Input0_ExtWithFill
Max Extents Without Fill MaxExtentsWithoutFill
Max Extents With Fill MaxExtentsWithFill

numKernelElements

name: numKernelElements, type: Integer, persistent: no

kernelElementsSum

name: kernelElementsSum, type: Double, persistent: no