MeVisLab Reference Manual




MeVisLab Reference Manual

MeVisLab Reference Manual

Copyright © 2003-2025 MeVis Medical Solutions
Published 2025-06-26




Table of Contents

I 1 (o [¥ ot 1 o] o IR P PRSPPI 13
1.1. About the MeVisLab Reference Manual ..............oooooiiiiiiiiiiiiicii e 13
1.2. ASSOCIAtEd DOCUMENES .....iiiiiiieieiii ettt ettt ettt e et eeeaaa s 13

2. MeViSLab USEI INTEITACE ......ccuniiiiiiii et e e e e e e eaneas 14
2.0, OVEIVIBW .ttt et e ettt ettt ettt e e et e et e e et et e e e e e an e e ean e aaa e 14
A V1 T SRR 15

3. MOAUIES AN NEIWOTKS .....eeetieiiit ettt ettt e e ettt e e et e e e e abe e e e eeaa e eeees 18
3.1, TYPES Of MOAUIES ...ttt e e e 20
3.2. Module NetwWOrk PANEIS .........coouuiiiiiiieii e 21
3.3. Connector and CONNECHION TYPES .....ciiiuuueiiiiii ettt ettt e e 21
3.4. Connecting, Disconnecting, Moving, Copying, and Replacing Connections .................... 25

3.4.1. ConNeCtiNg MOAUIES .........uiiiiiiiieii et 25
3.4.2. Disconnecting MOAUIES .......uiiiiiii e 35
3.4.3. MOVING CONNECLIONS ....uuiiiiiiieiiiie ettt ettt e et e e e e e s 38
3.4.4. CoPYING CONNECHIONS ...ceivtiieeiiiiie ettt ettt ettt e e 40
3.4.5. Replacing CONNECLIONS ......uuuiiiiiiiieieiii ettt ettt e e e e 41
3.5, MOUSE POINLEIS ..ottt ettt et et e e e e eneans 42
3.6. MOUSEOVET INFOMMALION ...cciiiiiiieiit e et e e e e 43
T /T To [ L= o - o PPN 46
3.8. Module HIghIIGNTING ......uuniiiiii et 47
IS I Y/ T o [ [= T = F= T To 1o o P 49
3.9.1. Module CONEXE IMENU .....ciiiiieiiii et 49
3.9.2. AdditioNal INPULS ....eeie e e 56
3.9.3. Show Internal Network (Macro Modules) ...........coveiiiiiiiiiiiiii e 57
3.10. NetWork HandliNg ......ccoouuiiiiiiiieiii e ettt et e e e e e e enes 59
3.10.1. Network CONEXE IMENU ......uiiiiiiieiiii e e 59
3.10.2. Connections CONEXE MENUS .......uuiiiiiiiieiiiii ettt 59
0 I T L= T o ] (0T U o 1= PP 61
3.11.1. Creating Groups and Adding/Removing Modules .............ccccoeiieiiiinieiiiiinnenennn, 62
3.11.2. Editing, Converting, and Deleting GroupPS ..........ccooviuuiiieiiiinieeiiieeeei e 63
3.11.3. Copying Groups INCluding MOUIES ............viiiiiiiieiiiiic e 64
TN B2 B L= o Lo ] (= PP 64
3.12.1. Cre@tiNng NOTES ...ttt et et e 64
3.12.2. HANAING NOLES ..ottt ettt e et e e e e ent e eees 65
3.12.3. Editing and Deleting NOTES ........ccouuuiiiiiiiiiiiiiii e 66
3.12.4. Copying NOtes INCIUAING TEXL ....covuriieiiiiie e 67
3.13. USING the MiNi IMAP ....uniiiiieeee et 67
3.14. Network QUICK SEAICH ... e e e aens 69
3.15. NEIWOIK SEIECION ...ttt e eaen s 71
3.16. NEIWOIK PIEVIEW ...ttt et e ettt e et e eeeaan s 71
3.17. NEtWOrk MOUSE GESIUIES ......iiiiiieeeeii ettt ettt e ettt e e e e e e ab s 71
3.17.1. Gesture for Closing the Current NetwWork ............ccoouiiiiiiiiinieiiiee e 72
3.17.2. Gesture for Closing the Current Network Without Prompt ...........cc.ccooevviiiiiinnnnn. 72

YT o U = - | PSPPI 74

A1 FHlEe IMBINU ..ottt 74
L1 NBW oot ettt 74
o N © ] o 1] o E PP 74
41,3, ClOSE ituiiiiit ettt 74
414, ClOSE All oo e e 74
.15, SAVE oottt 75
.16, SAVE AS ..oieiiiiiiit e 75
4.1.7. SAVE COPY AS ottt 75
4.1.8. REVEIT TO SAVEA .....oiiiiiiiiiiiii ettt ettt et e et e e e eeaes 75
4.1.9. RECENE FIlES ..o e e 75
4.1.10. Open MoSt RECENE File .....ouiiiiii e 75




MeVisLab Reference Manual

4.1.11. RUN ProjeCt WIzZard ........ccoouiiiiiiiiie e e e e e e e e e ee 75
4.1.12. Create LOCAl MACIO ....cccuviieeiii et e s 75
0 I e T [ B o o= I 1V =T o R 77
4.1.14. 0pen File in MATE ..o e 77
A.1.15. SNOW MATE ..ottt e et e e et e et e e e e aa s 77
4.1.16. RUN TOOIRUNNET .uuiiiiiiii ettt ettt e e e e e et e e e et e e e eeaanaeeaees 77
4.1.17. RUN TeSICASEMEANAGET ...iviititiitiiiieie ittt e e e e e e n e e 77
4.1.18. RECENT TESE CABSES ...uieuieiiieiiii ettt r e e e e e e 77
4.1.19. Run MOSt RECENT TESE CASE ....ccuiiiiiiiiiicii et 78
4.1.20. Restart with Current NetWOrKS .........ooiiiiiiiiiii e 78
o O © T | PP 78
o 11 1Y/ 1= o PP 78
0 S U 1 T [ T PP 78
N = L= o [0 PP 78
4.2.3. Clear UNdo HiStOrY ......iiveiiiiiiiii e e e e e e e e e e aanaees 78
S U | PSP 79
T T O o] o) PSPPI 79
4.2.6. PaSIE ..ot 79
o G 1§ o] o (= TP 79
A.2.8. DEIBLE ... 79
4.2.9. SEIECE All ..o 79
4.2.10. DESEIECT All ..oveneieiiiie e 79
I 10 V=T o AT =1 =T o) o PP 79
o A [T [ T A 1= o1 (= N 79
4.2.13. AUtO Arrange SEIECHION ......iie i e 80
4.2.14. Reload Selected MOUUIES .......ooiiiiiiiiiii e e 80
R T o (= (=T (= o= PO 80
4.3.1. Preferences — GENEIAl ......ocooiuiiiiiii e 81
4.3.2. Preferences — PaCKages .....cc..oiiiiiiiiiiic i 83
4.3.3. Preferences — ModUIE GIOUPS ....ccuuiiinieiiiieiiee e e e e e e e aaens 84
4.3.4. Preferences — Supportive Programs .........cccoeueiiiiieiiiieiiie e ee e ee e eaens 86
4.3.5. Preferences — Paths ... 88
4.3.6. Preferences — SCHPLNG ..ivvuiiiiiii e e 89
4.3.7. Preferences — Network APPEAraNCEe .........ccuuveiiiieiiiieeiiieeiiieeeiie e e e e e e e e 90
4.3.8. Preferences — Network INteraction ............cooiiiiiiiiiiiiiiiini e 95
4.3.9. Preferences — Error / Debug Handling ...........cccooviiiiiiiiii e, 97
4.3.10. Preferences — SNOMCULS .....o.uuiiiiiiiiiee e 99
Y oo (U1 =TS 1Y =T o 11 P 100
T AN o] o [ o= o) F R 1Y, 1= o 1 100
4.6. EXITAS MENU ....oeieiiii et et e 101
4.6.1. Reload Updated Shared LIDraries ........ccoeevviiieiiiieiii i 101
4.6.2. Reload Module Database (Keep Cache) ........ccccuvviiiiiiiiiiiiiieiiieeeee e 101
4.6.3. Reload Module Database (Clear Cache) .........ccocoiiiiiiiiiiiii e 101
4.6.4. Reload Imported Python MOAUIES ........covviiiiiiiie e 101
4.6.5. Show Global MDL DefiNitioNS... ......iiiiiiiiiiiiiiiie e e 101
4.6.6. RUN MOAUIE TESES... 1ivtiiiiiiiiii et e e e et e e eaens 103
4.6.7. RUN TEStS ON SEIECHON... 1ieuviiiiiiii e et e e e eeees 103
4.6.8. Generate Module Reference for User Packages (HTML) .......ccooeeviviiiiiiiineeinns 104
4.6.9. Show Widget EXPIOTEr .....uiiiiiiii it e e 104
T O TR 1= o 18 o YA To [ 1= £ 107
4.6.11. Show ConNECtOr DELaIlS .......coeevuiieiiiiiieii e e eeees 107
4.6.12. Show Image CoNNECIOr PrEVIEW ........cccuiiiiiieiiieiii e e e e e e e 107
4.6.13. Clear Image CacChe ........cccuuiiiiii e 107
S Tod 1o T LY=o 1 P 107
4.7.1. Show SCripting CONSOIE .......uiiiiiiiiie e e e 108
4.7.2. Scripting CoNEXE MENU ....uiiiiiiii et e e e e e e e eaaees 109
4.7.3. Edit NEtWOIK SCHPL ..uniiiiiii e e eaas 110
4.7.4. Start NEtWOIK SCIIPL ..uiiii i e e e e e e e e e e e eees 110




MeVisLab Reference Manual

T O Y= T G Tl ] o) PN 110
T R = 1 ] o] (SIS o ] o] £ 111

O B = U0 | o O = G Yol o ) 111

4.8.3. Run Last User Script: <NameOfUSErScript™> ........coovvviiiiiiieiiiieeie e 111

4.8.4. RUN RECENT USEI SCHPL covuniiiiieiiii et e e e e e e e e 111

R T = 1 ] o] (SIS o ] o] £ 111

e B o |V =T o PO 111
A.9.1. VIEBW All Lo e e e e 111

4.9.2. ZOOM TO SEIECHON ...ueeiiiiiee ittt e e e e 111

4.9.3. ZOOM TN e 111

Ve S e To | 1 I @ 1 | S PSPPI 112

e Yo To | I 1001 R PPTPPRN 112

e T - Yo 11| PP 112

e R o To | o T= 1 = PP SPPRN 113

A.9.8. VIBWS .ouiiiiiiii ettt ettt e e et et e et e et e e e et e e e atn e aees 114

4.10. NEIWOTKS IMEBINU ..ttt e et e e et e e et e e e e 115
0 O 1 o = PP 115

4.10.2. ClOSE All oo e 115

o == T = RS 1Y =T o T PP 116
4.11.1. Panels Stay In Front Of Main WIiNAOW ..........cc.oviiiiiiiiiiiciiiec e, 116

4.11.2. Hide Panels Of Invisible NetWOrKS .........cccoiiiiiiiiiiiiiiiiieecii e 116

4.11.3. ClOSE All PANEIS ...t e eaees 116

4.11.4. Close Panels Of Current NEetWOIK ............oiviiiiiiiiiiiiiii e 116

4.11.5. Minimize All Open Panels .........ccouiiiiiiiii e 116

4.11.6. Show All Minimized Panels ............iiiiiiiiiiiiii e 116

4.11.7. Working with the Panel List .........cccouiiiiiiiiii e, 117

T =Y [ 1 =Y 3 T PP 117
4.12.1. (Search in documentation and Menu eNntries) ........ccccoveviiiieiiiieriii e 117

4.12.2. Full-text Search in DOCUMENTALION. .. . .cccuuuieiiiiiiieeeiiie e 118

4.12.3. ShOW CONtEXt HEIP... wouiieiieii e e e e aens 118

4.12.4. SNOW HEIP OVEIVIEW .....iiiiiiiii e e e e e e e e e e e 118

4.12.5. Browse HeIPp PAges .....covniiiiiiiiii e 118

2 T = (oo 3 = PP 118

O G A o o | PSPPI 118

A.12.8. ENLEE LICENSE ..iiiiiiiieeiii ettt ettt e e et e e e et e e e et e e e e aae s 118

LS e o o - P 119
N I 1L @ 0T = o] S 119

ST o | PPN 119

LR T« Yo | 1 11 o T 119

5.4, SCript DEDUGQING ...ovvniiiiieii e 119

5.5, QUICK SBAICI ...eeiii e 119

5.6. AlIgN / DISIIBULE ...coeei e 120

OT =] (0] g T = - | PPN 121
L0 I 0T o L AT o o7 Lo ) (S 121

B.2. ML CACNE .ottt 121

LT B (o] o = U 1 (o] o [ PP 121

L0 o To o =T = 1Yo T | PN 121

A == o3 (o [ (o 0T o BN 1= 1= 122
ST I LY o1 To [ LU o1 | P 125
9. ML Parallel Processing Profil€r VIEW ........ccouuiiiiiiiiii e 126
10. MOUIE BIOWSET ...ttt ettt e et e e e e et e e e e et e e e et e e e e at e e e e et neeeesanaeas 128
B Vo To 18] T [T o=t o PR 129
O T T [ £ ST P 129
11.1.1. Editing Field ValUES .........iiiiiiiiiiiei e e 129

11.1.2. Module Inspector Fields Context MENU ..........cc.cveiiiiiiiiiiiiiiici e, 130

5 O 1= PP 133
11.2.1. Module Inspector Files Context MENU .........cc.viiiiiiiiiiieiii e 133

B T I =T S PP PTPT 133




MeVisLab Reference Manual

12.
13.

14.
15.
16.

17.

18.
19.

20.
21.
22.
23.
24,
25.
26.

27.

11.3.1. Tree COoNEXE MENU ...ueiiiiiii e e ees 134

5 O S LN o T T | PSP 134
T L= - (= o PP 135
11.5.1. Related ConteXt MENU .....ccuuuiiiiiiiiiee et e e e et eeeeae e eeees 135

0 G TS T o ] o PP 136
1Y o T 1o ) PPN 137
[ To o (U1 TS =T- T o] o PP 138
13,1, MOAUIE SEAICH ..oeuiiiiieei et e et e e e et e e e e aeee 138
13.2. AAVANCEA SEAICK ...ovuiiiiiii e 138
13.3. Module Search Result CoNteXt MENU ..........uuiieiiiiiieiiiii e eeaens 139
13.3.1. GeNEral OPLiONS ..covuiiiiiiiiie et e e e r e 140
13.3.2. Additional Options for Macro Modules ...........ccceuiiiiiiieiiiieiir e 140

13.4. Search iN NEtWOTK ........iiii e e e ananns 140
Network Field WALCHLISE .........iiiiii e e e e e 142
OULPUL INSPECION ..ottt e e e e e et et e e e et et et e e e et aanas 143
Parameter ConNECLIONS INSPECIOT .....uuiiiicii e e e e e e e e e e eanas 145
16.1. Parameter Connections INSPECIOr VIBW ........vviuuiiiiiiiiiiieeii e e e e e e 145
16.2. Parameter Connections Inspector Context MenuU ..........c.ccovevvieeiiiieiiiiieii e, 147
(o) 1111 o R 148
17.1. Introduction to Profiling ......coouieiiiiii e 148
17.2. USING ProfiliNg coueeeeeiiici et 149
7 T Y o o = PSPPI 150
L17.2.2. FIEIAS ot e e e e e e e aaa 152
A T ¥ T 1o TP 152

R {CTod oL O LT |1 01U | £ T PP 156
Y od (=TT 1Y a0 A =T =T o 157
19.1. SCreenshot GallEry ......couniiii e e 157
19.2. Screenshot Gallery ConteXt MENU ......c.uuiiiiiieiii e e e 157
19.3. Movies in the Screenshot Gallery ........cccciiiiiiiii s 158
Yol ][ To @ o F=To [ 159
Yol ][ To T AT 1S3 - Vo | 160
SEAICH 1N NEIWOTK ..veiiiii e e ettt e e e et e e e e et e e e eatnreeeeatnneeaees 161
Search iN DOCUMENTALION ......uiiiiiiii et e et e e e e et e e e e ean s 163
Full-text Search in DOCUMENTALION .........iiiiiiiiieici e e 165
S 11 0] 0 1= #S T T PP 169
L (T T=Tot ALY o 170
26.1. Project Wizard INtrodUCLION ..........oeiiiiiiiieiie e e e e e e e 170
26.2. MOAUIES (CH+) WIZAID ..ovuiiiiieeii e e e e e e e e e e e aanas 171
26.2.1. First C++ Module Wizard Dialog ........c.ooveiiiiiiiiciiie e v e 171
26.2.2. INVENLOT MOUIE ...ttt e e et e et eeeeaa e aees 173
26.2.3. ML MOGUIE ...t et e e e e et e e e et e e e eatnaaeees 174

26.3. Modules (Scripting) WIzZard ..........ooouuiiiiiiie i 180
26.4. Module Field INtErfaCe ........oooiiuiiiiiii e 181
26.5. PACKAGES ..ivvuiiiiiieii ettt e e aa 182
26.6. Example .Wiz File (Inventor Module), indented for a better readability ........................ 183
Y I P 184
27.1. WRAL IS MATE? ottt e e e et e e et e e et e e e e et as 184
27.2. Text Editor USer INTEITACE ......oooeuuiiiiiii e eeaens 185
27.3. MBNU BT ..o 186
P S\ oo [N ] N1V =T oL PSP 188
27.5. OULING AFBA ..evnieiiii et e e e e ettt e e e et e e e e aa s 190
P ST o [ N - L PP 190
P R = = (= 1= o S PP 192
AT T Y1 o T T I 1= o 10 o o = 194
27.9. Module Help EdItOr .....cceniiiiici e e e e e e e e e 197
27.9.1. CONEXE MEINUS ..o e e e nn s 199
AT o 1 4= L1 Vo TP 200
27.9.3. HOW It WOTKS .oeiiiiiii e ettt e et e e et eeaaens 202




MeVisLab Reference Manual

27.9.4. INternal HTML PIrEVIEW ......iiiiiiiiiiiiiiie ettt et e s 203
27.10. SESSION MANAGEMENT ....iitiiiii e ee e et et e e e e e e e et e et e e et e e et e estaeeanaeeanaees 204
A R o o 1= o VY LT Y o - T =P 205

A R R = o] [=Tox A 3/ 1= PP 205

27.10.2. CONEXE MENU ..ot et e e eees 206

P A R TV T PP 207

P A S | [ o o7 1 o PP 208
P 8 2 €1 | I o 1 (o PP 208
A o TS T o) ] o 209
A S 1T B g1 (= Te = (o o PPN 210

27.04. 1. INSEAIIALION ...ueiiii e 210

27 14,2, USABOE ouiiiiiiiiie ettt 210
27.15. BIACK INTEQIatiON ......civeiiii i e e e e e e e e e e e e e e e e e 211
A7 L T o) 0TI ) (=T [ = L1 o I 212

27.06.1. RENAIME .oeiiiiieiiii ettt e e et e e e e ees 212

27.16.2. EXIract FUNCLION ...cooiitiii et eeeni e eees 212

b2 T T o = g o R I o &P 213
28.1. CommaNd-LiNE OPLIONS .....uiiiiiiiiiie it e e e e e e e e e e eaaas 213
28.2. MeVisLabPacKageSCaNNEr.EXE ......ciuuuiiiiiieiii it e et e e e e e e e e e eeen 215
28.3. Connecting Inventor Engines to ML MOdUIES .........cccouiiiiiiiiiiiici e 215
28.4. Using SyncFloat to Reduce System Load ...........c.ooeviiiiiiiiiiiiicccn e 216

28.4.1. Case 1: Two Inventor and One ML Module Connected in a Circle ................... 216

28.4.2. Case 2: A Macro Module (Including an Inventor Module) and Another Inventor

Module Connected iN @ CIrClIE ........iiiiiii e 217
28.5. Printing MeVisLabh NEtWOIKS .......couuiiiiiiiii e e e e e e e e 218
28.6. Multi-threading in MEVISLAD .........ccouiiiiiiiii e e 218

28.6.1. Multi-threading in the ML .........oooiiiii e 218

28.6.2. Background TasKs .......ccouuiiiiiiiiiii e 218

28.6.3. Modules for Multi-threading ..........cooeuieiiiiiii e 219
28.7. Set Open Inventor Override Flag (Inventor Modules) ...........ccoveviiiiiiiiieiiiiecieeee e, 219

29. Settings File and Environment Variables ...........cooviiiiiiiiii e 222
29.1. Possible Locations of mevislab.prefs ... 222
29.2. Options IN MEVISIAD.PIrEfS ....vuii e 222
29.3. Environment variables ........ ..o 226




List of Figures

2.1. Typical MeVisLab USer INTErface ..........ooiiuiiiiiiii e 14
2.2. View DOCKed iN the VIEWS ATB@ ........iiiiiiiiieiiii ettt 15
2.3, FIOALING VIBW ...eeieiiiiiie ettt et ettt e e e et e e et et e e e e et e e e e e aees 16
2.4. Moving View to Another POSItion iN VIEWS AT .......cccuuuiiiiiiiiiieiiii e 16
2.5, STACKEU VIBWS ...ttt ettt ettt e e e et e et n e et e e e 17
2.6. Resizing @ VIEW iN the VIBWS ATC8 .......uuiiiiiiii et 17
3.1. Example Network for SynchroView2D with Viewer (Panel), Automatic Panel, and Settings..... 19

3.2. Modules with NetwOrk Pan@IS ........oouuiiiiiiii e 21
3.3. View2D with Connected "Invisible” Open Inventor CONNECION ...........c.uuveiiiiinieiiiiiiieeeeiieeeees 22
3.4. Compatible Connectors for CSOVisualizationSettings TYPEe ......cccuuiieiiiiiiieiiiiiieiiieeeeeii e 24
3.5. Compatible Connectors for CSOLISt TYPE ....uuuiiiiiiiieiiiii e 24
3.6. Compatible Connectors for ML IMage TYPE ....uuiiiiiiieieiii ettt 24
3.7. Parameter Connection — Panel MOUSEOVET ..........ciiiiiiiiiiii e 45
3.8. CONNECION IMAGE PIEVIEW .....ueiiiiiii ettt ettt ettt et e et e et eeene s 46
3.9. Connector Detail Info and IMage PreVIEW .........coouuiiiiiiiiie e 46
3.10. MOdUIe CONEXE MENU ...coutiiiiiit ettt e ettt e ettt e e e e r e e e et e e e entaeeees 50
3.11. Module Context Menu — ShOW WINAOW ........ccoouuiiiiiiiiieiiiii e 50
3.12. AULOMALIC PANEI ..o e 50
3.13. Panel Defined iN IMDL ..ottt 51
3.14. Module Context Menu — Edit INStance NamMe .........ccoouiiiiiiiiiiiei e 52
3.15. Modules and INStANCE NAMES .......cciiuiiiiiiii et e e e et e e e e s 52
3.16. Module Context Menu — Show Example Network ............cooooiiiiiiiiiiiiinii e 52
3.17. DEPENAENCY WAIKET .....vuiieieiiii ettt ettt ettt e e e e e ennens 53
3.18. Module ConteXt MENU —— TESES ....cieiiiieiiiiii ettt ettt e e et e et e e e ere e e eenaaeeees 55
3.19. Module Context Menu — Related FileS ........coooiiiiiiiii e 56
3.20. View3D With Visible Inventor INputs (Default) ............oiiiiiiiiiiii e 56
3.21. View3D With Hidden Open INVENTOr INPULS ......coouuiiiiiiie e 56
3.22. RegionGrowingMacro — Internal NetWOIK ............oiiiiiiiiiiiii e 58
3.23. NetWOrk CONEXE MENU ...coviiiiiiii ettt e e e e e 59
3.24. Parameter Connection CONIEXE MENU ........uiiiiiiiii et en e 60
3.25. Module with Internal/Self-Connected Parameter CONNECHON ............ocovvviiiiiiiinieiiiiiieeeeeinne, 60
3.26. Data ConNection CONEXE MENU ......oouuuiiiiiii ettt 61
3.27. Network Context Menu — AdAING GIOUPS .....ccieitiieiiiii ettt 62
3.28. Network Context Menu — Adding to & SPeCific GrOUP .......cceeuuuiiiiiiiieiiiiiie e 63
3.29. Group CONEXE MENU ....cuuiiiiiiii ittt e e e e enans 63
3.30. NOte (EXPANUEA) ....ovniiiiiiiiieeiiit ettt ettt e et e ettt e e e e e e e 64
3.31L. CreatiNg @ NOTE .....oiiiii ittt ettt e et e et e e e 65
3.32. Dialog for EditiNg NOES ......cciiiiiiiiiiii ettt e e et e e e e e e ena e e 65
3.33. NOLE (COMAPSEA) ...ttt ettt et 66
3.34. NOtE CONEXE MENU ....ceiiiiiiiii et e e e e e e eae e eees 66
3.35. A Note Displayed as a Network COMMENT .........uiiiiiiiiiiiiiie et eeri e 66
e TG (o] (= | g I= T €1 (1 U ] « PP TPPPPTRRPPPPN 67
R I |V 11 o T 1Y = o TSP UU PP SPPPPP 67
3.38. Navigating in the MiNi IMAP ......ccoouiii e e 68
3.39. Parent Navigation Frame for Macro MOAUIES ............ccooiiiiiiiiiiiiiii e 68
3.40. Parent Navigation Frame ConteXt MENU .........cccuuuiiiiiiiieiiii e 68
3.41. Network QUICK SEAICH ... ... et e e 69
3.42. Network QUICK SEArch — OPLIONS ....ciiiiiiiiiiii ettt 69
3.43. Network Quick Search — Show All RESUILS .........oiiniiii e 70
3.44. Network Quick Search — Highlight RESUIS ...........ccoimiiiiiii e 70
3.45. Network Selector iN ACHION .........iiiiii e ettt et e e et e e e e na e e 71
3.46. Network Selector iN ACHION .........iiiiii e e ettt e et e e e e e eees 71
3.47. Trail of Unrecognized MOUSE GESLUIE .........uuiiiiitiieiiiii ettt 72
3.48. Mouse Gesture for Closing the Current NetWOrK ...........cooouiiiiiiiiiiiiii e 72
3.49. Mouse Gesture for Closing the Current Network Without Prompt ...........ccooovviiiiiiiiinieiinnnnn. 73




MeVisLab Reference Manual

T 1 =S V= o T PP 74
i Mo o= L1V = ol £ B O ==V o] o OSSPSR 76
4.3. Modules Connected t0 OULEN IMBCIOS .....ociiiueiieiiiiie ettt et e et e e et eeeae e 77
4.4. Edit Menu (WINAOWS €XAMPIE) ...ovuiiiiiiiii et e e e e e e e e e e e eaes 78
T A [T g A I 1) ] o 11 = 79
4.6. Preferences — GENETAl ........i i 81
4.7. Preferences — PaACKAQGES .. .c.uuiiiiiiiiiie ittt e e e e e 83
4.8. Preferences — MOAUIE GIOUPS .....couuuiiiiiiiii et e e e e e e e e e e e eeanas 85
4.9. Preferences — SUPPOIIVE PrOGIaMS ......ccuuuiiiiiieiiieeiie e e e e e e e e e e s e e e et e e e e e eanas 86
4.10. PreferenCes — PathS ... 88
4.11. PreferenCes — SCHPNG .ouuiiiii e e e e e e e e e e e e e e e e e 89
4.12. Preferences — NEetWOrk APPEAIANCE ......c..iiiiiiiiii et e e e e e e e e e e aa s 90
4.13. Preferences — NetwWork INEraCtion ............oieiiiuiiieiiiii e e e e 95
4.14. Preferences — Error / Debug Handling ..........oooeiiiiiiiiii e 97
4.15. PreferenCes — ShOMCULS ... e e e 99
G 1Y FaTo 0] =TV 1= o [ PSPPI 100
417, EXITAS MENU .ottt ettt e 101
4.18. MeVisLab Global MDL DefiNitiONS ........ccoiuuiiiiiiiiie e 102
1V oTo [0 LTS =] (= Tox 1T o PPN 103
4.20. MeVisLab Widget Explorer - Attributes INSPECLON .....cc.vuiiiiiiiii e 105
4.21. MeVisLab Widget Explorer - Style Sheet EitOr ..........ccovvviiiiiiici e, 106
S Yo 1 To T Y 1= o 1 108
e TS Yo 11 To T =T 11 o} PP 108
4.24. SCripting EXAMPIE . .ovniiiiii e 109
4.25. SCripting CONIEXE MENU ....iuvuiii e e e e e e e e e e e e e e et e et e e et e e e e eeanas 110
YT A Y =Y o T PPN 111
4.27. VieW — Layout SUDIMENU .......iiiiiiiii e e e e e e e e e e et e e et e eeanaeees 112
S (o] £~ @ [ =] 1 1= Y 0T | 113
4.29. Edit USEI LAYOULS .....iiiiiiiiieiii e e e e e et e e e e e e e e e et e e et e e et e e st e e st e eanaeeennns 113
4.30. View — T0OIDArs SUBMENU .....ooouiiiiii e eaens 114
4.31. VIEW — VIEWS SUDIMENU ..ottt ettt e e e e e e e et e e e eaa e e eennnns 114
4.32. NEIWOIKS MEBINU ..ttt et e ettt e e ettt e e ettt e e e e ettt e e eett e eeeestnaeaaes 115
I B = 1 1= ESR 1Y =T o T PP 116
4.34. Panels Menu — Listing all Open PaneIs ..........couiiiiiiiiiiiie e 117
T o =1 1V =T o T 117
oI R e To ] | o= PP 119
5.2. QUICK SEArCh OPLIONS ....ciiiiiiiii e e e e e e e e e e e e et eea e aees 119
5.3. QUICK SEArCh — INFO BOX ..ivuiiiiiiiiiii it e e e e e e e e e e e e e eaaas 120
5.4, QUICK SEArCh HiStOrY ....uuiiiiiiiii i e e e e e e 120
LT I = T 1 (0] 1 T = T | PRSI 121
7.1. ML BacKgroUNd TaASKS ......ciiiuiiiiiiiiieii et ee e e e e e e e e e e e e e e s e e e et e e et e e eaneeeees 122
7.2. ML Background Tasks — CONEXE MENU ........ciiuiiiiii i e e e e e e e e e eaeaees 122
7.3. ML Background Tasks — Context Menu for Running ProCesses .........ccooovvvveviiiiviiiicvinnennnnn, 123
7.4. Warning for Running Background Tasks ..........ccccuuiiiiiiiiiiie e e 123
7.5. Save in Background fOr GVRVOI UNMBSAVE .......uiiiuiiiiiiieiiieeiiee s e e e e e e e e et e e s a e e e eaaeees 124
S0 T I T o 10 o [ 1 10T | 125
S T ©o ] 1 (=Y 1Y = o |1 PP 125
9.1. Parallel Processing VIEW OVEIVIEW .........ciiuniiiiiieeiieeiie e e e e e e e e e e e e et e e et e e e e e eaens 126
9.2. Parallel Processing VIEW DetallS ........c..oiiiuiiiiiiiiiii e e e e 127
10.1. MOUUIE BIOWSEN ...uuiiiiiitnieeeeii ettt ettt s e et e e et e et et e e e e et e e e e et e e e e et aeeeatn s eeeaanaeeennen 128
11.1. Module INSPECIOr — FIEIAS ...cvveiii e e e 129
11.2. AULOMALIC PANEI . .ceiiiieei e e e e e et e e et eeera e 129
11.3. Module Inspector — Edit BOOIEAN .......ccuuiiiiiiiiii e e e 129
11.4. Module INSPector — Edit COIOK ......uuiiii e 130
11.5. Module INSPECLOr — EdIt TEXL ..vuvuiiiiieii e e e e e e e e e e e st e e aan e 130
11.6. Module INsSpector — Edit VAIUES ........ciiiiiiiii e 130
11.7. Module Inspector Fields CONtEXt MENU ......cc.uuiiiiiiiii e e e e e e eaans 131
11.8. MOdUIE INSPECIOr — FlES ...eiiiiii i e e e e e e e eaen 133




MeVisLab Reference Manual

11.9. Module Inspector Files CONteXt MENU .........ccouuiiiiiieiiii e e e e e e e e eaen 133
11.10. MOAUIE INSPECIOT — THFEE ..evuiiiiieii e et e e e e e et e et e et e e et e e et e e e e aaneees 133
11.11. Module Inspector Tree CONtEXt MENU .......uiiiiiiiii i e e e e e e aes 134
11.12. Show AVAIlADIE MDL TAQS ..cvvueiiiiiiiiieei e e e e e e e e e e e e e e e et e e eeaans 134
11.13. Module INSPECIOr — ADOUL .....uiiiiiii e e e e e e e e e e e e 135
11.14. Module INSPector — REIALEA ........covuiiii i 135
11.15. Module Inspector Related COnNteXt MENU ......ccvuuiiiiiieiiiee e e e e e e 135
11.16. Module INSPECLOr — SCHPLING t.vuiiiii e e e e e e e e e e e eanaeens 136
2 O /T To [ L PSPPI 137
13.1. Module Search with DEMO ENtIY .....coouiiiii e e 138
13.2. Module Search — AAVANCEM .........iiiiiiiici e eanens 138
13.3. Module Search — Searching IN ... e 139
13.4. Module Search — OPEIAOrS .........iiiuiiiiiii i e e e e e e 139
13.5. Module Search Results — CONtEXE MENU .....covuuiiiiiiiiiieeeie e 139
13.6. S€Arch iN NEIWOTK ....euuiiiiii et e e e et e e e eaen s 140
14.1. Network Field WALCHLISE ........iiiiiiiieieii e e e et eeeaeens 142
G0 I Y [ g =T L= [ 01 01T o) o | (PP 143
15.2. ML Image INSPECIO: 3D VIBW ...uiiiiiiiiiie et e e e e e e e e e e e e e eanns 144
15.3. ML Image Inspector: Detailed INformation .............ccoooeiiiiiiiiiiii e 144
16.1. Parameter Connections INSPECION VIBW .......ciiuuieiiiieiii e e e e e e e e 145
16.2. Parameter Connection Example — Vi ew2D and Vi eW3D ........cccccvuieiiieiiiieeiiieeineeeieeeaeeenn 146
16.3. Parameter Connection Example — Vi eW2DEXt ENSi ONS ...cvvviiiiinieeineeeiiieeiieeeaiieeaieeeanaeeennns 146
16.4. Parameter Connection Example — Navigating Between Fields .............cccooeeiiiiiiieiinennnnn, 147
16.5. Parameter Connections Inspector ConteXt MENU ........cc.uveviiiiiiiiieiii e e 147
17.1. Functions to Be Profiled ..o 148
A o) 1111 o PP 149
A T o) 1117 o =T oY 150
17.4. Profiling MOUIES .........iiiiiiie et e e e e e e e e e et e e et e et e eaaeaes 151
17.5. Profiling — Heading Configuration ............cocouiiiiiiiiii e e e e e e 151
A G T o) 1117 o =T o P 152
17.7. Profiling Functions as Flat Profile ..o 153
17.8. Profiling Functions as Call Graph ..........ooiiiiiiiiii e 153
17.9. Functions with Filters VIsiBIe ...........ooooiiiiii e 154
18,1, RECENT OULPULS Lottt e e e e e e e et e e e e e et e e e e e ane e en 156
19.1. SCre€nShOt GallEIY .....veiieii e e e e e e e 157
19.2. Screenshot Gallery CONtEXt MENU ........uiiiiiiiiiieeie et e e e e e e e e e e eeas 158
20 I TS Y o) ] o N = 1o P 160
2 S Yt 1) ] o T = 1o P 161
S Yol 1) ] o T o 1o P 161
2 TS Yol 1) ] o T o 1o P 162
23.1. Search in DOCUMENTALION .......uuuiiiiiiii e et e e et e e et eaeaan s 163
23.2. Search in Documentation — ML EXampPIe .......ccouiiiiiiiiiiii e 163
23.3. Search in Documentation — MDL EXamMPIE .....ccuuiiiiiiiiiiiii e 164
23.4. Search in Documentation — Python Example ..........c.ccooiviiiiiiiiiii e, 164
24.1. Full-text Search in Documentation WINAOW ..........coouviiiiiiiiiiieiiiieee e 166
24.2. FUll-text SEArCh SELHNGS ...iivveiiiii it e e e e e e e e e e e et e eaaeees 167
24.3. Full-text Search RESUILS BIrOWSET .........iiiiiiiiieiiiiie ettt e et e et e e e e 168
S S 1 1] ] = S 1= RS 169
25.2. Snippets List — CONEXE MENU .....uuiiiiiiii e e e e e e 169
26.1. Project Wizard (no user packages available) ..........ccoooiiiiiiiiiiiiii e 170
26.2. Project Wizard (with user packages available) ............cc.ccoiiiiiiiiiii 170
26.3. First C++ Module Wizard Dialog — ML Module EXample .........ccoooviieiiiiiiiniiie e, 171
26.4. Create an ML Module in a Self-contained FOIder ............ccoooiiiiiiiiiiiii e 172
4SS T 10 \V/=T 0 (o Y/ o1 PR 173
26.6. Imaging Module Properties (NEW StYIE) .....ccouniiiiiii e e 175
26.7. NeW Style ML MOGUIE ... e e e e e e e an s 175
26.8. New Style ML Module — Uses Fixed Data tyPe ........oevvviiiiiiiiiiie e 176
26.9. New Style ML Module — Uses Data Type Of Input IMage ........cccovevviieviiiiiiiieciiieeieeeieees 176

10



MeVisLab Reference Manual

26.10. New Style ML Module — Entering The Supported TYPES ....uvvvvvieiiiieiiiiieiieeee e, 176
26.11. New Style ML Module — Configuring The Input Handling ..........c.ccccoiiiiiiiiiiiiin e, 176
26.12. New Style ML Module — Uses The Same Data TYPE AS ......cveviieiiieiiiieeeieeeie e e 177
26.13. Imaging Module Properties (ClassiC StYI€) .......cccuiviiiiiiiiii e 178
26.14. Additional ML MOdUIE PrOPEItiES ........civuiiiiiiiiie e e e e e e e 179
P T ST o o 1o ALY (o P 180
26.16. Module Field INtEIFACES ......uuiiiiiii e e e e e eenen 181
26.17. PAcCKage WIzZaArd ........ooiiiiiiii ettt e e e e e e e e e e a e 182
P A O O L= g 11 (=T o - Vo = PSPPI 185
27.2. MATE Fil& MENU ..ottt ettt e et e e et e e et e e e et e e e e eaanneeas 186
27.3. MATE Edit MENU ..ottt e e e et e e e et e e e et e e e e et s 187
27.4. MATE VIEW MEINU ...iiiiitiieeiii ettt e et e e e et e e e e ettt e e e eetaraeeeetn s eeeeetenaeeeees 187
27.5. MATE WINAOW MENU ....iiiiiiiiiiiie ettt e e e et e e e et e e e e et e e e e ennn s 188
27.6. MATE EXIras MENU .....couiiiiiiiiiieii ettt e e e e e e e e e e e e e ees 188
27.7. MATE Module Menu — Without Attached Module .............ccoooeiiiiiiiiiiin e, 189
27.8. MATE Module Menu - With Attached MOdUIE .............cooviiiiiiiiiiii e 189
27.9. MATE Module Menu — WINAOWS SUDMENU .....ccouuiiiiiiiiieieii e e e 189
27.10. MATE Module Menu — FilesS SUBMENU .....ooiiiiiiii e 189
P 8 N R @ 1T 1 1= AN = - PP 190
P VN I o 1) Y == PP 191
27.13. MATE Edit Area — Code Completion for KEyWOrds ...........ccoveviieiiiiciiiiiei e eeie e 191
27.14. MATE Edit Area — Code Completion for Commands Defined in MDL ..............cccoevvneennnn. 191
27.15. MATE Edit Area — CONEXE MENU ....uuutiiiiiiieiiii e e e e e e eaenns 191
27.16. MATE PrefEreNnCES ...oooviiieiiii ettt et e e e e e et e e e et e e e eata e e eeatnaaeeees 192
27.17. MATE With PYthon DEDUGOET .....ciiieii et e e e e e e e e 195
27.18. MATE DEDBUG IMENU ....uiiiiiiiee ettt e e et e e e et s e e e eaa e e e eabn e eeennns 196
27.19. MATE for MOdUIE HEIP ..cvnie e e 198
27.20. OULIINE CONEXE IMEINU ...ttt e et e e e et e e e e et e e e eete e e e eeaeaeaees 200
27.21. TeXt CONIEXE IMEINU ...cuiiieitie et e e et e e e e e en e eenns 200
27.22. Automatically Documented EIEMENLS .......ccoviiiiiiiii e 202
P T o I Y T PP 203
27.24. HTML ViIieW DECOUPIING .. oeveieiiieie et e e e e e e e e e e e e e e eaen 204
27.25. DECOUPIEA HTIML VIBW ..uuiiiiiiiii ettt e e e e e e e e e e et e e et e e e aanaeees 204
28.1. MeVisLabPackageScanner HEIP ....co.uiiiiiiiiii e e 215
28.2. Field Bridge EXAmPIE ......coouniiiiiiiii e e 216
28.3. SyncFloat Example — ML and Inventor Modules ..............ccooviiiiiiiiieiii e 217
28.4. SyncFloat Example — Macro and Inventor Modules ...........ccoviviiiiiiiiiiii e 218
28.5. Open Inventor Scene Without OVEITIAE ........oceuuiiiii e e e 219
28.6. Open Inventor Scene With OVEITIAE .......c.uiiiiiiiiii e e e 220
28.7. Open Inventor Scene With Ignore Flag (Red) .......ccuviiiiiiiiiiiii e 220
28.8. Open Inventor Scene With Ignore Flag (BIUE) .......ccouiviiiiiiiiiii e 221

11



List of Tables

1.1. List of MeVisLab DOCUMENLS .......ccceuiiieiiiiiiieieit ettt e et e e et e e eete e eeees 13
0 I /T To [ L= 1Y/ o1 PP 20
3.2. INVAII MOAUIES ..ottt ettt e e e e e e enaa s 20
KRR I O] o] o [=Tex (o] £ TP 21
3.4. Connecting to an Invisible CONNECION ..........c.uiiiiiii e 23
I S O] o g T=Tod 1 [o] 1 K PRSPPI 23
3.6. Connecting Modules DY DIagging ... .cccuuuieiemuueiiiie ettt 25
3.7. Dragging a New Connection Generates New Input Connectors to the Sides of Regular

(7] o] g T=Tox (o] £ PP PT PP UPPTPON 26
3.8. Even More New Connectors are Available ... 27
3.9. New Input Connectors are Generated by Positioning the MouSe ..............ccviiiiiiiiiiciiiiineee, 28
3.10. Connecting by Moving the Source Module into ProXimity ..........ccccooveeiiiiiieiiiniineeiiiieeeceiie, 28
3.11. Connecting by Moving the Destination Module into ProXimity ............cccocovviiiiiniiiiiinneciiinnn. 29
3.12. Connecting an Open Inventor Group by Proximity ..o 29
3.13. Connecting to an Open Inventor Group By ProXimity .............cooveieriiieiiiiinieiieeceie e 30
3.14. Appending vs. Prepending to an Open Inventor Group by Proximity ...........cccceoeevvivinneiinnnnnn. 30
3.15. Connecting a Module DY INSEIING .......ooiiiiiiiii e 31
3.16. Connecting a Module with Two Inputs by INSErting ..........cooovviiiiiiiii e, 32
3.17. The Second Input is Connected DY Dragging ........ccouvuieeiiiiieeiiiiee e 33
3.18. Variation: First Input is Connected by ProxXimity ...........cooeeiiiiiiiiiiiei e 34
3.19. Variation: Second Input is Connected by Inserting into an Existing Connection ..................... 35
3.20. Disconnecting by Dragging to Background: INPUL ............coouuiiiiiiiiineeiiiieeee e 36
3.21. Disconnecting by Dragging to Background: OULPUL ............coeuuuiiiiiiiiieiiiiiieeeei e 37
3.22. Disconnecting by Selection and Pressing DEL .........ccoouuiiiiiiiiiiiiiiceei e 37
3.23. Disconnecting by CONEXE IMEINU ......ccouuuiiiiiii et 38
3.24. MOVE INPUL CONNECTION ..eutiiiiiit ettt ettt e et e e et e e b 39
3.25. Move Multiple Output CONNECTIONS .......ciiiiiieiiii ettt 39
3.26. Move Connection Within an Open INVENTOr GIOUP .........veieriuieiiiieeieiie e 40
I R o] o) A ©e] o1 g T=Tod 1 o] o TP SOPPPTRUPPPIN 41
3.28. REPIACE CONNECLION ..ottt ettt ettt ettt e et e e e et e e eneens 42
3.29. MOUSE POINTEIS ...ttt ettt ettt e e et e e et et e e et et e e et et e e et e e e e aaa s 43
3.30. MOUSEOVET INFOIMALION .....eeiiiieieiii ettt ettt et e e e e e s 44
3.31. Module Halos — Classic and ARREINALIVE ...........ccuuuiiiiiiiieii e 47
3.32. Module Halos Input Output — Classic and AItErNative .............ccooiieiiiiiineiiii e 47
3.33. Highlighting of Selections — ClassiC HalO ...............iiiiiiiiiiiiii e 48
3.34. Highlighting of Selections — Alternative Halo ...............oooiiiiiiiiiiii e 48
3.35. Module Group with Alternative Halo — Selected and Highlighted ...............ccocooiiiiiiien. 48
3.36. Preview of Internal Networks of Macro MOdUIES ..............oviiiiiiiiiiiiiiiii e 49
3.37. RUN IN SEPATrAte PrOCESS .....ccuuiiiiiiiiiiieiii ettt ettt e r e e e 54
3.38. MOAUIES N GIOUPS ... eeetieeeeiti ettt ettt e ettt e e et e e et et e e et et e e e e et reeeenbn e aeenes 61
16.1. CONNECHIONS SYMDOIS ...ttt et ettt e e e e e nees 146
17.2. FUNCHON TYPE ICONS ..ottt ettt e e e e et e et e e e et e e e e eba s 154
27.1. BUttons for DeDUGQING ........oiieiiiii e e 197
27.2. 1CONS TOF DEDUGGING ... eeeiiieeieei ettt et ettt e e et et e e e nba s 197
27.3. Help TOOIDAr BULIONS ....c.viiieiiiiiiee ettt e e e s 199
P T [0 1T o 4 F= T4 U o P 201
27.5. DIFECLIVES ...ttt ettt ettt ettt et e ettt e et a e e e e e e e eeaas 201
27.8. ROIBS ..ottt e e e e e e eae 202
28.1. CommAaNd-LiNe OPLIONS ...couuiiiiii ettt 214

12



Chapter 1. Introduction
1.1. About the MeVisLab Reference Manual

The MeVisLab (Reference) Manual describes the user interface elements of MeVisLab: the main work
area, the menus, the modules and networks, and the different Views and their options.

1.2. Associated Documents

Besides the document at hand, the following documents are available:

Table 1.1. List of MeVisLab Documents

Title Contents

Getting Started Introduction to working with MeVisLab

ML Guide MeVis Image Processing Library — Programming
Guide

ML Reference (HTML only) MeVis Image Processing Library — API
description

MDL Reference MeVisLab Definition Language (MDL) Panel/GUI
Reference

Open Inventor Help Help for Open Inventor Modules

Open Inventor Reference Reference for all implemented Open Inventor
classes (converted from the original manpages)

Scripting Reference Scripting Reference for Python in MeVisLab

Toolbox Reference MeVisLab Toolbox Class Reference for various
API libraries

TestCenter Reference Class Reference for the TestCenter

Package Structure Information about the package structure in
MeVisLab

ToolRunner Manual for ToolRunner, a stand-alone program for
building projects and help files

CMake Use of CMake in the MeVisLab context

To search in the online documentation, use Help — Search in Documentation; see Chapter 23, Search
in Documentation.

To perform a full-text search in the documentation, use Help — Full-text Search in Documentation;
see Chapter 24, Full-text Search in Documentation.

The full list of available documents and resources is available on the Welcome Screen (which can also
be opened via Help - Welcome).

13



Chapter 2. MeVisLab User Interface

The layout of the MeVisLab graphical user interface (GUI) heavily depends on the arrangement preferred
by the user. Custom arrangements can be saved as the “User Default Layout”. In addition, predefined

GUI layouts can be selected via View - Layout or in the bottom bar, see Chapter 6, Bottom Bar.

2.1. Overview

Figure 2.1. Typical MeVisLab User Interface

,
7 MeVisLab - [View2DWithOverlay.mlab - D/MeVisLab/Networks] =N

View Networks Panels Help

[File_Edit Modules Applications Extras _Scripting

=

fiput Inspector: Threshold. outputd (Image) %

» | |

bdule Inspector: SaView2DOverlay
Ficlds | Fies | Tree | About | Related | Sariptng |

[ype [ [out]value [=]
String
Bool TRUE
Enum BLEND_BLEND
erwriteCurrentTimePoint  Bocl FALSE
i Tnteger 0
Integer 0
Enum FILTER_LINEAR
Boal TRUE
Enum VIEW2D_LUT_AUTO
Float 0.5
- “lar
sewor Views Area ol TRUE —

TRUE

ading "om C: Proqram Fes VeVl shl. BaVC 1754 Packanes P MEStable [Melease
Laadmg package FHI’stahlEJ'RdnaseHe’Vis(Im‘ om C:/Proqram Files/MeVist h2.8aVC 12-64/Packages/FMEstable ReleaseMeVis
Loading package FMEwerk [TTK (Installed) from C:/Proqram Files/MeVisLah2 3aVC 12-64/Packages FMEnork ITK
Loading package FMEwork/PCL (Instafieg) from C: Proaram Files/MeVisLab2. 82V 12-64/Packages/FMEworkPCL
M rk.lwdease {snstabed fom C:froaram Fies MeVelsb 2 5aVC 1154 radiages MENork Release
taflec) from C:[Proaram Fies/MeVisl ab2.8aVC12-64/Packages FMEwork/ReleaseMeVis
FMEwark/ThirdParty (Jnstafld) from C: Proqam FIes MoVl eha 821C 12 64 Packanes FHEwork T doarty
Loading package FMEwark/VTK (Znstafed) from C: Prooran Fes/MeVisLab2. 55C 10-64Padksaes FHMEwor /T
Loading package MeVisLab Instaked) from C: /Proaram Files MeVislab2. 8aVC 12-64/Pack b/Examol
Loading package MeVisLab/IDE (Instafed) from C: /Program Files IMevislab2. Eavc12-64Ead<agesMeV|sLabﬂDE
nfo: Lnadmg package MeVisLab/Standard (fstafiec) from C: /Proaram Files/MeVisl b2, 520

Debug Output

| 2016-02-09 10:57:55 lnfu. Pyﬂmn language loaded =
T v 003%) | © | A

The user interface offers the following areas:

* The menu bar with typical entries. See Chapter 4, Menu Bar.

¢ The toolbar with buttons for Edit and Zoom functions. See Chapter 5, Toolbar.

« The workspace with the network display, with tabs for all open networks. See Chapter 3, Modules
and Networks.

* The Views area, configurable in the View - Views submenu. See Section 4.9.8, “Views”.

* The Debug Output (effectively a View), configurable in the View - Views submenu. See Chapter 8,
Debug Output.

¢ The bottom bar with information about the used memory space and quick access to layouts. See
Chapter 6, Bottom Bar.

14



MeVisLab User Interface

2.2.Views

Views can be added and removed via the View - Views submenu.

Views (and the toolbar elements) can be moved to another position in the GUI (“docks”) by dragging
them around. Either click the “Arrange Windows” icon = or grab the title bar of the View and drag it out
or around in the Views area.

Figure 2.2. View Docked in the Views Area

Qutput Inspector: Locallmage.outimage (Image) 5[})(

o | 30| U

Module Inspector: SoView2DOverlay [ 4
Fields ] Files ] Tree ] About ] Related ] Scripting ]
MName |Type |In | Out | Value j
overlayMame String
cacheTextures Bool TRUE i
blendMode Enum BLEND_BLEND
overwriteCurrentTimePoint  Bool FALSE -
] | »
Module List 5 x
Type MName |
View2D View2D
Threshold Threshold
SoView2DOverlay SoView2DOverlay
Locallmage Locallmage

15



MeVisLab User Interface

Figure 2.3. Floating View

Module Inspector: SoView2DOverlay
Fields | Files | Tree | About I
MName |Type
rOutput Inspecln____r: Locallmage outimage (L. overlayName String
g™ cacheTextures Bool
» blendMode Enum

overwriteCurrentTimePoint  Bool

o | 30|

timePoint Intege
maxTimePoint Intege
filterMode Enum
inheritFilterMode Bool
lutPrecision Enum
alphaFactor Float
baseColor Color
useWorldCoords Bool
applyLut Bool
isCheckerTiling Bool

checkerTileSize Intege

arTCh eckerTilesInverted Bool
4

Module List

Type | Mame
View2D View2D
Threshold Threshold
SoView2DOverlay SoView2DOw
Locallmage Locallmage

Floating views can be freely moved across the screen, including to a different monitor. This allows for
a larger scaling of Views without affecting the network display.

Before docking, the target area is indicated when hovering the View over areas of the main window.

Figure 2.4. Moving View to Another Position in Views Area

Module Inspector: SoView2DOverlay [ 4
Fields | Files | Tree | About | Related | Scripting |

MName |Type |]n | Outl Value LI
overlayMame String

cacheTextures Bool TRUE

blendMode Enum BLEND_BLEND
overwriteCurrentTimePoint  Bool FALSE

timePoint Integer 0 J
maxTimePoint Integer 0

filterMode Enum FILTER_LINEAR

inheritFilterMode Bool TRUE _ILI
| | »

[ Cutput Inspecter: anal[rnﬁge.oullmage {L.. E

lag”

Views can also be stacked on top of each other by dragging one View onto another. For each View,
a tab will be displayed.

16



MeVisLab User Interface

Figure 2.5. Stacked Views

Qutput Inspector: Locallmage.outimage (Image)

o | 30|

Output Inspector: Locallmage.outima... | Module Inspector: SoView... |.|

Module List & X
Type | Mame

View2D View2D

Threshold Threshold

SoView2DOverlay SoView2DOverlay

Locallmage Locallmage

Views can be resized by dragging their borders, though resizing is constrained by the content size and
the relative size of neighboring windows.

Figure 2.6. Resizing a View in the Views Area

Module Inspector: SoView2DOverlay

a8 x
Fields | Files | Tree | About | Related | Scripting |
MName |Type |In |0ut|‘u’a|ue Lll
overlayMame String
cacheTextures Bool TRUE

17



Chapter 3. Modules and Networks

In MeVisLab, programming image processing algorithms or interactive image/3D scene manipulation is
primarily done by establishing networks consisting of modules and connections between them. Modules
encapsulate specific algorithms written in C++ and provide an interface in MeVisLab through fields.
These fields can represent simple data, such as numbers or strings, but can also handle more complex
data, such as six-dimensional voxel images. Fields of modules of the same type can be connected to
form networks that represent algorithms on a higher abstraction layer.

In the following figure, a typical assembly of connected modules in a network, their panels, and viewers
can be seen.

18



Modules and Networks

Figure 3.1. Example Network for SynchroView2D with Viewer (Panel), Automatic
Panel, and Settings

ﬁ Panel

SynchroView2D

SynchroViewzD

L v
Resample30 OrthoRefarmata

A

Locallmage
gt el

Proband T1.dcw

ﬁ Panel SynchroView2D

The following information can be found in this chapter:

e Section 3.1, “Types of Modules”

Parameters | Inputs | Outputs

Mame Type |lIn Out | Flags % | val
worldPosition Vector3 ! -8.|
lutlc Double ! 43¢
lut2e Double ! 43¢
slicel Integer ! 44
slice2 Integer ! 64
lutTw o =
lutow ﬁ Settings SynchroView2D

drawCur| - Inputs )
showCis ™ Show Inventor input for left image v
timepoin ) o

timepoin ™ Show Inventor input for right image -
backgroi| ¥ Disconnect hidden inputs
| annntatie e v

- Position
-

World Position:  [x=-8.04 [y=-5.47 |z=3001

™ Use managed interaction

19



Modules and Networks

» Section 3.2, “Module Network Panels”

e Section 3.3, “Connector and Connection Types”

» Section 3.4, “Connecting, Disconnecting, Moving, Copying. and Replacing Connections”

» Section 3.5, “Mouse Pointers”

» Section 3.6, “Mouseover Information”

» Section 3.9, “Module Handling”

» Section 3.10, “Network Handling”

e Section 3.11, “Using Groups”

» Section 3.12, “Using Notes”

e Section 3.13, “Using the Mini Map”

For module and network shortcuts, see Section 4.3.10, “Preferences — Shortcuts”.

3.1. Types of Modules

There are three types of modules:

Table 3.1. Module Types

Type Color

Look Characteristics

ML module Blue

Page-based and
demand-driven
processing of voxels

Open Inventor module |Green

\ /
Imagelioad| &
Visual scene graphs

SoExaminer\Viewear (3 D)

Macro module Brown

Combination of other
module types, allowing
implementing
hierarchies and scripted
interaction

If a module is invalid, it is displayed in bright red.

The number of warning and error messages printed to the debug console is displayed in the upper right
corner of the module. Once the debug console is cleared, the warning and error indicators at the module
are also cleared. If the module produces information messages, their number is printed in gray at this
position. This enables a network or module developer to find the modules in a network that produce

messages quickly.

Table 3.2. Invalid Modules

Module Appearance

Explanation

Invalid module

LA |
IsoSurface &
|

Macro containing at least one invalid module within
its internal network, which could be either a regular
module or another macro module

20



Modules and Networks

For information and examples on how to construct networks from modules, please refer to the Getting
Started in which image processing pipelines, scene graphs, and macro module creation are discussed
in detail.

3.2. Module Network Panels

A module can have a simple panel that is rendered in the network and can show a dynamically updated
information string and/or a button or checkbox.

This is useful for quickly accessing the state of a module or triggering its functionality without needing
to open the module's panel.

See Section 2.10, “NetworkPanel” for more information.

In the figure below, the I nf o module shows the image's data type and extent, the Thr eshol d module
shows the comparison operator and the threshold value, the Local | mage module offers a button to
reload the image, and the CSQOLi st Cont ai ner shows the number of CSOs and CSOGroups, and offers
a button to remove all those objects.

Figure 3.2. Modules with Network Panels

Locallmage

3.3. Connector and Connection Types

In MeVisLab, three types of connectors are defined.

Note
&
In principle, every module type can have any kind of connector.

Table 3.3. Connectors

Look Shape Definition
A\ Triangle ML images
_v_
P Half-circle Open Inventor scene
v
0 Square Base objects: pointers to data
O structures

21



Modules and Networks

ML image connectors can be set to display their state, see Section 4.3.7, “Preferences — Network
Appearance”.

Connectors can exist in a semi-transparent design. This is the case if a connector is hidden but
connected. An example for a module with Open Inventor inputs that can be hidden is the Vi ew2D module
(see Section 3.9.2, “Additional Inputs”).

Figure 3.3. View2D with Connected "Invisible" Open Inventor Connector

invisible

all_visibla invisible_connected

Viewz2D

A &

v
SoView2DOverlay [l
A

Note

Modules with hidden input / output fields can be made to show those fields in different ways.

Some modules provide the option to toggle the visibility of hidden fields in the module's
context menu (e.g., View2D, View3D).

Other modules might offer a field on their panel to adjust the number of shown connectors
(e.g., Switch).

All modules reveal their hidden input and output connectors when starting to draw a
connection in the network. If a module has hidden connectors, an icon appears at the top
right hand corner of such a module. When hovering with the mouse cursor over that icon
while still drawing the connection, the module shows all its connectors that are interactively
connectable now if the connection is compatible. On establishing the connection, all other
hidden connector disappear again.

On pressing SPACE, the network is rendered in a special information mode where also
all invisible connectors are revealed. Pressing CTRL+SPACE shows invisible connectors
only. To toggle back to the normal view press SPACE again.

To connect to an otherwise invisible connector, start dragging from a source connector. Once the drag
has started, modules with invisible connectors will display a plus sign in their upper right corner. Move the
dragged connection over this plus sign to reveal the hidden connectors of that module. The connection
can then be established by dropping it on the desired destination connector.

22



Modules and Networks

Table 3.4. Connecting to an Invisible Connector

SoNode inlnvPrelUT

Before LUT and viewer inventor input,
e.g. for overlays independent of LUT
settings

In a MeVisLab network, we distinguish between a data connection and a parameter connection.

A data connection connects modules by their input/output connectors. Those connections carry ML
mages, Open Inventor scene objects, or general Base objects.

A parameter connection connects fields of modules. Such a connection can also connect fields of the
same module with each other.

Table 3.5. Connections

Type Look Characteristics
Data connections (connector The direct connection between
connections) connectors. Depending on which

connectors are involved, the
connection is rendered in a
different color: blue for ML, green
for Open Inventor, brown for Base.

Parameter connections (field _ Connections created by
connections) connecting parameter fields within
or between modules. For more
information, see Section 3.10.2
“Connections Context Menus”.

Data connections are established, for example, by clicking on a connector and drawing the connection
to another connector. Only connectors of the same type can be connected.

. Note
Refer to Section 3.4, “Connecting, Disconnecting, Moving, Copying, and Replacing
Connections” for more detailed information on different methods to connect and to
disconnect modules.

When interactively connecting Base fields, an internal type system checks whether the particular Base
connection is possible.

MeVisLab checks the data types of all available connectors while drawing a connection. Incompatible
connectors are rendered in a faded-out style, while compatible connectors remain clearly visible.

23



Modules and Networks

Figure 3.4. Compatible Connectors for CSOVisualizationSettings Type

Locallmage |

. Note
Base connectors can have different data types; connecting these incompatible connectors
is possible only via scripting and results in the connection being drawn in red. For more
information on Base connectors, see the Getting Started, chapter “A Note on Base Types
Checks”.

Parameter connections are established similarly by clicking on a field on a panel and drawing the
connection to another field (on the same panel or another one). For details on parameter connections,
see the Getting Started, chapter “Parameter Connection for Synchronization”.

Parameter connections can be moved between fields by clicking on the connected connector/field and
pressing SHIFT while dragging it to another field. The other connected fields will be updated accordingly.

Parameter connections can be copied, similar to moving them, by holding CTRL+SHIFT. Ensure that
the option Debug Widgets is disabled (see Section 4.6.10, “Debug Widgets”).

Tip

To abort the interactive establishing and removing of connections between modules (and
the horizontal moving of connections), press ESC. Alternatively, abort the process by either
drawing the connection to a connector of the wrong type (displayed in red) or by returning it

24



Modules and Networks

to the output connector. The new connection will not be drawn, and no existing connections
will be removed.

3.4. Connecting, Disconnecting, Moving,
Copying, and Replacing Connections

MeVisLab offers multiple ways of connecting or disconnecting modules in a network. Modules can be
connected to each other by connecting their parameter fields or their data fields. Data fields are also
called input/output connectors and are located at the bottom/top of the modules in a network. Parameter
fields are available on the panel or GUI of a module.

In the following, different methods of handling data connections are shown. Parameter connection
handling is not discussed in detail here; for more information about parameter connections, see
“Parameter Connection for Synchronization”.

3.4.1. Connecting Modules

Data connections can be established by dragging/drawing, by proximity, i.e., moving modules close to
each other, or by inserting a module into an already existing connection.

3.4.1.1. Connecting by Dragging

Move the mouse to one of the connectors, click and hold the left mouse button, then drag the mouse
to the destination connector. While dragging, an intermediate white connection line is drawn. If the
connection is possible, the line turns green. Upon releasing the mouse button, the connection is
established.

Table 3.6. Connecting Modules by Dragging

n
L-ju:.nllr'.ﬂ:' o Locallmage &

Image cutlmage

size: 109,91,80,1,1,1
type: unsigned intl6

25



Modules and Networks

3.4.1.1.1. Connecting to Open Inventor Groups by Dragging

Connecting to an Open Inventor group module (e.g., SoSeparator, SoRenderArea, SoGroup) works the
same as described in Section 3.4.1.1, “Connecting by Dragging”.

However, Open Inventor group modules have a dynamic and unlimited number of input connectors, and
when not dragging to establish a connection, only the connected connectors are visible. On starting to
establish a new connection, all Open Inventor group modules in a network show their otherwise hidden
additional input connectors. Those additional input connectors are smaller than the regular connectors
and placed to the left and to the right of the regular connectors. On connecting to an additional connector,
the connection is established and the additional connector becomes a regular connector, so that for the
next connection, even more additional connectors are available.

Table 3.7. Dragging a New Connection Generates New Input Connectors to the
Sides of Regular Connectors

26



Modules and Networks

Table 3.8. Even More New Connectors are Available

3.4.1.1.2. Connecting from Open Inventor Groups by Dragging
Connecting from an Open Inventor group module is basically the same as connecting to such a module.

However, new dynamic input connectors appear only if the mouse cursor is placed to the left or to the
right of existing regular input connectors. Once an additional connector has appeared under the mouse
cursor, it can be used for establishing a connection by clicking on it, holding the left mouse button, and
dragging to an output connector.

27



Modules and Networks

Table 3.9. New Input Connectors are Generated by Positioning the Mouse

7

oMode child

3.4.1.2. Connecting by Proximity

Modules can be connected by moving their input and output connectors close to each other.

Grab a module by clicking and holding the left mouse button, then move it close to the module with
which the connection should be established. If the first free, compatible connectors are close enough,
a stippled preview of the module and its connection is rendered. Release the mouse button to establish
the connection, and the dropped module is automatically positioned at the preview location.

Table 3.10. Connecting by Moving the Source Module into Proximity

The same procedure works for connecting a destination module.

Note
The stippled preview connection is always rendered in the middle of the preview module's

silhouette and not at the actual position of the connector on the module.

28



Modules and Networks

Table 3.11. Connecting by Moving the Destination Module into Proximity

3.4.1.2.1. Connecting to Open Inventor Groups by Proximity

When connecting to an Open Inventor group by proximity and the group already has at least one input
connection, all subsequent connections are generated at the first or the last dynamic connector. A new
connection cannot be established by proximity between already existing connections. Use the method
described in Section 3.4.1.1.1, “Connecting to Open Inventor Groups by Dragging” or Section 3.4.1.1.2,
“Connecting from Open Inventor Groups by Dragging” for connecting modules in between existing
connections.

Table 3.12. Connecting an Open Inventor Group by Proximity

29



Modules and Networks

Table 3.13. Connecting to an Open Inventor Group by Proximity

3.4.1.3. Connecting by Inserting into an Existing Connection

To insert a module into an existing connection, start by grabbing the module. This is done by left-clicking
it and holding the mouse button while moving the mouse. Move the module over an existing connection.

30




Modules and Networks

If the module can be inserted into the connection, the connection is highlighted, and the mouse cursor
changes to a plus sign. On releasing the mouse button, the module is inserted into the connection.

Table 3.15. Connecting a Module by Inserting

3.4.1.4. Inserting a Module with More than One Input Connector

If a module has more than one input connector and is dropped onto an existing connection, the leftmost
free input connector is used to establish the connection.

Note
In the following two examples, all described methods of establishing connections are mixed.

31



Modules and Networks

Table 3.16. Connecting a Module with Two Inputs by Inserting

32



Modules and Networks

Table 3.17. The Second Input is Connected by Dragging

connect to

Ll Image outlmage

size: 109,91,80,1,1,1
type: unsigned intl6

3.4.1.5. Variation of Inserting a Module with More than One Input
Connector

If the leftmost input connector is already connected, the first leftmost free input connector might just be
the second input connector.

33




Modules and Networks

Table 3.18. Variation: First Input is Connected by Proximity

34



Modules and Networks

Table 3.19. Variation: Second Input is Connected by Inserting into an Existing
Connection

Locallmage |G

3.4.2. Disconnecting Modules

There are also multiple ways of disconnecting modules.

An input connection or a number of output connections can be removed by dragging a new connection to
the network's background. Connections are selectable and any selected network item can be removed
by pressing DEL. Connections have a context menu that offers to disconnect the selected connection,
or in the case of a bundled module group connection, all connections.

3.4.2.1. Disconnecting by Dragging to the Background

A single input connection can be removed by starting to drag a new connection from an already
connected input connector and then releasing the drag over an empty region of the network.

If the drag is started on an output connector with multiple connections, and is released over the network's
background, all output connections are removed.

35



Modules and Networks

Table 3.20. Disconnecting by Dragging to Background: Input

36



Modules and Networks

Table 3.21. Disconnecting by Dragging to Background: Output

3.4.2.2. Disconnecting by Selection

Connections can be selected by clicking on them with the mouse.

A selected connection has its own highlighting and is removable by pressing DEL.

Table 3.22. Disconnecting by Selection and Pressing DEL

»

Locallmage.outlmage — View2D.inlmage

37



Modules and Networks

3.4.2.3. Disconnecting by Context Menu

Connections not only have a tooltip showing the source and destination connector, but also a context
menu where single connections or all connections, if they are bundled, can be disconnected.

The next example features a module group (see Section 3.11, “Using Groups”) to show that
disconnecting by context menu also works for connection bundles.

Table 3.23. Disconnecting by Context Menu

3.4.3. Moving Connections

Connections can be moved from input connector to input connector, or from output connector to output
connector.

The connector can be on different modules or on the same module.

To move a connection, drag it and move it to the destination connector. If the connection is possible,
the intermediate connection is rendered in green. On dropping the connection, the connection to the
new connector is established.

38



Modules and Networks

Table 3.24. Move Input Connection

1)

mage inlmage

size: 109,91,80,1,1,1
type: unsigned intl6

Image inlmage

no data

If the moving of connections takes place at an output connector, multiple connections can be moved
in a single interaction.

Table 3.25. Move Multiple Output Connections

connection to:
ge outlmage

size: 109,91,801,1,1
type: unsigned intl6

3.4.3.1. Moving Connections Within Open Inventor Groups

A connection can also be moved within an Open Inventor group. On starting the drag, additional
connectors are shown to which the connection can be moved.

39



Modules and Networks

Table 3.26. Move Connection Within an Open Inventor Group

3.4.4. Copying Connections

Input connections can be copied by holding CTRL+SHIFT and dragging an existing input connection
to another input connector in the network.

40



Modules and Networks

Table 3.27. Copy Connection

¥

mage inlmage

size: 109,91,80,1,1,1
type: unsigned int16

Localimage Locallmage

Image inlmage

no data

3.4.5. Replacing Connections

An input connector can only be connected with a single output connector.

When connecting another output connector to an already connected input connector, the previous
connection of that input connector is replaced.

Similarly, if a new connection is dragged from an already connected input connector, the previous
connection is replaced by the new connection.

41



Modules and Networks

Table 3.28. Replace Connection

to:
Locallm m‘;‘uﬂmge

size: 109,91,80,1,1,
type: unsigned intl6

3.5. Mouse Pointers

Depending on the action, mouse pointers may look differently.

42



Modules and Networks

Table 3.29. Mouse Pointers

Action Pointer
Standard look or when dragging Views or Panels [
When drawing a data connection )

When attempting to draw a forbidden connection

When drawing a selection rectangle

When dragging a module or network

When drawing a parameter connection

When inserting a module into an existing @®
connection or into a module group

3.6. Mouseover Information

When moving the mouse over elements such as modules, connectors, or connections, the elements
are first highlighted, and then context-sensitive information is displayed.

43



Modules and Networks

Table 3.30. Mouseover Information

Mouseover Displayed Information

Module

Locallmage (mask)

Comment: Used to resolve images relative to network or to
the local MeVisLab installation

Package: MeVisLab/Standard
Author(s): Florian Link

Genre: File

Keywords: load

Seeflso:  MakeName LocalSoFile

Image connector

Open Inventor connector

SoMode inInvPreLUT
SoView2DOverlay

Before LUT and viewer inventor input, e.g.
for overlays independent of LUT settings

Base connector

]
LBase inC50List

C50List
Allowed: C50List

Data connection

SoView2DOverlay.self — View2D.inInvPreLUT

Parameter connection

L3

Info.sizeX — Sublmage.sx
Info.size¥ — Sublmage.sy
Info.sizeZ — Sublmage.sz

Parameter connections also offer the following features when the panels are visible:

¢ Hovering over the parameter connection(s) in the network highlights all connected input/output fields
of the parameter connection(s).

¢ Hovering over an input/output field of a parameter connection on a panel highlights the other
connected field and the parameter connection in the network (thicker line), see Figure 3.7, “Parameter
Connection — Panel Mouseover”.

44



Modules and Networks

* When moving a parameter connection from one field to another by pressing SHIFT while dragging
the parameter connection, all connected connections are updated accordingly.

Figure 3.7. Parameter Connection — Panel Mouseover

Main | Advanced | Time Points | T{ pancisubimage W
~Image Size ~Parameters
xb 100 vk 9 zb ||| Mode: [Voxel start & size

—~Page Size VL

connected to:
X: 64 Y: |Sublmagesy

~Image Data I” Auto apply box Ml
Type:lP unsigned int16 in: - I 0 Size X I 100
~Voxel Size |—° Size -1 |—91
e 1.95312 ¥:

: | 0 SizeZ:f | 80
~Volume Info

5 I 0 Size C:
Voxel Volume: 0.00763 ml  Total Volume:

5 I 0 SizeT:
~Image State =€
State: Ok =] 0 SizeU:

Box Input: IOOOOOO—]—]—]—]—]—]

Full Size |

VX WYy WZ
fec It Cu

Modifyable Output Dimensions:

[ Always clamp to input image region [ Fill Value: I o

[~ Auto-correct for negative subimage extents

¥ Auto apply Apply |

’rAcﬁons

Additional detailed information on image connectors is available if enabled in Preferences — Network,
see Section 4.3.7, “Preferences — Network Appearance”.

45



Modules and Networks

Figure 3.8. Connector Image Preview

Tihreshold

=420

Tip

In the case of an ML image, the image preview is also sliceable. For this, click the image
preview and keep the mouse button pressed while moving the mouse up and down.

Figure 3.9. Connector Detail Info and Image Preview

. Note
The amount/depth of visible information depends on the zoom level. An example for this is
in the Getting Started, figure “Connector Details Depending on Zoom”.

3.7. Module Halo

Selected modules feature what is called a halo effect. Two types are available: classic and alternative.
The halo type is set in the Preferences, see Section 4.3.7, “Preferences — Network Appearance”.

46



Modules and Networks

Table 3.31. Module Halos — Classic and Alternative

The classic halo shows a weaker halo for attached modules; the alternative halo shows the same
strength for all modules. For the selected and the attached input and output modules, different colors
can be set in the Preferences to make their roles more distinguishable.

If an attached module is the input and output module of the selected modules at the same time, the halo

color will mix. With classic halos, those modules have a white halo. Alternative halos are rendered in
both colors, as shown in the figure on the right.

Table 3.32. Module Halos Input Output — Classic and Alternative

3.8. Module Highlighting

To improve the visibility of connections between modules in a more complex network, a special
highlighting mechanism is available: When selecting modules in a network and then pressing SPACE,

47



Modules and Networks

the workspace is darkened and only the selection and its directly connected modules are highlighted.
Pressing SPACE again toggles back to the normal view. In the following example screenshot, the “lut”
module is connected via four parameter connections and two data connections, which cannot be easily
seen in the non-highlighted display.

Table 3.33. Highlighting of Selections — Classic Halo

The alternative halo is also a good way to make notes and groups more visible.

Table 3.35. Module Group with Alternative Halo — Selected and Highlighted

48



Modules and Networks

Tip

For shortcuts for modules and networks, see Section 4.3.10, “Preferences — Shortcuts”.

When nothing is selected, pressing SPACE will display previews for all internal networks of macros.
Clicking on a preview opens the internal network (same functionality as “Show Internal Network” in
the context menu or SHIFT + double-clicking the module). Pressing CTRL+SPACE shows invisible
connectors only. To toggle back to normal view press SPACE again.

Table 3.36. Preview of Internal Networks of Macro Modules

Normal View Previews for internal Show invisible connectors
networks (SPACE) (CTRL+SPACE)

Tip
To remove all selections, press ESC (the network needs to have the focus for this).

No previews are available for script-only macro modules. This might help to identify macro modules that
have an internal network but should be implemented as script-only.

3.9. Module Handling
3.9.1. Module Context Menu

Right-click modules to open the module context menu. Its contents slightly depend on the module type.
Available groups of entries:

» Section 3.9.1.1, “Show Window”

Section 3.9.1.2, “Instance Name”

» Section 3.9.1.3, “Help”

» Section 3.9.1.4, “Extras”

» Section 3.9.1.5, “Reload Definition”

» Section 3.9.1.6, “Related Files”

» Section 3.9.1.7, “Show Enclosing Folder”

» Section 3.11, “Using Groups”

49



Modules and Networks

« Open Inventor only: Section 28.7, “Set Open Inventor Override Flag (Inventor Modules)”

Figure 3.10. Module Context Menu

Show Window

Instance Name

Help

Extras

Reload Definition F5
Related Files (3) L4
Show Enclosing Folder

Grouping L4

3.9.1.1. Show Window

Figure 3.11. Module Context Menu — Show Window

REEITTERNEE  pon
Instance Name L4

Automatic Panel
Help L4

Extras Scripting Console

Reload Definition F5
Related Files (3)

Show Enclosing Folder

Grouping L4

Each module has at least one panel: the automatic panel, which lists all fields and parameters of the
module. Use it for an overview or for editing the parameters (see also Section 11.1, “Fields”).

Tip

Refer to chapter Section 4.3.10, “Preferences — Shortcuts” for a shortcut for opening a
module's automatic panel.

Figure 3.12. Automatic Panel

&9 Panel Threshold - O x
Parameters | Inputs | Outputs

Mame Type |In Out | Flags | Value
instanceMame String Threshold
threshald Double ! 420
relativeThreshold Bool FALSE
comparisonOperator  Enum Greater
conditionTrueWriteVal... Enum UserDef
userConditionTrueValue Double 1
conditionFalseWriteVa... Enum UserDef
userConditionFalseval... Double (0]

50



Modules and Networks

The automatic panel lists all fields of the module in order of their initialization in the C++ code or of their
definition in the Macro definition. It also shows the data type of the field, whether it is an input or output
field, and its current value. The value can be edited directly on the automatic panel.

If a field has a value different from the default value of the field for that module, the Flags column will
have a ! entry. You can sort by the Flags column to see all fields with a changed value more easily.

Tip
The header of the list of fields of the automatic panel has a context menu where you can
toggle how to sort the fields or to turn off the sorting at all. In the later case, the fields are

ordered as they are implemented in C++ or in the script.

Typically, another type of panel is also available, which displays the parameter fields in a structured
layout and is written in MDL.

Important points:
« Itis possible to add fields that are not in the C++ code.
« Itis possible to add field listeners that can trigger script code.

« It is possible to exclude rarely used fields from the structured panel. This way, the panel's usability
might be enhanced. (Fields can always be edited in the automatic panel.)

Figure 3.13. Panel Defined in MDL

rfﬁ' Panel Threshold l‘:' =] X |
If

Comparison: m
Threshold: ,@

I~ Use relative threshold

Then
Write: |User Def j
User Value: | 1
Else
Write: |User Def j
User Value: | 0

Other windows may be available. For example, for the Vi ew2D module, a Viewer and a Settings window
are available. For information on defining windows, see the MDL Reference, chapter “1.3.2.1. Window".
For an example, see the Getting Started, chapter “Adding the Macro Parameters and Panel”.

Show Scripting Console
Opens the Scripting Console with the context of the current module, allowing, for example,

ctx.field("fieldName") calls to reference and access fields belonging to that module, see
Section 4.7.1, “Show Scripting Console”.

3.9.1.2. Instance Name

Edit Instance Name

51



Modules and Networks

Figure 3.14. Module Context Menu — Edit Instance Name

Show Window

3
Instance Name L4

Help
Extras

Copy Instance Name

3
3

Reload Definition F5
Related Files (3) L4
Show Enclosing Folder

Grouping L4

This option allows distinguishing between several instances of the same module. Within a network,
each module instance must have a unique name. If no specific instance name is provided, copies of the
modules are automatically numbered (1, 2, 3, etc.). Alternatively, the instance can be renamed manually.

. Note
Instances of modules have to be unique because modules are addressed by their instance
names in scripting.

Select the option or use the respective shortcut (see Section 4.3.10, “Preferences — Shortcuts”) to open
a dialog for entering a new instance name.

The instance name is displayed above the module name. If the instance name is the module name plus
a number, only the instance name is displayed, as it already includes the module name.

Figure 3.15. Modules and Instance Names

Copy Instance Name

This option copies the module's instance name to the system's clipboard. This can, for example, be
used to copy the module's name into scripting code.

3.9.1.3. Help

Figure 3.16. Module Context Menu — Show Example Network

Show Window
Instance Name

3
3
3

Help
Extras

Show Help F1

Reload Definition ~ F5 _ FditHelp
Related Files (3) 3
Show Enclosing Folder

Grouping L4

Show Example Network

52



Modules and Networks

Opens the example network in a new network tab. This option is only active if an example network exists

(otherwise, the entry is grayed out).

If a module has multiple example networks, this entry is a menu item, displaying the number of example

networks. Upon selection, a submenu offers all available example networks by their names.

Show Help

Displays the HTML help file for the module in the default browser. This option is only active if a help

file exists.

Edit Help

Edits the nhel p file in MATE. Use this option if fields have changed (renamed, new, or removed) or if
the module is new. This creates the initial mhel p file if it does not exist or refreshes an existing mhel p

file with updated field information.

3.9.1.4. Extras

Show DLL Dependency (not on macro modules)

This option uses (on Windows) the Dependency Walker for checking and displaying all dependencies
for the module. For more information, please refer to the help of the Dependency Walker. Linux has its

own solution for displaying similar information.

Figure 3.17. Dependency Walker
Dependency Walker - [MLMiscModules. dll] Q@'@

W File Edit View Options Profle Window Help
BE O R & HE S mEMN
i Ovctipackagesimevislabiztand i TR - L 13 | Function
ab2, (veElpack |ab
= O elerog imevislabz, Dvi packages)
Al cip \mnevislab2. Ovesipac !
- O ep Jvedipac i
5l cip b2 Ovedipackages)
= O cip {rnevislab2, DveBipackages)
= O eiwindows|system3ZUPHLPAPLDLL
© [ ciwindowslsystem32|ADvaPIZZ | ¢
- 8l elwindows) \KERNEL3Z
&l criwindowsisystem3zimsveRT.e | B | Ordnal l1.1.3 Function, &
&l e:\windowsisystem3Z\NTDLL.DLL £ | 1(0x0001)|  0(Cx0000) | ?20Arithmets @ @
# [ ciivindowsisystem32\USER32.0 % ggg:gggg ;Eg:gggé; FOAMhmetO@MIBPQAER KL
- O clwindowslsystemS2Wse 320 | gp | L roun004) | 3(0x0003) | 720Bsseswitchami@@one@yz
+ 20 ciiwindowsisystem3ZIDHCPCSV &8 | siexo00s)| o000 | p S
= B0 civindowsisystem3ZWPRAPLD | g | g 0x0008) | 5 (0x0005) | 720BoundingBex@mIB@OAEEHE
Al clwindowslsystem3ZIMSY ¥ | @8 | 7i0x0007) | 6 (0x0008) | 20DranID@IR@AAEDABYO @EZ s
< > < ¥
| Module File Time Stamp Link Time Stamg I Fil= Size Albtr, Link Checksum [:TES
@) | MSvCRa0.0W Error opening file. Das Sysbem kann die angegebene Datei nicht Finden {2).
2@ |owmaPLOLL Error opening file. Das System kann die angegebene Datel racht finden (2).
3§ ciiwindows\system3Z|MPR.DLL 04.08,2004 14:00 | 04.08.2004 08:55 59.904 | A 0x000145C7 o
3 | ciiwindowslsystem32|SHLWART.DLL 20.08,2008 06:35 | 20,08.2008 06:35 473624 | A 0:0007097F (11}
O |t \rmevislat Fpack \mevis!foundation|ibiML.OLL 032.11.2008 21:54 | 03.11.2008 21:54 | 5.812.224 | A O0x0059865E (1}
3 | etp Q \mevislabZ, Dvedipackages) s DICOMTREE.DLL 03.11.2008 Z1:45 | 03.11.2008 21:45 233472 (A OxD00|1B2C (1]
O | cp \ islat Hpack imevisifoundation| b\ MLDICOMTREEIMAGEPROPERTYEXTENSION. DLL 03.11.2008 21:52 | 03.11.2008 21:52 25.600 | A O0:0000DCT4 0
[ | eiprog ! islabZ, Dvedipackages) s dation il MLMEMOR! DLL 03.11.2008 Z1:45 | 03.11.2008 21:45 65.536 | A 0x0001F529 0
O | e islab2, Ovc\pack e \MLUTILITIES. DLL 03.11.2008 21:46 | 03.11.2008 21:46 237568 | A 000046550 0
O | et | islab2, Dvedipack \ is\thirdparty|iblBOOST_DATE_TIME-VCB0-MT-1_36.0LL 27.10,2008 19:36 | 27.10.2008 19:36 57.344 | A 0x0001D333 (1]
O |ete | lab2. Ovedipackages) 005T_THREAD-VCE0-MT-1_36.0LL 27.10.2008 19:36 | 27.10.2008 19:36 49.152 | A 000016268 0
1 e Arnaviclab? MueRinackanscimeuiclahiet andardi b RASE Ml R 11 P0NR 7217 | R 11 P0NR 7217 7raqazla MANNRAF A m ¥
£ b4
Error: At least one required implicit or forwarded dependency was not found. A
Warning: At least one delay-load dependency module was not found.
Warning: At least one module has an unresolved import due to a missing export function in a delay-load dependent module. -
For Help, press F1 y:

Run In Separate Process (not on Open Inventor modules)

53



Modules and Networks

Table 3.37. Run In Separate Process

Locallmage

Show Internal Network

Loca|mageRamote)

Show Window
Instance Name
Help

IR T
Restore Default Val
Tests L4

Reload Definition F5
Related Files (4) 4

Show Enclosing Folder

Grouping L4

MeVisLab allows for running ML and macro modules in background processes, so-called worker
processes. We call the underlying concept Remote Modules. “Run In Separate Process” will replace the
selected module in the network by a remote module and start a MeVisLab worker process that loads
the replaced module. Field and image changes are transmitted asynchronously between MeVisLab and
the worker process.

Remote Modules offer an alternative approach to multithreading for utilizing multiple CPUs and
enabling asynchronous processing. For example, a remote module can be used to move long-running
calculations into the background to keep the GUI responsive.

Note

Restrictions:

You can only move a single module.
Open Inventor modules cannot be moved to a worker process.

Image inputs are not supported. It is not worth loading an image in the main process
and then transferring the image data to the worker process. Instead, load it directly in the
worker process; you may need to create a macro module for this.

Image outputs do not support image extension information, but this is typically
unnecessary.

Base fields are only supported through special handlers. Currently, there are
only handlers for XmarkerLi st (Container) and some specialized remote Base
types like RenoteRendering, RenoteFileTransfer, RenoteCalllnterface, and
Abst ract | t emvbdel . Other Base types will result in an empty Base field.

Scripting does not work if it accesses the GUI or is called from the GUI (since the GUI
lives in another process than the scripting context). Controls may also not use fields of
submodules.

Use an ItemModelView instead of a ListView if you need to display lists or tables in your
GUI.

Module fields will not update immediately after some other field was changed, since
updates are transmitted asynchronously.

Restore Default Values

54



Modules and Networks

Resets all fields whose values differ from their default value back to the default value. (These are the
fields with an ! entry in the Flags column in the automatic panel.)

Set Open Inventor Override Flag (only on Open Inventor modules)

See Section 28.7, “Set Open Inventor Override Flag (Inventor Modules)”.

Tests

Figure 3.18. Module Context Menu — Tests

Show Window

Instance Name

Help

Reload Definition 5 Run In Separate Process
Related Files (3) » Restore Default Values

Show Enclosing Folder ests Run All

Grouping L4
Edit ThresholdTest

Create Test

In the Tests submenu, testing options are available.
Run All

Starts all available tests for the module. In the case of Thr eshol d, the generic test case “Formal” and
the “Functional” test case are executed. When the tests are finished, a test report window is opened.
(See also Section 4.6.6, “Run Module Tests...”, the TestCenter Reference, and the Getting Started,
chapter 16, “Using the TestCenter”.)

Edit <AssociatedTest>
Opens the files of a test associated with the selected module.
Create Tests

Opens the TestCaseManager on the tab to create a new functional test.

3.9.1.5. Reload Definition

Reloads the module's definition (. scri pt and optional . py file). This is necessary when laying out
panels and windows, or when working on the scripting.

Tip

A single selected module can also be reloaded by pressing the according shortcut key for
the OS. Refer to Section 4.3.10, “Preferences — Shortcuts”.

If modules are being reloaded, an animation (modules turn white and slowing gain their color back)
indicates that the modules' definitions have indeed been reloaded.

55



Modules and Networks

3.9.1.6. Related Files

Figure 3.19. Module Context Menu — Related Files

Instance Name

Help
Extras

Reload Definition F5

m MLMiscModules.def at line 81
Show Enclosing Folder IntervalThreshold.script

SVM Versioning 4 IntervalThreshold. py

Grouping 4 Show Definition Folder
Show Sources Folder

Open C++ Project in IDE

Related Files: Lists all files belonging to the module. Possible file types are . def/. scri pt (MDL
definition files), and . py (Python scripting files). Select a file to open it in the default editor (as set in
Section 4.3.4, “Preferences — Supportive Programs”).

Show Definition Folder: Opens the definition folder of the module that contains the . def and . scri pt
files. If the module is augmented by scripting, the . py files can also be found there.

Show Sources Folder: Opens the folder containing the source code files of the module.

3.9.1.7. Show Enclosing Folder

Shows the directory where the definition file of the module is located.

3.9.1.8. Groups

For the Groups functions, see Section 3.11, “Using Groups”.

3.9.2. Additional Inputs

Modules may have more inputs and outputs than are initially visible, to keep the module display as
uncluttered as possible. An example for a module with possibly hidden inputs is the Vi ew3D module. It
offers the additional context menu entry View3D Options - Show Inventor Inputs. If enabled (which

is the default), three Open Inventor input fields are displayed. The option can also be toggled in the
module's Settings panel.

Figure 3.20. View3D With Visible Inventor Inputs (Default)

56



Modules and Networks

Tip

The three Open Inventor inputs of Vi ew3D have certain positions in the scene rendering,
i.e., the first input is before LUT and volume renderer, the second between LUT and volume
renderer, and the third after LUT and volume renderer. This can be seen if the Open Inventor
inputs are displayed and the internal network is opened, see next paragraph.

Depending on the programming, the number of inputs may be dynamically set. For example, this is the
case for the Swi t ch module.

For a supporting visualization while interactively drawing connections, see Section 3.3, “Connector and
Connection Types”

3.9.3. Show Internal Network (Macro Modules)

In the context menu of macro modules, the option Show Internal Network is available. If selected, the
network of the macro is opened in a separate network tab.

Tip

Refer to chapter Section 4.3.10, “Preferences — Shortcuts” for a shortcut to open a macro's
internal network.

Note

Showing the internal network of a macro this way shows the live network; this means that all
fields of all modules will have the value at the moment of opening the network, and changing
field values in this network will change the state of the macro. If you change the network
and save it, all the changed fields will be saved for that macro as well.

If you want to work on an internal network of a macro, open its network with the option
“Related Files” from the macro's context menu and select the corresponding . ml ab file.

57



Modules and Networks

Figure 3.22. RegionGrowingMacro — Internal Network

The pseudo-connectors shaded in gray are placeholders and indicate the input (bottom) and output (top)
parameters of the macro, which constitute the connectors of the macro module. They are automatically
drawn at the edges of the bounding box of the network. Important points about them:

¢ They cannot be moved or removed interactively but can only be changed in the script.

¢ They cannot be selected in a rectangle but each of them can be clicked, in which case the input/
output square, the connection(s), and the connected module(s) are highlighted.

. Note
Modules in an internal network of a macro that are connected to the macro's input /
output fields (visualized by being connected to the pseudo-connectors) cannot be removed
interactively from the network.

On an attempt to remove such a module, a window with a warning pops up. If such a module
needs to be removed, the corresponding connection must first be removed in the scripting,
and then the macro needs to be reloaded.

‘ Note
The tab of the internal network remains connected to the module from which it was opened.
When the module is deleted or its containing network is closed, the tab with the internal
network is also closed.

58



Modules and Networks

3.10. Network Handling

Parts of a network can be selected by pressing the mouse button and dragging the mouse over the
network (also called “rubber-band selection”). A selection rectangle appears that selects all modules
that currently touch this rectangle.

While selecting modules with that rubber-band rectangle, the number of so-far selected modules is
shown at the mouse cursor.

To select multiple non-adjacent modules, press SHIFT and click the modules.

To deselect all modules, press ESC or select an empty area of the network tab.

More than one network can be opened, and they are displayed in a tabbed view. To close a tab, and
thereby its network, click the respective Close (x) button. Alternatively, a network can be closed by

clicking its tab with the middle mouse button.

A network quick search is available, see Section 3.14, “Network Quick Search”.

3.10.1. Network Context Menu

Right-click the workspace to open the network's context menu.

Figure 3.23. Network Context Menu

View 4

Edit 4
Reload Selected Modules  F3

Create Module L4
Create Note

Related Files (0)

Show Enclosing Folder

Grouping L4

For the Edit functions, see Section 4.2, “Edit Menu”.

For the View functions, see Section 4.9, “View Menu”.

» For creating Notes, see Section 3.12, “Using Notes”.

» For creating Groups, see Section 3.11, “Using Groups”.

3.10.2. Connections Context Menus

3.10.2.1. Context Menu of Parameter Connections

Parameter connections are connections between the fields of modules. They may be created within the
same module or between modules. For details on parameter connections, see Getting Started, chapter
“Parameter Connection for Synchronization”.

The context menu of parameter connections in the network offers the following options:

59



Modules and Networks

Figure 3.24. Parameter Connection Context Menu

4 | ca—

lut.center — lutRescale.storedCenter * Value: 1165.02233886719

lut.width — lutRescale.storedWidth  *
Disconnect

Disconnect All

Select In Parameter Connections Inspector
/ Copy Connection Info Add To Network Field WatchList

Parameter connections are always bundled between two connected modules. Therefore, several
connections may be listed in the context menu of one parameter connection.

Outgoing parameter connections are positioned at the upper third of the module's left or right border,
and incoming parameter connections are positioned at the lower third of the module's border.

If a module has parameter connections within its own fields, the parameter connection visualization
forms a small loop at the border of that module.

For each connection, the following options are available:
» Value: Shows the current value of the field.
» Disconnect: Disconnects the field connection.

e Select in Parameter Connections Inspector: Selects the field connection in the Parameter
Connections Inspector (see Chapter 16, Parameter Connections Inspector).

» Add to Network Fields WatchList: Adds the connected fields to the Network Fields WatchList
(see Chapter 14, Network Field WatchList).

Additional options are:

» Disconnect All: Disconnects all listed parameter connections (can be undone/redone)

» Copy Connection Info: Copies the connection info string to the paste buffer

To disconnect internal parameter connections, click the small loop on the left side of the module and

open the context menu to disconnect them. Alternatively, internal parameter connections are also listed
in the Parameter Connections Inspector and can be disconnected there.

Figure 3.25. Module with Internal/Self-Connected Parameter Connection

. RampLOT, ’7

3.5
|} A
RamplLUT.center ~ —RampLUT.alphaStart
RampLUT.startColor — RamplLUT.alphaEnd

3.10.2.2. Context Menu of Data Connections

The context menu of data connections in the network only contains the Disconnect option for each item.
Additional options are:
» Disconnect All: Disconnects all listed data connections (can be undone/redone)

» Copy Connection Info: Copies the connection info string to the paste buffer

60



Modules and Networks

In the case of grouped modules, data connections are bundled and more than one connector is listed
in the context menu.

Figure 3.26. Data Connection Context Menu

Viewers

Locallmage.outlmage inlmage Disconnect

Locallmage.outlmage

Disconnect All

Copy Connection Info

3.11. Using Groups

Modules can be grouped. A group is helpful for organizing the network in the workspace, as the group
can be moved as one unit. The default color of groups can be set in the Preferences, see Section 4.3.7
“Preferences — Network Appearance”.

Table 3.38. Modules in Groups

Generate Mask

Data connections are bundled optically as square, color-coded connectors at the bottom (input) or top
(output) of the group. The colors correspond to the connection types: blue for ML, green for Open
Inventor, brown for Base. Parameter connections are not bundled for groups.

The size of the group is set automatically by the bounding box of the modules and cannot be changed
explicitly. To adjust it, move the modules within the group.

61



Modules and Networks

‘ Note
Besides the optical appearance as “group”, the modules are not connected to each other
in any special way. Groups are only a visual tool for improving the network handling.
Consequently, the group feature should not be used excessively to organize complex
networks; instead, groups should be converted to macros, which is the recommended way
to reduce complexity in the MeVisLab context, see Section 3.11.2, “Editing, Converting,
and Deleting Groups”.

The name and the color of a group can be scripted, see the Scripting Reference,
MLABNetworkModelltemGroup.

3.11.1. Creating Groups and Adding/Removing
Modules

Creating groups and adding/removing modules from groups is done via the context menu of the selected
module(s).

Figure 3.27. Network Context Menu — Adding Groups

Show Internal Network

Show Window
Instance Name
Help
Extras

Reload Definition F5
Related Files (4) L4
Show Enclosing Folder

Anatomical Image

Remove From Group Applicator

Interaction

Tip

If a single module is dropped over an existing module group, it is automatically added to
that group.

. Note
The color of modules positioned over a group, but not part of any group, is rendered slightly
more saturated and bright.

62



Modules and Networks

Figure 3.28. Network Context Menu — Adding to a Specific Group

Lejesillzielst  Show Internal Network

Show Window
Instance Name
Help
Extras

Reload Definition F5
Related Files (4) 4

Show Enclosing Folder
Add To Group: Anatomical Imfﬂe
Add To New Group...
Add To Group

Remove From Group

Add To New Group

Creates a new group for the selected modules and also allows adding the modules to an existing group
by entering an existing group name.

The additional option Add to Group: <TargetGroup> is available if the module is already positioned
within the target group's bounding box.

Add To Group
Adds the selected modules to one of the existing groups, which can be selected in the submenu.
Remove From Group
Removes the selected modules from the group.
Tip

To move modules from one group to another, simply select them and add them to another
or a new group. Since modules can only be part of one group, this action will effectively
move the modules.

3.11.2. Editing, Converting, and Deleting Groups
A group can be edited, converted to a macro, or deleted via the context menu of its title.

Figure 3.29. Group Context Menu

IMEge SeUGE

Edit Title
Edit Color

Convert To Macro

Delete Group

Edit Title
Allows editing a new group title/name. The title must be unique within the current network.
Tip

Refer to chapter Section 4.3.10, “Preferences — Shortcuts” for a shortcut for editing a
group's title.

63



Modules and Networks

Edit Color

Allows editing the color of the group. This has no effect on the default color, which is set in the
Preferences, see Section 4.3.7, “Preferences — Network Appearance”.

‘ Note
When changing the color setting, the alpha value is 255 by default, meaning the group is
opaque. To give the group the appearance of standard groups, enter the original alpha
value of 38.

Convert To Macro

Creates a (local) macro from the group, see Section 4.1.12, “Create Local Macro”. The network must
be saved before the macro creation can proceed.

Delete Group
Deletes the group. Can be undone/redone. Does not remove the modules in that group.
Tip

To remove a group and all its modules, double-click the group's title bar; this selects the
group and all its modules. The group and its modules can then be removed by pressing DEL.

3.11.3. Copying Groups Including Modules

For copying a complete group:
1. Double-click the group title bar to select all modules of the group.

2. Duplicate the group via the Edit menu or the respective keyboard shortcuts see Section 4.3.10
“Preferences — Shortcuts”.

A number is added automatically to the title of the group copy, for example, “title2”, “title3”.

3.12. Using Notes

Notes allow for adding annotations and additional information to a network or group. In contrast to the
Comment module, notes are immediately visible and readable. The default color of notes can be set in
the Preferences, see Section 4.3.7, “Preferences — Network Appearance”.

Figure 3.30. Note (Expanded)

eseligiCalingre =]

The module CSOListContainer is a light-weight
n container for holding a CSOList.

CSOLIstContainar

— (<] The module is similar to CSOManager but
2L without all the fields to control the default and
[ | current values of CS0s and CS0Group.

The CSOListContainer also has no list views

3.12.1. Creating Notes

Notes can be created via the network context menu.

64



Modules and Networks

Figure 3.31. Creating a Note

Reload Selected Modules  F3

Create Module

Related Files (0]

Show Enclosing Folder

Grouping

Click Create Note and create a new note item by entering a title and a comment. The width of the note's
title defines the minimum width of the note in the display. Note titles do not have to be unique; there
can be more than one note with the same title. Note comments are not limited in size. If the full note
text cannot be displayed, three dots (“...") are displayed to indicate that more text is available. Text with
more complex formatting (bold, lists, etc.) may be pasted into the note editor but the formatting will be
lost. Instead, one can use the formatting options that are also available for the help editor, as described
in Section 27.9.2, “Formatting”.

Figure 3.32. Dialog for Editing Notes

7 Edit Note

Bligeoyar zne ayzirriels sations Title:

IDismver and override actions

Press SoInteractionInfo.update to find out what
the currently effective bindings for the pointing, offset, Comment:
and command actions in this scene are.

the SoInteractionMapping and l}

SoInteractionMappingl modules. Pres Bold
field-on-panel: SolnteractionInfo.uw  ltalic
again. Try out the mappings in the Fixed
Mow you may try to change the mappings in the SoRenderfAirea window.
Solnteractic ing and Solnteracti ing1 Format Role

modules. Press SolnteractionInfo.update Note that you can also override off

Mote that we can move the camera for the cube and
the cone independently.

Format Directive

a‘!_lai"- Try outthe mappings in the SoRenderArea actions in the pointing action sect ) )
window. SoInteractionMapping (:show-control Add Directive

panel: *SolnteractionMapping.pointin

Mote that you can also override offset actions in the ), but then you will not see the re

pointing action section of SolnteractionMapping . . .
(SoInteractionMapping.pointings iom), but maooing in SolnteractionInfo.

then you will not see the resulting mapping in Mote: Click on any module or MDL control while holding Shift
Snlntarartinninfa [} Also use the context menu on the editor.

o | o o
0K C |
L= Paste Ctrl+V

Delete

Undo Ctrl+Z
Redo Ctrl+Y

Cut Ctrl+X

Select All Ctrl+A

Tip

Since notes do not offer scrolling, it is recommended to adjust the note size and/or the
amount of information so that the entire text is visible at once. Otherwise, it may be
necessary to resize the note or use Edit Text to read the entire text.

The formatting of the text also changes slightly while zooming in the network due to dynamic
font alignment. Therefore, as a rule of thumb, you should make the note slightly larger than
needed for the current zoom level.

Notes can be scripted, see the Scripting Reference, MLABNoteltem.

3.12.2. Handling Notes

Notes can be collapsed/expanded by clicking the minus/plus buttons (&/&) or by double-clicking the
note title.

65



Modules and Networks

Figure 3.33. Note (Collapsed)

GEENEIEATTETIE:

Notes can be resized by dragging the resize icon at the lower right ().
3.12.3. Editing and Deleting Notes
A note can be edited or deleted via the context menu of its title bar.

Figure 3.34. Note Context Menu

WUREELR Yo wzin) See fare

Use the module panel to modi .
the base object, o startthe EREE
network script (ctr-R) to use thi  Edit Color
object wrapper.

Draw As Comment

Delete Note

Grouping

Tip

Double-click the text area to edit the note. For further note-related shortcuts, see
Section 4.3.10, “Preferences — Shortcuts”.

Edit Note
Allows the editing of the note title and text.
Edit Color

Allows the editing of the note's color. This has no effect on the default color, which is set in the
Preferences, see Section 4.3.7, “Preferences — Network Appearance”.

Draw As Comment (toggle)

If this option is active, the note is displayed without a title and without a surrounding box directly on the
network's background.

Figure 3.35. A Note Displayed as a Network Comment

Edit Mote
Edit Color

v Draw As Comment

Delete Note

Grouping

Delete Note

66



Modules and Networks

Deletes the note. Can be undone/redone.
Grouping

Notes can also be assigned or removed from groups just like modules (see above, Section 3.11, “Using
Groups”). The bounding box of the group is adjusted accordingly. Notes in a group will be moved with
the group; notes in general can be moved anywhere in the workspace.

Figure 3.36. Note in a Group

EEENEIEATEED

The module CSOListContainer is a light-weight
container for holding a CSOList.

The module is similar to CSOManager but
without all the fields to control the default and
current values of CSOs and CSOGroup.

The CSOListContainer also has no list views

]

3.12.4. Copying Notes Including Text

Note
Notes can be copied or cloned, just like modules.

3.13. Using the Mini Map

When zooming into a network such that it is not fully visible in the workspace, a mini map is displayed
(default setting), allowing navigation within the network. The settings and appearance of the mini map
can be edited in the Preferences, see Section 4.3.7, “Preferences — Network Appearance”.

Figure 3.37. Mini Map

67



Modules and Networks

The highlighted area of the map can be dragged with the mouse, and the network rendering is adjusted
accordingly.

Figure 3.38. Navigating in the Mini Map

F

In the case of macro modules, the network(s) from which the internal network is opened can be displayed
in a hierarchy if the option Show parent navigation frames is enabled. See Section 4.3.7, “Preferences
— Network Appearance” for details.

Figure 3.39. Parent Navigation Frame for Macro Modules

[Jecoration

Parent navigation frames (PNF) can be used to navigate to networks higher in the hierarchy or to open
internal macro networks of a parent frame.

¢ Click a PNF to display its network.
¢ Right-click a PNF to open a context menu that lists the names of all macros in that network. Select

a macro name to open and activate its network. The currently displayed macro network is marked
as “[Current]:”.

Figure 3.40. Parent Navigation Frame Context Menu

L
==

k Locallmage
[Current]: View2D

If a parent network is not open, the PNF is rendered as a plain, dark gray square. Upon clicking it, the
network is opened and the PNF is updated to show the small mini map rendering.

Tip
The PNF shows not only the modules and their connections but also the highlight state of

the modules. Make sure to select a macro before opening its internal network so that the
PNF displays that macro as highlighted.

68



Modules and Networks

3.14. Network Quick Search

A quick search for networks is available with the keyboard shortcut “Find” found in Section 4.3.10
“Preferences — Shortcuts”. It opens in the top right corner of the network view.

Figure 3.41. Network Quick Search

viewer (type: SoExaminerViewer)
annoview?d (type: SoView2D)
SoView2DAnnotation

Fields
SoLUTEditorviewMin
SolUTEditor.viewMax
SolLUTEditorviewRangelnfo
annoviewZd.viewerld

annoviewZd.viewingCenter

viewer.viewing

viewer.viewAll
viewerviewAllFlag
annoview?d.keepSlicesInView
annoviewZd.enableViewingCenter
viewer.automaticViewAll
viewerstereoViewing

Files
view2d.def
view2d.py
SoExaminerViewerscript
SoView2D.script
SoView2DAnnotation.script
SoViewers.def line 16

Show All...

The search results are sorted by categories: Modules, Fields, and Files.
Search options are available by clicking on the magnifier icon:

Figure 3.42. Network Quick Search — Options
]

o view

v Substring
Match Case

v Search In Internal Networks

» Substring: If selected, the search is extended to substrings of module, field, or file names, effectively
working as if adding wildcards, such as *image*.

« Match Case: If selected, the search differentiates between lower- and uppercase letters.

e Search In Internal Networks: If selected, the search is performed recursively within the internal
networks of macro modules.

Clicking Show All opens the results in a new, persistent window. This way, you can have several search
result lists open.

69



Modules and Networks

Figure 3.43. Network Quick Search — Show All Results

Type

Bool

Bool

Bool

Bool
Trigger
Bool

String

Bool
Vector3
Float

Float

String

- Files

- SoExaminerViewerscript  SourceCode
- SoView2D.script SourceCode
- SoView2DAnnotation.script SourceCode
- SoViewers.def line 16 SourceCode
- view2d.def SourceCode
- view2d.py SourceCode
[=I- Modules

SoView2D
SoView2DAnnotation
SoExaminerViewer

Double-clicking a search result has different effects depending on the result type:

Figure 3.44. Network Quick Search — Highlight Results

Bool top
Bool top
Bool top

i Trigger top
Eool to|
i * String top
- viewi Bool top
Vector3 top
Float top
Float top
- String top
- Files

- SoExaminerViewerscript  SourceCode D/l
- SoView2D.script SourceCode D/l
- SoView2DAnnotationscript SourceCode D/l
- SoViewers.def line 16 SourceCode D/l
- view2d.def SourceCode D/l
- view2d.py SourceCode D/l

= Modules
- annoview2d SoView2D top
SoView2DAnnotation top
SoExaminerViewer  top

¢ Double-clicking a field highlights and zooms in to the module that contains the field.
» Double-clicking a module highlights and zooms in to the module.

¢ Double-clicking a file opens it in the integrated text editor MATE.

70



Modules and Networks

3.15. Network Selector

MeVisLab offers a network selector with a network preview similar to the “Task Switcher” or “Flip” on
Windows systems.

The use of the network selector can be toggled in the Preferences on the General tab: Section 4.3.1
“Preferences — General”.

To open the network selector, hold down the right mouse button and turn the mouse wheel. With an
open network selector, turning the mouse wheel selects a next or a previous network, depending on the
direction in which the mouse wheel is being turned. On releasing the right mouse button, the currently
selected network in the selector is set as the current network in MeVisLab. Also, the selected network
is maximized in the IDE.

The network selector also opens on pressing CTRL+Tab or CTRL+SHIFT+Tab. Consecutive presses

of those shortcuts navigate the available networks in the preview. On releasing the key combination,
the last selected network is made active in MeVisLab.

‘ Note
The mentioned shortcuts are the defaults, refer to Section 4.3.10, “Preferences —

Shortcuts” for the current shortcuts.

Figure 3.45. Network Selector in Action

ext : View2DExtensions

3.16. Network Preview

When hovering the mouse cursor over a network tab, a network preview is rendered as a tooltip.

Figure 3.46. Network Selector in Action

View2DWithOverlay.mlab - D:/MeVisLab/Networks

3.17. Network Mouse Gestures

The Windows version of MeVisLab supports mouse gestures for network interaction.

71



Modules and Networks

The use of network gestures can be toggled in the Preferences on the Network Interaction tab: see
Section 4.3.8, “Preferences — Network Interaction”.

A mouse gesture is performed by holding the right mouse button down while the cursor is over the
network background and moving the mouse. The trail of the mouse during the gesture is rendered on
the network for better orientation.

The trail of the mouse gesture is color-coded. If the gesture is not yet recognized, the trail is rendered
in yellow; once the gesture is recognized, the color changes.

The trail is cleared on releasing the right mouse button. No context menu is shown in case of having
performed a gesture, not even if the gesture has not been recognized.

A gesture can be reset by pressing ESC while still holding the right mouse button down; the trail so far
is then cleared as well.

Figure 3.47. Trail of Unrecognized Mouse Gesture

3

3.17.1. Gesture for Closing the Current Network

The current network can be closed by a gesture that consists of a stroke down and then a stroke to
the right, like drawing the letter “L”. Once the gesture has been recognized by the system, the trail is
rendered in green. To complete the command, simply release the right mouse button.

Figure 3.48. Mouse Gesture for Closing the Current Network

3

3.17.2. Gesture for Closing the Current Network
Without Prompt

The current network, which has been changed but not yet saved, can be closed without showing the
prompt asking whether the network should be saved by using a gesture that starts like the previous
gesture (drawing an “L”) but includes an additional downward stroke at the end. Once the gesture has
been recognized by the system, the trail is rendered in blue. To complete the command, simply release
the right mouse button.

72



Modules and Networks

Figure 3.49. Mouse Gesture for Closing the Current Network Without Prompt

73



Chapter 4. Menu Bar
4.1. File Menu

Figure 4.1. File Menu

File Edit Modules Applications Extras Scripting

L] Mew Ctrl+N |
L Open Ctrl+O

Close Ctrl+W

Close All Ctrl+Shift+W
ol Save Ctrl+5

Save As

Save Copy As

Revert To Saved

Recent Files L4
Open Most Recent File Ctrl+2

Run Project Wizard...
Create Local Macro...
Add Local Macro...

Open File In MATE...
Show MATE... Ctrl+Alt+M

Run ToolRunner...

Run TestCaseManager... Ctrl+Alt+T
Recent Test Cases L4
Run Most Recent Test Case Ctrl+3

Restart With Current Networks  Ctrl+K

Quit Ctrl+Q

4.1.1. New

Creates a new MeVisLab network document.

4.1.2. Open

Opens an existing MeVisLab network from file (extension . nl ab). Alternatively, the . n ab file can be
dragged onto the workspace to open it in a new network window.

Some other file types may also be opened directly by dragging them onto the workspace (no network
needs to be open for that):

» Adragged image file (. dcm . ti f, . png, etc.) creates an | mageLoad module that automatically loads
the file.

» A dragged file readable by WEM modules (. wem . of f, . obj , . pl y, etc.) creates a WVEM_oad module
that automatically loads the file. See the HTML help for the WEM_oad module for more information.

» A dragged file readable by CSO modules (. cso) creates a CSOLoad module that automatically loads
the file.

4.1.3. Close

Closes the current network.

4.1.4. Close all

Closes all open networks.

74



Menu Bar

4.1.5. Save

Saves the current network.

For saved networks, the AutoSave files are discarded. See Section 4.3.1, “Preferences — General” .

4.1.6. Save As

Writes the current network to file with a new name.

For saved networks, the AutoSave files are discarded. See Section 4.3.1, “Preferences — General” .

4.1.7. Save Copy As

Writes a copy of the current network to file with a new name.

4.1.8. Revert To Saved

Reverts to the last saved version of the current network. (This option is only available if the network
was changed.)

4.1.9. Recent Files

Allows the selecting of a recently opened network from file. The maximum number of recent files is 20.
The list of recent files is not deleted upon installing a new version of MeVisLab. For more information
about storing preferences, see Section 4.3, “Preferences”.

4.1.10. Open Most Recent File

Opens the most recent network file. This function can be triggered with a keyboard shortcut, see
Section 4.3.10, “Preferences — Shortcuts”.

4.1.11. Run Project Wizard

Starts a wizard for creating new modules, packages, and installers (an ADK license is required for the
latter). See Chapter 26, Project Wizard.

4.1.12. Create Local Macro

Creates a new local macro module relative to the current network path, based on the currently selected
modules or a module group. See Section 3.11.2, “Editing, Converting, and Deleting Groups”. The
necessary inputs and outputs are added automatically. The display names of interface fields can be
changed, but their internal names cannot.

75



Menu Bar

Figure 4.2. Local Macro Creation

Create a Local Macro Module
Enter a name for the new macro module:

IMaskO\rer\avZD
Optionally enter a relative target directory for the new macro module:

I Browse...

The following interface fields will be created:

Mame | Internal name Input Qutputs |
outputd)  Threshold outputd View3D.inlmage

nodeQutd SoView2DOverlay.self View2D.inlnvPrelUT

input0 Threshold.inputd Locallmage.outlmage

Mote: Fields can be renamed in the "Name” column

< Back | Finish I Cancel

Locally defined macro modules can be used in complex networks to encapsulate subnetworks as
independent functional units with a defined interface to other network components. In this way, they
perform an application-specific function that would not be useful for other applications. Therefore, they
are not added to the common MeVisLab module database, meaning they are not declared in a . def file.

The following items are created:

¢ The files <Modul eNanme>. scri pt and <Modul eName>. m ab in the current network path directory.
¢ The new local macro module on the current network workspace.

Note

A local macro module is not available in the MeVisLab module database, as no . def
file is created. The module cannot be accessed via the Modules menu or the Modules
Search. Local macro modules can only be added to networks in the same network path,
see Section 4.1.13, “Add Local Macro”.

To differentiate local macros from global macros, "./" is prepended to the module name/
type in the network view to indicate that this module only exists relative to the location of
the network file.

Note

During the conversion to a local macro, modules must be disconnected and reconnected.
Connections set by script, i.e., forwarded from an outer macro, cannot be disconnected,
resulting in an alert: “Unable to remove the module [module nhame] with connections set by
script.” A similar alert is issued when attempting to remove a module connected in this way.
In the next figure, modules within a red rectangle cannot be deleted, disconnected from
inputs/outputs, or added to a local macro.

76



Menu Bar

Figure 4.3. Modules Connected to Outer Macros

Navigetion Decoration

For an introduction to macros, read Getting Started, chapter “Introduction to Macro Modules”.

4.1.13. Add Local Macro

Adds a locally defined macro module to the current network, see Section 4.1.12, “Create Local Macro”.
Choose the <Mbdul eNane>. scri pt file in the file dialog to add the local macro module. The local macro
must be defined in the same folder as the network to which it will be added, or in a subfolder of that folder.

4.1.14. Open File in MATE

Opens MATE with a file dialog where one or more files can be opened, see Chapter 27, MATE.

4.1.15. Show MATE

Opens MATE without files, see Chapter 27, MATE.

4.1.16. Run ToolRunner

Starts the ToolRunner, see the ToolRunner documentation.

4.1.17. Run TestCaseManager

Starts the TestCaseManager of the TestCenter, see the TestCenter Reference and the Getting Started,
chapter 16, “Using the TestCenter”.

4.1.18. Recent Test Cases

Lists the most recently run test cases from the TestCaseManager. Selecting an entry from this list will
open the TestCaseManager and run the selected test case.

77



Menu Bar

4.1.19. Run Most Recent Test Case

This will open the TestCaseManager and run the top-most entry of the recent test cases list.

4.1.20. Restart with Current Networks

Restarts MeVisLab with all currently opened networks. This is necessary for a complete DLL update
and is useful when developing new ML and Inventor modules. Alternatively, you can press a shortcut
to restart MeVisLab with the current network. Refer to Section 4.3.10, “Preferences — Shortcuts”.

‘ Note
MeVisLab restarts in the same mode in which it was originally started, particularly
concerning the - qui ck option.

4.1.21. Quit

Quits MeVisLab. If unsaved changes in networks are present, a message will appear.

4.2. Edit Menu

For editing modules, module groups, and connections, the typical text edit shortcuts for each platform
can be used. See Section 4.3.10, “Preferences — Shortcuts”.

Figure 4.4. Edit Menu (Windows example)

Edit Modules Applications Extras Scriptin
«* Undo Ctrl+Z
Redo Ctrl+Y

Clear Undo History

>€ Cut Ctrl+X

1y Copy Ctrl+C

1) Paste Ctrl+V
Duplicate Ctrl+D
Delete Del
Find In Metwork Ctrl+F
Select All Ctrl+A
Deselect All Ctrl+Shift+A
Invert Selection Ctrl+Alt+A
Align / Distribute 4

Auto Arrange Selection  Ctrl+1

Reload Selected Modules

Preferences... Ctrl+P

4.2.1. Undo

Undoes the last edit action.

4.2.2. Redo

Redoes the last undo action.

4.2.3. Clear Undo History

Clears the undo cache.

78



Menu Bar

4.2.4. Cut

Cuts the selected subnetwork from the current network. The subnetwork is cached with all connections
and field values of the contained modules.

4.2.5. Copy

Copies the selected subnetwork in the current network. The subnetwork is cached with all connections
and field values of the contained modules.

4.2.6. Paste

Pastes the copied or cut subnetwork into the current network.

4.2.7. Duplicate

Duplicates (copies and pastes) a subnetwork within the current network.

4.2.8. Delete

Deletes the selected subnetwork from the current network.

4.2.9. Select All

Selects all modules and their connections in the current network.

4.2.10. Deselect All

Deselects all modules in the current network.

4.2.11. Invert Selection

Inverts the selection by selecting all currently unselected modules and deselecting all selected modules
in the current network.

4.2.12. Align / Distribute

Aligns along centers and edges of modules, or distributes selected modules evenly within the bounding
box of the selection. See the icons for the effect each option has.

Figure 4.5. Align / Distribute

Align / Distribute 4 B[ Align Top Edges
Auto Arrange Selection  Ctrl+1 of} Align Vertical Centers
Reload Selected Modules ml Align Bottom Edges
Preferences... Ctrl+P |E| Align Left Edges

E!;, Align Horizontal Centers
| Align Right Edges

= Distribute Vertically
Of] Distribute Horizontally

A toolbar with these buttons is available via View — Toolbars.

79



Menu Bar

4.2.13. Auto Arrange Selection

Automatically arranges the selected modules of the current network with an animation. This is
particularly useful for automatically generated networks, where all modules would otherwise be placed
in a single location.

If no modules are selected, the entire network is automatically arranged.

Modules with only inputs are arranged at the top of the network and modules with only outputs are
arranged at the bottom of the network. Other modules are arranged in layers in between. Groups are
arranged internally as if they were networks and the groups themselves are arranged in their context
as if they were just large modules. Parameter connections do not influence the arrangement.

The horizontal and vertical spacings between modules can be set with the Module Arrangement
Spacing settings described in Section 4.3.8, “Preferences — Network Interaction”.

The automatic arranging of a network (selection) can be triggered with a keyboard shortcut, see
Section 4.3.10, “Preferences — Shortcuts”.

4.2.14. Reload Selected Modules

Reloads the module database of the selected modules in the current network document. Changes in
the . def, . script, and . py files are updated and applied to the selected modules.

The successful reloading of modules is indicated by a short color-flashing animation of the module(s).

‘ Note
If a macro is reloaded, its internal network is not reloaded, just the macro's GUI definition
and scripting files.

4.3. Preferences

’ Note
Settings in the Preferences panel overwrite the corresponding settings in the
mevi sl ab. pref s file.

The Preferences (along with other information, such as the list of recent files or stored user layouts)
are saved in a manner that prevents them from being overwritten during updates or reinstallations of
MeVisLab:
* On Windows: in the Registry in Wor kst at i on/ HKEY_CURRENT_USER/ Sof t war e/ Mevi s/ MeVi sLab.
* On Mac OS X: in $HOVE/ Li brary/ Pr ef er ences/ de. mevi s. MeVi sl ab. pl i st.
* On Linux: in $HOVE/ . confi g/ MeVi s/ MeVi sLab. conf .

Tip

For many options in the Preferences, a mouse-over tooltip is available.

80



Menu Bar

4.3.1. Preferences — General

Figure 4.6. Preferences — General

o
Category General
General
Packages User Name
Module Groups User Name: |JDoe
Supportive Programs
Paths Resources
Scripting Image Processing
Network Appeargnce Image Processing Cache Size (MB): 8112 El:
Metwork Interaction =
Error / Debug Handling Maximum Threads Used for Image Processing: 12 3-

Shortcuts Visualization

Total Texture Memaory on Graphics Card (MB): |12282 EI:
Volume Renderer Texture Cache Usage (%): 90 EI:

IDE Options
Iv Auto reload files when changed Iv Restore module panels
Iv Auto save network documents [ Enable debugging of widgets

Iv Show network selector when switching documents via CTRL-Tab
Auto Load
Auto Load Recent Network Documents: 0 El:

Display System Info...| Check External Tools...

Changing parameters in this panel overwrites settings from your mevislab.prefs file!

Restore Defaults Ok Cal

User Name

The user currently signed in to this computer.

Resources

The optimal Resources settings depend on the system and platform. Use the default settings if uncertain.
Image Processing

Image Processing Cache Size (MB)

Defines the memory available for caching (intermediate) ML image tiles/pages within a network of image
processing modules. Reducing the cache size will slow down the image processing pipelines because
images will be recalculated more frequently in individual modules. Cache sizes too large might cause
a collapse of your system because of reduced memory for other programs. For 2 GB RAM, a value of
512 MB is well-tested. For details, see the ML Programming Guide, “Optimizing Data Flow in Module
Networks”.

Maximum Threads Used for Image Processing

81



Menu Bar

Sets the number of parallel threads for image processing. For more details on multi-threading, see
Section 28.6, “Multi-threading in MeVisLab”.

Use classic ML host

If checked, the classic ML host is used. Otherwise, an ML host is used that implements an optimized
multi-threading for the ML.

Visualization
Total Texture Memory on Graphics Card (MB)

Sets the amount of texture memory (texture RAM, TRAM) on the graphics card to be used for MeVisLab
texture processing, for example, in the Vi ew2D module.

Volume Renderer Texture Cache Usage (%)

Defines the percentage of texture memory that the GVR volume renderer may use.
IDE Options

Auto reload files when changed

If selected, the . def, . scri pt, and . py files of a module are reloaded when reloading the module panel
(by double-clicking the module or selecting Show Window - Panel from the module context menu).

Note
& |
Networks . m ab files (for macro modules) are not reloaded.

Auto save network documents

If selected, MeVisLab networks are auto-saved as <Net wor kName>. m ab. aut o upon major changes.
This allows restoration in case of system crashes. Auto-saved copies are deleted when the
corresponding networks are saved.

Show network selector when switching documents via CTRL-Tab

If selected, pressing CTRL+TAB (or SHIFT+CTRL+TAB) does not switch directly to the next or previous
network document, but shows a network selector preview. For more details, see Section 3.15, “Network
Selector”.

Restore module panels

If selected, opening a network restores all module panels (including window size and position) to their
state (opened, minimized, positioning, etc.) when the network was last saved.

Enable debugging of widgets

Enables/disables debugging module panels. When enabled, CTRL+left-clicking a GUI control in a
module panel opens the . scri pt file in the default text editor at the line in which the GUI control is
defined.

Auto Load Network Documents

Sets the number of recent networks to be loaded automatically upon MeVisLab startup. This may
considerably slow down the startup process.

‘ Note
If loading a network causes a crash, this option can be problematic, as the network will
automatically load upon the next start of MeVisLab, potentially leading to another crash.
Use this option with caution!

82



Menu Bar

Display System Info...

Displays system information regarding the Open GL vendor, the available GL extensions, and more in

an extra window.

Check External Tools...

Starts the Tools Check tool that checks for software necessary for certain build tasks. This tool is also

part of the ToolRunner. See the ToolRunner Documentation for details.

4.3.2. Preferences — Packages

MeVisLab modules are organized in packages. These are defined as certain folder structures (see
the Package Structure documentation for details). The Packages category gives an overview over the

available and active packages.

Figure 4.7. Preferences — Packages

o
Category ‘ Packages
General
Packages Type/Path Package Owner

Module Groups
Supportive Programs
Paths

Scripting

Metwork Appearance
MNetwork Interaction
Errar / Debug Handling
Shortcuts

Restore Defaults

The packages are separated into:

-1 Installed Packages
-l C;/Program Files/MeVisLab4.0.70/Packages

FMEstable/Foundation
FMEstable/PCL
FMEstable/Release

FMEstable/ReleaseMMeVis

FMEwork/Release
FMEwork/ReleaseMeVis
MeVis/BuildSystem
MeVis/Foundation
MeVis,/ ThirdParty
MeVisLab/Examples
MeVisLab/IDE
MeVisLab/ITK
MeVisLab/Resources
MeVisLab/Standard
MeVisLab/VTK

Create New Package...

FMEstable/Foundation
FMEstable/PCL
FMEstable/Release

FMEstable/ReleasemMeVis

FMEwork/Release
FMEwork/ReleaseMeVis
MeVis/BuildSystem
MeVis/Foundation
MeVis/ThirdParty
MeVisLab/Examples
MeVisLab/IDE
MeVisLab/ITK
MeVisLab/Resources
MeVisLab/Standard
MeVisLab/ VT

Fraunhofer MEVIS
Fraunhofer MEVIS
Fraunhofer MEVIS
Fraunhofer MEVIS
Fraunhofer MEVIS
Fraunhofer MEVIS
Mevis Medical Salutiol
MeVis Medical Solutiol
Mevis Medical Salutiol
MeVis Medical Solutiol
Mevis Medical Salutiol
MeVis Medical Solutiol
Mevis Medical Salutiol
MeVis Medical Solutiol
Mevis Medical Salutiol

Add Existing

Changing parameters in this panel overwrites settings from your mevislab.pr

Ok

» User Packages: Packages found in the user path (packages in other paths can be added manually).
These are the default packages for user-defined modules.

83



Menu Bar

» mevislab.prefs: Packages resulting from the paths given in the prefs file.

 Installed Packages: Packages resulting from an installation of, e.g., the MeVisLab SDK.

If a package with the same Packageldentifier is found more than once, the last package found will
overwrite the previously loaded packages (in the order given above, see the Package Structure

documentation for details). Overwritten packages will be grayed out and labeled “(Overwritten)”.

Create New Package

Opens the Package Wizard, see Section 26.5, “Packages”.
Add Existing User Packages

Opens the default file browser to add a user package. Folders are read recursively and all packages
below them are automatically included.

Remove

Removes the selected user package from MeVisLab's search path. (Installed packages cannot be
removed.) Removed user packages can always be re-added later.

4.3.3. Preferences — Module Groups

The Module Groups category lists optional groups of modules that are not loaded by default. Check the
corresponding group to get access to modules of the group.

84



Menu Bar

Figure 4.8. Preferences — Module Groups

Category | Module Groups

General

Packages Only modules from enabled module groups can be added to your networks.

Module.Groups On |Title |Owner |Type |Name ‘Comment

Supportive Programs - - - -

Paths Example Madules MeVis Medical Solutions AG std example Modules that are gr

Scripting O Global Modules  MeVis Medical Solutions AG std global Modules implement

Network Appearance Inspectors MeVis Medical Solutions AG std Inspectars  Inspector modules t
Test Modules MeVis Medical Solutions AG std test Test modules that te

Metwork Interaction
Errar / Debug Handling
Shartcuts

‘I |

[ Show modules by the current user

Changing parameters in this panel overwrites settings from your mevislab.prefs file!

Restore Defaults Ok ‘ Cancel

Scroll to the right to see additional comments and the number of modules for each group.

After confirming the selection with OK, the package groups of the selected modules and the user
packages are scanned and loaded.

Show modules by the current user

If checked, the module written by the current user are always available and shown. The current user's
name is displayed on the General tab, see Figure 4.6, “Preferences — General”. If this username
appears as a value in the “author” or “maintainer” tag, the module will be available, except the module
is in the “deprecated” group.

85



Menu Bar

4.3.4. Preferences — Supportive Programs

Figure 4.9. Preferences — Supportive Programs

o

Category

General

Packages

Module Groups
Supportive Programs
Paths

Scripting

MNetwaork Appearance
Metwark Interaction
Error / Debug Handling
Shortcuts

Restore Defaults

Internal Text Editor

Use internal text editor (MATE)

| Supportive Programs

Integrated Text Editor
Iv Use integrated text editor (MATE)

Handled Extensions: |css dat def |5 mhelp prefs prf pri pro py script tt mli mlinstall mldepends

External Programs

It is recommended to set your own text editor if you do not use MATE, since this allows passing line
Recommended tools include TextPad and Irfan\iew.
The other programs need to be set on Linux only!

Command Arguments Extensions

Text Editor: | Browse... | Ltjs Py C

HTML Browser: | Browse... | |htm| http

Image Viewer: | Browse... | |tif tiff pn

srouse. |
_srouse. |
srouse.|

Mavie Player: | Browse... | |avi mpg

Network Proxy
[ Enable proxy

Type: |Hitp *| Host name:

Changing parameters in this panel overwrites settings from your mevislab.pre

Ok

If selected, the internal text editor MATE is used, offering many useful features for MeVisLab files.
Recommended! See Chapter 27, MATE for details.

Handled Extensions

Allows the definition of a list of file extensions for which MATE is automatically opened.

External Programs

Allows the definition of external applications and program arguments for file types used in MeVisLab.
Click Browse to select the applications manually, or Detect to autodetect applications that work

especially well with MeVisLab.

86



Menu Bar

‘ Note
On Linux, it can happen that an external program depends on a third party library that
MeVisLab provides. If problems occur, e.g., because a KDE program loads an incompatible
Qt library from MeVisLab, then use a shell script that clears LD_LIBRARY_PATH before
it calls the external program.

For example, to safely run konqueror from MeVisLab, place the following script in ~/ bi n
and make sure ~/ bi n is the first entry in PATH before running MeVisLab.

#!/ bi n/ sh
LD LI BRARY_PATH= konquer or

Arguments are options added when starting the program. They can be entered manually or are added
by the Detect feature.

Extensions lists the extensions for which the assigned program will be used. This overrides system
settings, but only within the MeVisLab context.

e TextEditor: Although it is recommended to use the internal text editor MATE, other text editors can
be used in conjunction with MeVisLab. With the argument % (% ), a file and a line number in it will
be passed to the text editor. The Detect feature will check for TextPad on Windows (see the web link
for installing) and set the options accordingly.

» ImageViewer: Graphic applications may be used in conjunction with MeVisLab. If none is set, the
system default will be used. The Detect feature will check for IrfanView on Windows (see the web link
for installing) and set the options accordingly.

* MoviePlayer, HTMLBrowser: May primarily be needed to be set on Linux.
Network Proxy
Allows the configuration of a proxy server for HTTP connections to access the Internet.

» Enable proxy: If selected, a proxy will be used to access the Internet.
» Type: Sets the type of the used protocol.

* Host name: Sets the host name of the proxy server.

» Port: Sets the port of the proxy server.

87



Menu Bar

4.3.5. Preferences — Paths

Figure 4.10. Preferences — Paths

o
Category | Paths
General
Packages Paths
Module Groups Default File Dialog Path: | Browse...
Supportive Programs —_—
Paths Screenshot Path: |C:,:’Users,:’JDoe,:’AppData,fLocaI,ﬂMeVis;’MeVisLab;’screenshots Browse...
Scripting _—
MNetwaork Appearance Snippets Path: |C:,:’Users,fJDoe,:’AppData,fLocaIfMeVis,n’MeVisLab,fsnippets Browse...
MNetwork Interaction ] .
Error / Debug Handling DicomBrowser Path: |C:,:’Users,fJDoe,fDocuments;’MeVls,ﬂImageData Browse...
Shortcuts - } - - ;
Applications Settings Path: |C:,sters,fJDoe,prpData,fLocaIfMeVls,n’MeWsLab,fsettmgs Browse...
Logfile: | Browse...

Changing parameters in this panel overwrites settings from your mevislab.prefs file!

Restore Defaults Ok Cancel Apply

Default File Dialog Path
Sets the default path in the file dialog. If none is specified, the path last used will be offered.
Screenshot Path

Sets the path for files of the View Screenshot Gallery, see Chapter 19, Screenshot Gallery.

Snippets Path

Sets the path for network snippets, see Chapter 25, Snippets List

Applications Settings Path
Sets the path in which MeVisLab applications save their settings.
Logfile

Sets the path to the logfile written by MeVisLab.

88



Menu Bar

‘ Note
You can also set the path to the lodfile in the . pr ef s file with | ogfi | e = <absol ut ePat h/
file.log>.

4.3.6. Preferences — Scripting

Figure 4.11. Preferences — Scripting

O
Crtegory | Scripting
General O
Packages Scripting Console
Madule Groups Default Python Code: |from mevis import *
Suppaortive Programs
Paths Additional Python Path
Scripting Python Path: |
Metwork Appearance
Network Interaction Python Remote Debugger Attachment Code
Error / Debug Handling Python Debugger Code:
Shortcuts

Changing parameters in this panel overwrites settings from your mevislab.pre

Restore Defaults Ok

Scripting

Default Python Code

Sets a default Python code snippet to be used in the scripting console.

Additional Python Path

Adds the path to an additional Python package so that it can be found in the import statement.
Python Debugger Code

Sets Python debugger code as described in the Scripting Reference.

89



Menu Bar

‘ Note
The 'Additional Python Path' and the 'Python Debugger Code' are for attaching an external

debugger to Python.

Using an external Python debugger is obsolete since MATE has a built-in debugger for
Python (see Section 27.8, “Python Debugger”).

4.3.7. Preferences — Network Appearance

Figure 4.12. Preferences — Network Appearance

o

Category

General

Packages

Module Groups
Supportive Programs
Paths

Scripting

MNetwork Appearance
Metwark Interaction
Error / Debug Handling
Shortcuts

Restore Defaults

Mini Map

Show Mini Map

| Network Appearance

Mini Map

Show Mini Map: |Automatic  ~| Position: |Upper Right | ™ Show parent navigation frames

Network Rendering Style

Module Style: |Fu|| (Default)
Module Selection Halo

Halo: |Alternative =

Global Zoom
Factor: 1 E|: —Ji

Modules
Font Size: 125

8 =]

¥ Snap to grid x| 8%y

j MNetwork Background Color:
Selected:

Source: D¢

Default Colors

Groups: Motes:

v Show ML image state

v Show info message indicators

Badge Script: |(None]
Connector Details

I show connector detail info

Detail Font Size: 10 =
Details on Zoom: 0.01 =
Verbose Details on Zoom: 1.5 E|:

Mote: Sizes and font sizes relate to a zoom factor of 100%.

Connector Image Preview

I Show connector image preview

Image Preview Thumb Size: 64

Changing parameters in this panel overwrites settings from your mevislab.pre

Ok

The Mini Map provides an overview of the entire network. See also Section 3.13, “Using the Mini Map”.

The following settings for the Mini Map are available:

Show Mini Map

90



Menu Bar

¢ Automatic: Is displayed when parts of the network are outside the workspace.

* Never: Is never displayed.

¢ Always: Is always displayed.

Position

Defines the position of the Mini Map: Upper Right (default), Lower Right, Upper Left, Lower Left.
Show parent navigation frames

(For macro modules only) Shows the hierarchy of the opened networks. For example, when adding a
Vi ew2D module, opening its internal network and there the internal network of Vi ew2DExt ensi ons, the
hierarchy of involved macro modules will be displayed in small frames next to the usual mini map (which
might not be shown, depending on its mode).

Network Rendering Style
Style
Offers four options for styling the network rendering:

¢ Full (Default): Network is rendered in color with 3D and highlighting effects.

Locallmage

¢ Print (Black & White): Network is rendered as simple black-and-white drawing.

—~

-
SoView2DOverlay [H]

Threshold
=420

A
/

Locallmage @

91



Menu Bar

¢ Print (Color): Network is rendered as a simple color drawing without effects and a white background.

[z ]
—~

S
SoVisuADOyerly

Tiresnold

=a20

Liocalimage. &

e Comic: Network is rendered as a simple color drawing without effects but with a gray background.

llocallmage

All four styles are fully functional in terms of editing, connecting modules, displaying a Mini Map, etc.
However, itis recommended to use the print styles only when screen-capturing and printing the network.

Halo

Offers two options for styling the halo of highlighted modules:

¢ Classic (Default): The halo is rendered as classic halo effect.

e Alternative: The halo is rendered as rectangle around the module.

To change the halo colors of the selected modules and the modules attached to them, edit the settings
of Selected, Source, and Destination by clicking on the respective color field.

Global Zoom
Factor

Sets a global zoom factor. Only applicable to modules and networks that do not fill the network space
automatically. Other modules/networks will be displayed with the given global zoom factor upon double-

clicking the networks space or using the button B (Show the entire network) in the toolbar.

92



Menu Bar

Default Colors
Groups

Sets the background color for module groups, see Section 3.11, “Using Groups”. The default is green.

Notes

Sets the background color for notes, see Section 3.12, “Using Notes”. The default is yellow.

Modules

Font Size

Sets the font size of the module name in the display (number referring to a zoom of 100%).
Snap to grid

Sets the grid size in the workspace to which the modules snap when moved.

Show ML image state

Shows the image states by coloring the connectors.

» Green: Valid and updated ML image.

* Yellow: Valid but not updated ML image.

* Red: Invalid ML image.

Badge Script

Selects a script that provides a badge icon for modules. Badge icons are intended to make users aware

of certain properties of a module. See Section 4.3.7.1, “How to define your own badge scripts” for how
to define your own badge scripts.

Connector Details
Show connector detail info

Enables detailed information for ML image, Inventor, or Base objects currently available on the
connectors when a single module is selected.

Detail Font Size

Sets the font size for the connector detail info.

Details On Zoom

Sets the threshold zoom factor below which the details are not displayed.
Verbose Details On Zoom

Sets the threshold zoom factor below which the verbose details are not displayed.
Connector Image Preview

Show Connector Image Preview

Shows an image preview at an image connector when a single module is selected.

93



Menu Bar

Image Preview Thumbnail Size

Sets the size of the image preview thumbnails in pixels.

‘ Note
All sizes and fonts relate to a zoom factor of 100%.

4.3.7.1. How to define your own badge scripts

A badge script consists of a single . py Python file and a . def file (which just points to the Python file
and declares a title for display in a combo box).

The script is treated like an invisible macro module. For each module type, the run() function of the
script is called with the module's type as string argument. The r un() function may return a dictionary with
the entries iconicon which should be the path to an icon (preferably .png), description, a text displayed
in the tooltip of the module; and optionally icon_size, if the icon must be scaled down for network display
(e.g., "20x20"). If no icon should be displayed for a module, None can be returned.

Example MyBadgeScri pt . def file:

BadgeScri pt {
title = "Some exanpl e badge script"
sour ce "$(LOCAL) / MyBadgeScri pt . py"

}

Example MyBadgeScri pt . py file:

frommevis inmport M.AB

def run(nodul eNane) :
aut hor = M.AB. nodul el nf o( nodul eNang) . get (" aut hor")
i f author and "John" in author:

return {
"icon": "$(LOCAL)/johns. png",
"description": "Mddule witten by a John"
}

94



Menu Bar

4.3.8. Preferences — Network Interaction

Figure 4.13. Preferences — Network Interaction

o
SEECET Network Interaction
General
Packages Module Placement
Module Groups Placement of Newly Created or Pasted Modules: |at current mouse position j
Supportive Programs
paths Module Arrangement Spacing
Scripting Horizontal 20 =] Vertical ] El:
MNetwork Appearance
Metwork Interaction Network Zoom Style
Error / Debug Handling
Zoom to: |Cursor ¥
Shortcuts

Mouse Gestures

¥ Use mouse gestures to close current network document

Interaction Device

Device Selection: |Three Button Mouse with Scroll Wheel j
Via this mouse type (e.g., Logitech Mouse, Apple Mouse) you may interact with the network view in tl

* Hold down the third mouse button and maove the mouse to move the network
* Use the scroll wheel to zoom in and out of the network view
* Double-click the primary mouse button on an empty space in the network to reset the networ

Changing parameters in this panel overwrites settings from your mevislab.pre

Restore Defaults Ok

Module Placement
Placement of newly created or pasted modules
Defines where newly created or pasted modules are placed in the network:

 Into the middle of a network: Modules are inserted in the middle of the network; multiple modules
are inserted with a slight offset in position.

» At current mouse position (Default): Modules are inserted at mouse position; multiple modules are
inserted in a cascading manner. If the mouse cursor is outside the network's window, the modules
are placed into the middle of the network.

Module Arrangement Spacing

Horizontal / Vertical

95



Menu Bar

Enter arbitrary values to adjust the distances between modules for the aut oAr r ange scripting command.
(These settings do not directly correspond to pixels but depend on zoom level and other factors.)

Network Zoom Style
Zoom to

Defines the position around which the zoom should be centered. Available options include zooming to
the center of the network or to the current cursor location.

Network Mouse Gestures
Use mouse gestures to close current network document

Enables or disables the use of mouse gestures (see Section 3.17, “Network Mouse Gestures” for
details).

This option only affects Windows systems, as on Linux and macQOS, context menus are opened on right-
click rather than on right-button release.

Interaction Device
Device Selection

Allows the selection of special interaction devices (mice, touchpads, especially Apple devices). For each
selected option, the available features are listed below.

e Three-button mouse with scroll wheel: (Default)
e Two-button mouse with scrolling in multiple directions: For example, Apple Magic Mouse

e Multi-touch pad: For example, Apple MacBook Touchpad

96



Menu Bar

4.3.9. Preferences — Error / Debug Handling

Figure 4.14. Preferences — Error / Debug Handling

o

Category

General

Packages

Module Groups
Supportive Programs
Paths

Scripting

Metwork Appearance
MNetwork Interaction
Errar / Debug Handling
Shortcuts

Restore Defaults

‘ Error / Debug Handling

lv Redirect Cout lv Redirect Cerr

v Send to MeVisLab debug output v Send to MeVisLab debug outp
I Send to Visual C++ debug console [ Send to Visual C++ debug con
[ Use default cout [ Use default cerr

Exception Handling
I Catch Inventor exceptions

v Catch core exceptions
Behavior

On Warnings: | Continue | On Errors: |Continue | On Fatals: |Abort() =
On Debugs: | Continue ~¥| On Couts: |Continue ¥| On Cerrs: |Continue =

Symbol Controlled Debugging

I Print all debug output

I Use symbaol controlled debugging
Debug Symbols (e.g., ML_ + CLASSNAME])

ML_ERRCORTEST

Changing parameters in this panel overwrites settings from your mevislab.pr

Ok

cout (standard output stream) and cerr (standard error output stream) are standard outputs in C++.
The difference is that st d: : cout is a buffered stream, making it especially useful for general output,
while st d: : cerr is unbuffered, making it ideal for error messages. The outputs are independent of each
other, allowing both to be directed to different targets.

Redirect cout

Enables the redirection of the cout stream.

Send to MeVisLab debug output

Redirects cout to the Debug Output (default).

Send to Visual C++ debug console (Windows only)

(Only if MeVisLab is started from within Visual C++) Redirects cout to the Visual C++ Debug Console

(on Windows).

97



Menu Bar

Use default cout

Redirects cout to the default output (for example a console). Must be activated explicitly; otherwise,
only the redirection will be output.

Redirect cerr

Enables the redirection of the cerr stream.

Send to MeVisLab debug output

Redirects cerr to the Debug Output. (default).

Send to Visual C++ debug console (Windows only)

(Only if MeVisLab is started from within Visual C++) Redirects cerr to the Visual C++ debug console.
Use default cerr

Redirects cerr to the default output (for example, a console). Must be activated explicitly; otherwise,
only the redirection will be output.

Exception Handling

Catch Inventor exceptions and Catches core exceptions
Exceptions are handled as selected for each type of exception:
On Warnings, On Errors, etc.

Defines the actions to be taken upon warnings, errors, etc. This is especially helpful if no source code
is available for detailed tracing. Possible settings: Continue, Abort, Exit(0), Exit(ErrCode).

Symbol Controlled Debugging

Print all debug output

Prints out all debug outputs from the code (for example, everything tagged with M__DEBUG).
Use symbol controlled debugging

Debugging is based on symbols, which are special classes. Enter the debug symbols to filter in the text
field, for example, M._ERRORTEST.

‘ Note
Refer to the ML Guide for detailed information on symbol-controlled debugging.

98



Menu Bar

4.3.10. Preferences — Shortcuts

Figure 4.15. Preferences — Shortcuts

o
Category ‘ Shortcuts
General
Packages Shortcut Keys Touch Bar
Module Groups About
gushpor‘tlve Programs Activate MNext Document Ctrl+Tab
Sa ; St' Activate Previous Document Ctrl+Shift+Tab
cripting Activate User Default Dock Preset Ctri+Shift+L
Network Appear.ance Add Local Macra...
Network Interaction Add Metwork Screenshot to Gallery Fi12

Errar / Debug Handling

Align Bottom Edges
Shortcuts 9 9

Align Horizantal Centers

Align Left Edges

Align Right Edges

Align Top Edges

Align Vertical Centers

Auto Arrange Selection Ctrl+1
Clear Image Cache

Clear Undo History

Close Ctri+w
Close All Ctrl+Shift+W
Close All Panels

Close Panels Of Current Network

Close Unselected Panels

Comment Selection Ctrl+Alt+M
Convert Pro Files to CMake...
Copy Ctri+C

J Remove Key | |Click to add key

Changing parameters in this panel overwrites settings from your mevislab.pr

Restore Defaults Ok

The shortcut editor allows to set and/or change shortcuts for various actions. It also shows which
shortcuts are active at the moment.

To remove a shortcut for an action, select the action, select its shortcut key (if there are multiple), and
press Remove Key.

To set a keyboard shortcut, select the action and click the field labeled Click to add key. Then, press

the key or key combination you want to assign to this action. This can be done multiple times, adding
a shortcut for the action with each repetition.

Note
The same shortcut editor is available in MATE.

Reset To Default

Resets the keyboard shortcut for the selected action to its default setting.

99



Menu Bar

Remove Key
Removes the currently shown shortcut key for the selected action.
Reset All To Default

Resets all keyboard shortcuts to their default settings.

4.4. Modules Menu

Displays a tree of all modules currently available in the MeVisLab module database, sorted both by
genres and by DLLs (projects). Includes all MeVisLab SDK modules and all user-defined modules.

In the genre section, the listing of a module is based on its genre and the predefined genre structure

given in the Genr e. def file, see the MDL Reference, chapter “Module Genre Definition”. This way, new
modules are automatically displayed in the correct submenu.

Figure 4.16. Modules Menu

File Edit | Modules Applications Extras Scripting View MNetworks Panels Help

D = File ’ = e l:‘ EV N '&'
Image L4
Analysis 4 Marker 3
Filters p| UesEr P
Segmentation L4 Blape '
Transformations  * Eooudinat =g
Resample
Devices ' BoundingBox
Registration L4 Misc D BoundingBoxWithMargin
Visualization N Fonhoter DimensionSliceClone
T © ImageSeparator
Magnify
Special D MergeRegions
mK D Replicate k
PCL D Sublmage
VTK ' VOISelect2D

4.5. Applications Menu

Lists available applications. Applications are macro modules that have the genre tag “ApplicationsMenu”
in their definition file.

A typical example is DicomViewer. Start it as application from the menu or insert the corresponding
macro module “DicomViewer” via the module search.

' Note
Stand-alone applications can only be created with a special ADK license.

100



Menu Bar

4.6. Extras Menu

Figure 4.17. Extras Menu

Extras Scripting View Metworks Panels Help
Reload Module Database (Keep Cache)
Reload Module Database (Clear Cache)
Reload Imported Python Modules
Show Global MDL Definitions...
Run Module Tests...
Run Tests On Selection... Ctrl+T
Generate Module Reference For User Packages (HTML)

Show Widget Explorer...

Debug Widgets

Show Connector Details

Show Image Connector Preview

Clear Image Cache

4.6.1. Reload Updated Shared Libraries

Reloads all updated shared libraries or prints an information message to the debug console if there are
no libraries to update.

4.6.2. Reload Module Database (Keep Cache)

Reloads the . def, . scri pt, and . py files of modules that have been changed after the last reload.
Use this to

« Add newly defined modules to the module database.
» Update changes of module interfaces and scripting.

4.6.3. Reload Module Database (Clear Cache)

Reloads all modules in the database like Section 4.6.2, “Reload Module Database (Keep Cache)” but
clears the cache.

‘ Note
This may be slow, especially if many module panels are currently open in the network(s).

To update current changes on module interfaces and scripting faster, use Section 4.6.2
“Reload Module Database (Keep Cache)”.

4.6.4. Reload Imported Python Modules

This feature is only relevant if using the Python import functionality and working on the imported modules.

Reloads imported Python modules (not MeVisLab modules that use Python). This was previously only
possible via a manual r el oad() call or a MeVisLab restart.

‘ Note
After the Python modules have been reloaded, reload the MeVisLab modules that make

use of the Python module(s). Otherwise, the MeVisLab modules will still see the previously
imported Python modules.

4.6.5. Show Global MDL Definitions...

This entry displays a list of special objects defined in the MDL, sorted by object category. This is useful
to, e.g., find special control types that might not be listed in the MDL Reference.

101



Menu Bar

Figure 4.18. MeVisLab Global MDL Definitions

o
Type Package Location
-1~ DefineStyle
Application.default MevisLab/Standard Modules/IDE/Styles.def
LEAApplicationStyle LEA/General hModules/Macros/StandaloneMMSLEA/LEAApplicationStyle.d
Outputinspector.default MeVisLab/Standard hodules/IDE/Styles.def
Panel.default MevisLab/Standard Modules/IDE/Styles.def
_default MeVisLab/Standard Modules/IDE/Styles.def
_fixed MeVisLab/Standard Modules/IDE/Styles.def
_fixedEdit MeVisLab/Standard Modules/IDE/Styles.def
default MeVisLab/Standard Modules/IDE/Styles.def
defaultBig MevisLab/Standard Modules/IDE/Styles.def
defaultHuge MeVisLab/Standard hodules/IDE/Styles.def
defaultsmall MeVisLab/Standard hodules/IDE/Styles.def
defaultverysmall MevisLab/Standard Modules/IDE/Styles.def
fixed MeVisLab/Standard Modules/IDE/Styles.def
monospacedListView MeVisLab/Standard Modules/IDE/Styles.def
monospacedListviews.. MeVisLab/Standard Modules/IDE/Styles.def
monospacedTextView  MeVisLab/Standard Modules/IDE/Styles.def
monospacedTextView... MeVisLab/Standard hodules/IDE/Styles.def
tabviewstyle LEA/General hModules/Macros/StandaloneMMSLEA/LEAApplicationStyle.d
+- ModuleGroup
+- ObjectWrapper
+- PreloadDLL
- ScriptExtension
DicomSurfaceSupport  MeVisLab/Standard  Modules/Wrappers/MLABDicomSurfaceSupport/MLABDicon
DicomToaols MevisLab/Standard Modules/Wrappers/MLABDIicomTools/MLABDicomTools.def
JobSchedulerClient MeVisLab/Standard Projects/JobScheduler/Modules/MLABJobSchedulerClient.de
KeyFrameEditor MeVisLab/Standard hModules/Wrappers/MLABKeyFrameEditorWrappers,/MLABK
OpenvDETools MeVisLab/Standard  Projects/MLOpenVDE/MLOpenVDBWrapper/Modules/MLOf

[ Show all

+- LUserizenres
+- WidgetControl

Filter:

102



Menu Bar

By default, the list only contains the most useful object categories. Checking the “Show All” option shows
(almost) all object categories, but most of them are not immediately useful since they contain MeVisLab
internals.

4.6.6. Run Module Tests...

Starts the TestCenter for a module selection, by default for the modules selected in the Module Search
browser window (see Chapter 13, Module Search). By changing the filter settings in the extra window,
other modules can be selected for testing. For all modules, the test cases associated with the module(s)
are listed here. In case of Test WbVi ew, only the generic test case “Formal” that is associated with all
modules are available. When Finish is clicked, the test cases are run and test reports are available.

Figure 4.19. Module Selection

o

Module Selection

| 1 Info j
Maodules found: 93 ﬂj

Module Author i‘
BackgroundTaskslnspector MeVis Medical Solutions AG

CacheView

Cormment
ConnectedComponentsinfo
Console
CppParameterinfoExample
CSOFilter

C50Info

C50Inspector
C50VoxelSetlistinfo

MeVis Medical Solutions AG
MeVis Medical Solutions AG
MeVis Medical Solutions AG
MeVis Medical Solutions AG
Jan-Martin Kuhnigk

MeVis Medical Solutions AG
MeVis Medical Solutions AG
MeVis Medical Solutions AG
Christeph Brachrmann

Curvelnfo

Lennart Tautz, Christian KEHF
- : e e —

< Back Mext =

Cancel |

Tip
To run tests on several modules in a network, select them, open the network context menu
and select Run Tests On Selection...; or use the menu entry of the same name in the

Extras menu. For single modules, start the tests via the module context menu.

For further information, see the TestCenter Reference and the Getting Started, chapter 16, “Using the
TestCenter”.

4.6.7. Run Tests On Selection...

Selects the tests associated with the currently selected modules and shows a dialog from which these
tests can be started.

103



Menu Bar

4.6.8. Generate Module Reference for User Packages
(HTML)

Creates an HTML index for the help files of modules in the user packages (one index for each
PackageGroup).

4.6.9. Show Widget Explorer

The Widget Explorer is useful for developing Qt style sheets. It can also be used for debugging module
panels.

On the left side are

» The Widget view displays all existing windows and widgets of the MeVisLab process hierarchically
(see Figure 4.20, “MeVisLab Widget Explorer - Attributes Inspector”).

* The Update button can be clicked to refresh the view when the GUI changes and new windows are
shown.

» The CSS Selector area shows the class hierarchy of the currently selected widget (this can be useful
for writing CSS rules).

» The Highlight Selected Widget checkbox toggles if the background color of the currently selected
widget is temporarily changed to yellow to ease locating the widget in the GUI (note that this does not
work for all widgets, because not all draw their background themselves).

On the right side are

» The Attributes inspector that shows the widget attributes.

» The StyleSheet editor that allows for viewing and testing style sheet rules (see Figure 4.21,
“MeVisLab Widget Explorer - Style Sheet Editor”).

104



Menu Bar

Figure 4.20. MeVisLab Widget Explorer - Attributes Inspector

6 MeVisLab Widget Explorer

-- MLABComboBox ((191c99e2320)
o MLABPushButton (Ox191c94acfal)

[ VT | £ A noreTan

I Highlight selected widget

. -
1 | E

Reload View |

Widget 2| attributes | styleSheet |
-- MLABDockWidget (0191 c2dbeb50 name =SearchinDocumentation) Attribute Value
[+ MLABDockWidget (0x191c7c03270 name =Scripting Assistant) '
- QoolBar (0x191c7b63560 name =QuickModuleSearch) ‘g:’:sf“ uqx;?gseggfsz{
-- MLABDockWidget (0191c7c04a20 name =DebugCutput) Hierarch QGrou pon -
& MLABDockWidget (0x191¢7c056b0 name =ModuleList) et L ABB o Cont
-- MLABDockWidget ((191c7c06a60 name =BackgroundTasks) Name
-- MLABDockWidget ((191c7c07e60 name =ProfilingView) Parent MLAEVerticalV
-- MLABDockWidget (0191708720 name =SnippetsView) Parent Widaet MLAEVerticalV
-- MLABDockWidget ((191c7c0d270 name =Modulelnspector) I in ParentgLa],r Ves
- MLABDockWidget (0x191c7c0e380 name =Connectionsinspector) Alianment
> MLABScriptMenu (Cx191c8d14940) ‘l."isgiahilil}r Vicible
o MLABScriptMenu (T 197 c96c1060) I Enabled Ves
Et- MLAEWindowLevelContrﬂ-lIEdMainWindow (0191 cedbeesl) Auto Fills Back No
= QStackedWidget (0x191cedc2300) Lavout g QHBoxLayout,
B+ QFrame (0x191 cedbilfd) WindowFlags  WindowTiieH
=h MLABVerticalWidget (0x191c99e2640) Geomet g% B B sizedd
= QGroupBaox (0x191cedbe520) MY
= MLABVertical Widget (0x191c35e2¢00) Maximum Size 16777215 x 167
=h MLABHorizontalWidget (0x191c%9e3400) o .
: . Minirmum Size ... 309x 58
= QWidget (0x191cedbed 1) Size Hint 500 58
- =+ MLABLabelWidget (0x191c94ad620) ForearoundRole 0
=} MLABLabelWidgetinternal (0x191cedadvdl) g
: BackgroundReole 10
» Qlabel (0x191cedbf180) Horizontal 5ize ... Expanding
+ Qlabel [0x191 cedbc0) Vertical Size Poli... Fixed

Mote: Click on any widget while holding Shift to explore it.

ﬁ Panel Locallmage

d >

LLlocalimagea [

— &
FrobandTiidem Mame: zmoDataPath)/BrainhultifModal/ProbandT1.dcm j Erowse...
True Mame: WWisLab/Resources/DemaoData/BrainhultivModal/ProbandT1.dem
v auto load Load | Close File
Status:  File open

105




Menu Bar

Figure 4.21. MeVisLab Widget Explorer - Style Sheet Editor

6 MeVisLab Widget Explorer

Widget | Attributes  Stylesheet |

i+ MLABDockWidget (0x191c2dbeb50 name =SearchinDocumentation)
- MLABDockWidget (0x191c7c03270 name =Scripting Assistant)
-- OToolBar (0191 c7b63560 name =CuickModulebearch)
i+ MLABDockWidget (0x191c7c04a80 name =DebugQutput)
- MLABDockWidget (0x191c7c056b0 name =Modulelist)
- MLABDockWidget (0x191c7c06a60 name =BackgroundTasks)
- MLABDockWidget (0x191c7c07e60 name =ProfilingView)
i+ MLABDockWidget (0x191c7c08720 name =SnippetsView)
- MLABDockWidget (0x191c7c0d270 name =Modulelnspector)
i+ MLABDockWidget (0x191c7c0e580 name = Connectionsinspector)
- MLABScriptMenu (0x191c8d14240)
- MLABScriptMenu (0x191c96c1060)
= MLABWindowLevelControlledMainWindow (0197 cedbees0)
= OStackedWidget (0x191cedc2300)
= QFrame (0191 cedbf0f0)
=} MLABVerticalWidget (0x191c99e2640)

=- @ QGroupBox (0x191cedbe520)

= MLABVerticalWidget (0x191c99e2f00)
= MLABHorizonta Widget (0x191c99e3400)
= QWidget (0x191cedbed10)
. B MLABLabelWidget (0x191c94ad620)
= MLABLa belWidgetinternal (0191 cedat7dl)

- QLabel (0x191cedbf130)
“ QLabel (0x191cedbf9c0)
[#- MLABComboBox (0x191c99e2320)

“ MLABPushButton (0x191c%4acfa0) ~|
| »

CSS Selector: MainWindow >

background-color: lightblue

«

Iv Highlight selected widget Reload View |

MNote: Click on any widget while holding Shift to explore it.

&) Panel Locallmage — O >

Locallmage

— = &
ErobandTi.dem Mame: :maoDataPath)/Brainhbultitodal /ProbandT1.dem j Browse...
True Mame: WMislab/Resources/DemoData/BrainhultiModal/ProbandT1.dem

v auto load Load | Close File ‘

Status:  File open ‘

106



Menu Bar

4.6.10. Debug Widgets

Enables/disables debugging module panels. CTRL+left-clicking a user interface control in a module
panel opens the . scri pt file (MDL source code of the GUI) in MATE at the line where this GUI control
is defined.

' Note
To be able to jump to the definition line of the user interface control with any other text editor
than MATE, the parameter % (% ) has to be set in the Preferences, see Section 4.3.4
“Preferences — Supportive Programs”.

4.6.11. Show Connector Detalls

Shows detailed information about image, Inventor, or Base object properties currently pending on
module's connectors. Activated when selecting a single module in the network. This is the same option
as Connector Detail Info in the Preferences, see Section 4.3.7, “Preferences — Network Appearance”

4.6.12. Show Image Connector Preview

Shows an image preview at the module's image connectors when a single module is selected in the
network. This is the same option as Connector Image Preview in the Preferences, see Section 4.3.7
“Preferences — Network Appearance”.

4.6.13. Clear Image Cache
Frees cached image pages of all ML modules in currently opened networks. All image pages currently

not in request in any module pipeline are cleared and must be recalculated the next time they are
requested. See the ML Guide for details.

4.7. Scripting Menu

Offers features for script editing and for running user scripts.

For details on user scripts, see Section 4.8, “User Scripts”

Scripting is used to implement the dynamic functionality of module user interfaces and applications
(which are defined as macro modules) in MeVisLab.

Scripting is done in the context of a module. Via the script context variable of the module (ctx), access
is given to the module instance itself as well as to all members of the module like fields, input/outputs,
and GUI controls. This way, getting/setting field values (module parameters), connecting/disconnecting
fields, implementing dynamic user interfaces, and much more can be done dynamically.

In the context of an MLABMacroModule, access to the contexts of all modules contained in the modules
macro network is available (recursive descent).

For scripting in MeVisLab, one can use the Python language, via an object-binding with PythonQt, an
in-house-development by MeVis.

This object-binding uses the Qt Meta Object System to find out about the MLAB object features.
For the doxygen documentation of the scripting interface, see the MeVisLab Scripting Reference.
Tip

It is possible (but not recommended) to include single line script statements in MDL script
files.

107



Menu Bar

Figure 4.22. Scripting Menu

Scripting View Networks Panels Help

Close Unselected Panels

b Copy Sub-Network For Debugging
> Load All Lazy Modules
Field Differences

b Remove pycFiles

Remove Orphaned pyc Files
Mod

4.7.1. Show Scripting Console

Opens a command line console for typing Python code. Useful for debugging when programming user
interfaces dynamically. The console opens in the context of the current network. Access is possible to

* The contexts of all modules contained in the current network.

 All objects of included modules in a recursive descent (for macro modules).

’ Note
If the current network is a macro network, the script console is opened in the context of
the macro module. The same context is reached when opening the script console via the

macro module's context menu, Debugging - Show Script Console.

Figure 4.23. Scripting Editor

Scripting [ 4

py= |

Example listing in Python. The code has to be entered one line at a time, and without any indents. Make
sure that the modules Local | mage and Vi ew2D exist in the current network, and that the modules have
those specific instance names:

# get nodul e cont ext
nmodul e = ct x. nodul e(" Local | nage")

# set/get nmodule field val ue
filename = nmodul e.field("trueNane"). val ue
nodul e. fi el d("nanme"). val ue = "$(DenpDat aPat h)/ bone. tiff"

# connect fields
ct x. connect Fi el d(" Vi ew2D. i nl mage", "Local | mage. out | rage")

# open GU wi ndow control

wi ndow = ct x. nodul e(" Vi ew2D") . cr eat eW ndow( " Vi ewer ")
wi ndow. set Titl e("Hel | oWorl d")

ct x. nodul e(" Vi ew2D") . showW ndow( " Vi ewer ")

108



Menu Bar

Figure 4.24. Scripting Example

6 ScriptingConscle Untitled

py= from mevis import *

py> module = ctx.module("Localimage")

py= filename = module field{"trueMame").value

py> module.field("'name"}.value = "§{DemoDataPath)/bone.tiff"
py> cbrconnectField("view2D.inlmage","Locallmage.outimage")
2024-09-16 11:08:15 Info: True

py= window = cbamodule("View2D").createWindow("Viewer")

py= window.setTitle("Helloworld")

py= coomodule("View2D").showWindow("Viewer")

2024-09-16 11:08:37 Info: MLABWindowControl (tag: Window, wvalue:
Viewer, module: MLABMacroModule (type: ViewZD, name:
View2ZD), at: O0x000001891COSETCS0)

Py=

Locallmaga

bone Liff

4.7.2. Scripting Context Menu

The context menu of the Scripting View contains the usual commands for text editing, see also
Section 4.2, “Edit Menu”.

109



Menu Bar

Figure 4.25. Scripting Context Menu

ﬁ ScriptingConsole Locallmage

py= from mevis import *
py= L\\,
Show MeVisLab Scripting Help

Undo Ctrl+Z
Redo Ctrl+Y
Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V
Delete

Select All Ctrl+ A

Clear

In addition, two options are available:

Show MeVisLab Scripting Help

Opens the Scripting Reference documentation (HTML) in the default web browser.
Clear

Clears the scripting console.

4.7.3. Edit Network Script

(Macro modules only) Opens the interface definition file (. scri pt or . def) in the default text editor.

4.7.4. Start Network Script

(Macro modules only) Parses the interface definition file (. scri pt or . def). This has the same effect
as adding the macro module to a network and opening the module panel.

4.8. User Scripts

A user script is either a single . py Python file or an MDL . scri pt file (with a . py and . m ab file, like
any local MacroModule).

When a user script is started, MeVisLab creates a local macro module from the script and calls the
run() function, which must be declared in the Python script. The run function takes a single argument,
which is the context (macro module) that encloses the currently active MeVisLab network.

Using this argument, the script can work on the active network, get the selected modules, etc.

For instance, the following script just prints the selected modules to the console:

def run(nacro):
print (macro. networ k(). sel ect edModul es())

A user script can also open MDL windows from the run() function, which are declared in the . scri pt
file of the user script. The user script is destroyed after the last window it creates is closed.

User scripts are added to the Scripting menu by defining Action and SubMenu entries in a
User | DEMenus section in a user script's definition file. The user script's definition file can have any name,
but it must have the extension def and it needs to be placed below the Modul es directory of any package,

110



Menu Bar

because MeVisLab scans only the Modul es directories recursively for the *. def files. Itis recommended
to place the user scripts into a folder named User Scri pt s below the Modul es directory of your package.

Please have a look at the user script definition file MeVi sLab/ | DE/ Modul es/ | DE/ User Scri pt s. def and
the example user scripts in MeVi sLab/ | DE/ Modul es/ | DE/ User Scri pt s/ .

4.8.1. Example Scripts

» Replace Inventor Group

Replaces a single selected Inventor group node (e.g., SoSeparator, SoGroup) by a specifiable
Inventor group. All connections of the original Inventor group node are restored to the new Inventor
group node.

4.8.2. Run User Script...

Opens a browse dialog to load and run a user script. By default, the folder MeVi sLab/ | DE/ Modul es/
| DE/ User Scri pt s is opened, where a number of commonly used scripts are located.

4.8.3. Run Last User Script: <NameOfUserScript>

Runs the last chosen user script. This menu entry is only active if a user script has been executed before.

4.8.4. Run Recent User Script

Offers a list of recently executed user scripts to choose from.

4.8.5. Example Scripts

Offers a list of pre-installed example user scripts.

4.9. View Menu

Figure 4.26. View Menu

[View Networks Panels
E] Zoom To Fit
[A Zoom To Selection
+ ZoomlIn
= Zoom Out
Zoom 100%

Layout L4
Toolbars L4

Views L4

4.9.1. View All

Displays the entire network.

4.9.2. Zoom To Selection

Zooms the selection to 100%.

4.9.3. Zoom In

Zooms in to display more network details.

111



Menu Bar

49.4. Zoom Out

Zooms out to display fewer details and more of the overall network.

4.9.5. Zoom 100%

Zooms the network to 100% (size based on the standard module design).

4.9.6. Layout

Figure 4.27. View — Layout Submenu

View Metworks Panels Help

[ Zoom ToFit 0 oef o0 B & &8 & of l_'
A Zoom To Selection
| o |

+ ZoomlIn

= Zoom Out

Zoom 100%

Layout 4 Developer
Toolbars L Meodule Search
Views L Mo Dock Windows

Screenshot Gallery

v User Default Layout

Store And Set Current Layout As "User Default Layout”
Store Current Layout...
Edit User Layouts...

In this menu, the MeVisLab interface layout concerning the visible Views and their arrangement is
defined, see Section 4.9.8, “Views".

Tip

The Layout menu is also available from the bottom bar, see Chapter 6, Bottom Bar.

The following predefined settings are available:

Developer

Opens Output Inspector, Module Inspector, Module List, and Debug Output.

Module Search

Opens Module Inspector, Module List, and Module Search.

No Dock Windows

Hides all docking windows, that is all Views. This leaves only the network workspace visible.
Screenshot Gallery

Opens the Screenshot Gallery, see Chapter 19, Screenshot Gallery.

User Default Layout
Opens the layout saved as “User Default Layout”. If none was saved, it opens the last used layout.
The following options for layout handling are available:

Store and Set Current Layout as "User Default Layout"

112



Menu Bar

Saves the current configuration of Views as the user default and activates this user default layout.

‘ Note
The default user layout is a persistent setting. If it is the currently active layout, the
configuration of Views last modified by the user is saved as “Default User Layout”. As a
result, changes made to the layout will "overwrite" the default user layout.

Store Current Layout
Opens a window to save the current configuration of the Views under a different name. Stored user

layouts are not overwritten when updating/reinstalling MeVisLab but are saved to the places listed in
the Preferences chapter per operating system, see Section 4.3, “Preferences”.

Figure 4.28. Store Current Layout

Choose a setting to overwrite or enter a new name:
|UserSetting1 j
oK Cancel |

Edit User Layouts

Opens a window to copy, rename, or delete saved user layouts.

Figure 4.29. Edit User Layouts

Layouts Mew...
UserSetting
Copy
Rename
Delete
Close

User layouts cannot be edited via the menu. For editing, open the user layout in MeVisLab, edit its Views
configuration and save it under its old name.

4.9.7. Toolbars

In the Toolbars menu, toolbar elements can be enabled and disabled.

113



Menu Bar

Figure 4.30. View — Toolbars Submenu

View Metworks Panels Help
DZoomToFil JJ 5 af =0 | |I-
:E: Zoom To Selection
@\ ZoomIn
a\ Zoom Out

Zoom 100%

Layout

v Align / Distribute
v Edit
v File Operations
v Quick Module Search
v Script Debugging

v Zooming

Align / Distribute: See Section 4.2.12, “Align / Distribute”.

Edit: See Section 5.2, “Edit”".

* File Operations: See Section 5.1, “File Operations”.

Quick Module Search: See Section 5.5, “Quick Search”.

Script Debugging: See Section 27.8, “Python Debugger”.

e Zooming: see Section 5.3, “Zooming”.

4.9.8. Views

In the Views menu, Views elements can be enabled and disabled.

Figure 4.31. View — Views Submenu

’m Networks Panels Help
[ Zoom To Fit JJ ] of ol | B 2 g
:E: Zoom To Selection
@\ ZoomIn
a\ Zoom Out

Zoom 100%

Layout L4
Toolbars L4
_ Background Tasks
v Debug Output
ML Parallel Processing Profiler
Module Browser
v Module Inspector: Untitled
Meodule List
Module Search
MNetwork Field WatchList
Output Inspector

<

Parameter Connections Inspector
Profiling

Recent Qutputs

Screenshot Gallery

Scripting

Scripting Assistant

Search in Documentation

Search in Network

Snippets List

Available Views:

114



Menu Bar

» Background Tasks: See Chapter 7, Background Tasks .

» Debug Output: See Chapter 8, Debug Output .

* ML Parallel Processing Profiler View: See Chapter 9, ML Parallel Processing Profiler View .

* Module Browser: See Chapter 10, Module Browser .

* Module Inspector: See Chapter 11, Module Inspector .

* Module List: See Chapter 12, Module List .

* Module Search: See Chapter 13, Module Search .

* Network Field WatchList: See Chapter 14, Network Field WatchList .

» Output Inspector: see Chapter 15, Output Inspector .

» Parameter Connections Inspector: See Chapter 16, Parameter Connections Inspector .

» Profiling: See Chapter 17, Profiling .

* Recent Outputs: See Chapter 18, Recent Outputs .

» Screenshot Gallery: See Chapter 19, Screenshot Gallery .

» Scripting Console: see Chapter 20, Scripting Console .

» Scripting Assistant: See Chapter 21, Scripting Assistant .

» Search in Documentation: See Chapter 23, Search in Documentation .

» Search in Network: See Chapter 22, Search in Network .

* Snippets List: See Chapter 25, Snippets List .

4.10. Networks Menu

In the Networks menu, functions for closing the current or all networks are available, as well as a list
of all open networks and their status.

Figure 4.32. Networks Menu

Metworks Panels Help
Close Ctrl+W
Close All Ctrl+Shift+W

View2DWithOverlay.mlab - D:/MeVisLab/Networks
MaskOverlay2D.mlab - D:/MeVisLab/Networks

At the bottom of the menu, a list of all currently open networks is displayed. Networks with unsaved
changes are marked with * (asterisk).

4.10.1. Close

Closes the current network. In the case of closing a network with unsaved changes, a message appears.

4.10.2. Close All

Closes all networks. In the case of closing a network with unsaved changes, a message appears.

115



Menu Bar

4.11. Panels Menu

Manages all module panels currently opened in any of the open networks.

Figure 4.33. Panels Menu

Panels Help
+ v Panels Stay In Front Of Main Window
Hide Panels Of Invisible Metworks

Close All Panels
Close Panels Of Current Network

Minimize All Open Panels Ctrl+I
Show All Minimized Panels Ctrl+Shift+]

[View2DWithOverlay.mlab] Panel Locallmage
[View2DWithOverlay.mlab] Panel Threshold
[View2DWithOverlay.mlab] Panel View2D

If networks with open panels are available in the workspace, the panels are listed at the bottom of the
Panels menu. The panels are named in the pattern [NetworkName] PanelName. For unsaved networks
(“untitled”), [-] is displayed as network name without distinction between different unsaved networks.

For the behavior of the panel list, see Section 4.11.7, “Working with the Panel List".

4.11.1. Panels Stay In Front Of Main Window

If selected, panel windows are tied to the MeVisLab application window and always stay in front of it.
Otherwise, panels are independent windows that may be used even if the MeVisLab application window
is hidden or minimized.

Note
Independent panels may accidentally get hidden behind MeVisLab or other applications.

4.11.2. Hide Panels Of Invisible Networks

If selected, panels of networks currently not visible are hidden (which is not the same as minimized).
Otherwise, open panels of all networks are visible.

4.11.3. Close All Panels

Closes all panels of all networks.

4.11.4. Close Panels Of Current Network

Closes all panels of modules of the current network only.

4.11.5. Minimize All Open Panels

Minimizes all open panels at once. This option can be combined with the option Section 4.11.2, “Hide
Panels Of Invisible Networks”.

4.11.6. Show All Minimized Panels

Restores all open panels to the state they have been before minimizing. This option can be combined
with the option Section 4.11.2, “Hide Panels Of Invisible Networks”.

116



Menu Bar

4.11.7. Working with the Panel List

If networks with open panels are available in the workspace (and none are hidden), all open panels are
displayed and listed at the bottom of the Panels menu.

Figure 4.34. Panels Menu — Listing all Open Panels

Panels Help
v Panels Stay In Front Of Main Window
v Hide Panels Of Invisible Networks

Close All Panels
Close Panels Of Current Network

Minimize All Open Panels Ctrl+I
Show All Minimized Panels Ctrl+Shift+]

[View2DWithOverlay.mlab] Panel Locallmage
[View2DWithOverlay.mlab] Panel Threshold
[View2DWithOverlay.mlab] Panel View2D (minimized)

[MaskOverlay2D.mlab] Panel Threshold (minimized)

Usually, having all panels open will clutter the workspace. By combining the hiding and minimizing
options, currently unnecessary panels can be “removed” temporarily from the workspace.

If Hide Panels Of Invisible Networks is selected, panels of networks that are currently not displayed
are hidden and grayed out in the panel list. These cannot be selected directly. Once their network
becomes visible again, the hidden panels are displayed at their original size and position and can be
selected in the list.

Panels can be minimized by selecting the Minimize All Open Panels option or by clicking the minimize
button at the top right of a single panel window.

‘ Note
If Hide Panels Of Invisible Networks is selected, Minimize All Open Panels has no effect
on any hidden panels of invisible networks. This way, you can selectively minimize the
panels of only the currently visible network.

Minimized panels are tagged with “(minimized)” in the panel list. When selecting a minimized panel in
the list, it is restored to its original size and position. Alternatively, select Show All Minimized Panels
to restore all panels.

4.12. Help Menu

Provides important information and links related to MeVisLab.

Figure 4.35. Help Menu

E|

4.12.1. (Search in documentation and menu entries)

The input field in the help menu performs an immediate search in all menu entries and the documentation
of MeVisLab; see Chapter 23, Search in Documentation.

117



Menu Bar

4.12.2. Full-text Search in Documentation...

On selecting this entry, a window opens that provides a full-text search in MeVisLab's documentation
and module help files; see Chapter 24, Full-text Search in Documentation

4.12.3. Show Context Help...

On pressing the shortcut (F1 by default), help is shown depending on the current context. For example,
if a module is selected and the network has the focus, that module's help page is shown; if the scripting
console has the focus, general or specific Python help is shown.

MATE also supports showing context-sensitive help for . scri pt or for . py files.

4.12.4. Show Help Overview

Opens an HTML file with an overview of all MeVisLab help resources in the default browser.

4.12.5. Browse Help Pages

Allows browsing and opening a specific help page directly in the default browser.

4.12.6. Welcome

Opens the Welcome screen that is displayed when first starting MeVisLab. It provides a number of links
to tutorials, documentation, demos, user forums, recently opened networks, the latest information about
MeVisLab, and a “Tips + Tricks” section.

Toggle the option Don't show this at MeVisLab launch to choose whether this window is displayed
at start-up.

4.12.7. About

Displays a window with information about the installed version and license, the developers involved,
and license information for all built-in technologies.

4.12.8. Enter License

Opens a file browser to select a license file (. dat ). Depends on your MeVisLab distribution (free, basic,
SDK, etc.), see installation guide.

118



Chapter 5. Toolbar

The toolbar below the menu bar in the GUI offers some editing and zooming features, a quick search,
and the align/distribute feature.

Figure 5.1. Toolbar

‘ D E|2nD « || &R | @)™ 00822 5 2 of
All offered toolbar groups can be enabled and disabled via View - Toolbars.

5.1. File Operations

See Section 4.1, “File Menu”.

5.2. Edit

See Section 4.2, “Edit Menu”.

5.3. Zooming

See Section 4.9, “View Menu”.

5.4. Script Debugging

This toolbar only contains one button showing a stylized bug. Clicking this button starts the MATE editor
if it is not already open and activates or deactivates the integrated Python debugger.

5.5. Quick Search

Searches modules by name. Click the magnifier button to select search criteria.

Figure 5.2. Quick Search Options

v Substring
v Keywords
Match Case

» Substring: If selected, extends the search to module name substrings. Effectively works as if adding
wildcards, for example *image*.

» Keywords: If selected, extends the search to module keywords (defined in the <Modul eName>. def
file).

» Match Case: If selected, the search differentiates between lower- and uppercase letters.
Clicking on a quick search result opens an info box for the module. More buttons are available on the

bottom, offering the functions “Create module”, “Show HTML help”, and “More options”. The options are
the same as for modules in the search results, see Section 13.3, “Module Search Result Context Menu”.

119



Toolbar

Figure 5.3. Quick Search — Info Box

N N |

Comment: creates a GVR volume in memory

Package:  MeVisLab/Standard
R

When opening the drop-down list without a search entry, it displays the search history with the most
recently searched modules.

Figure 5.4. Quick Search History

»#- Search Modules
E

CSOListContainer

CSOConvertTolmage

Locallmage

SoGVRVelumeRenderer

SoView2DOverlay

Threshold

MinMaxScan

SoExaminerViewer

TestPattern hd

Tip
For more extended search possibilities, see Chapter 13, Module Search.

5.6. Align / Distribute

Allows the alignment and distribution of selected modules within a network. See Section 4.2.12, “Align /
Distribute”.

120



Chapter 6. Bottom Bar

The bottom bar can be found at the lower right of the MeVisLab GUI. It offers two unique options and
a quick way to the Layout menu.

Figure 6.1. Bottom Bar

—_
I [ss0me o @ O3

6.1. Loop! indicator

This flashing indicator is only visible if a network containing Inventor modules is causing constant field
updates. This can occur due to certain viewer interactions that necessitate continuous updates, or it may
happen when Inventor field connections form a loop involving at least one ML or macro module field,
as this disrupts Inventor's loop detection. If this indicator is visible without any interaction, you should
investigate your network, for instance, by using profiling (see Section 17.2.2, “Fields”).

For a possible way to break notification loops see Section 28.4, “Using SyncFloat to Reduce System
Load".

6.2. ML Cache

The ML Cache field displays the <used size / max. size> of the Image Processing Cache, and the
percent of memory in use.

The Image Processing Cache Size in MB can be set in Preferences — General » Resources, see
Section 4.3.1, “Preferences — General”.

To clear the image cache of all ML modules in the currently opened networks, select Extras — Clear
Image Cache, see Section 4.6.13, “Clear Image Cache”.

These options can also be accessed from a context menu on this area.

6.3. Stop Button

The Stop button is used to terminate algorithms, but it only functions if the module's programmer has
implemented the stop-logic in the C++ code, especially within long-computing loops.

An explanation and example code for the implementation of the Stop button can be found in the
MLGuide, chapter “Testing For Interruptions During Calculations”.

6.4. Toggle Layout

Opens the layout menu, see Section 4.9.6, “Layout”.

121



Chapter 7. Background Tasks

The Background Tasks View displays running background tasks.
ML Background Tasks is a framework for executing long-computing tasks in worker threads. The basic

framework is independent of the ML; however, convenience classes add access to ML images. For
more information on background tasks, see the ToolBox Reference, chapter “Background Tasks”.

Figure 7.1. ML Background Tasks

Background Tasks & X
Status | Module |Task | Progress |
Finished GVRVolumeSav...  Saving... 100%

Canceled GVRVolumeSav... Saving... 34%

Finished ImageSave(Ima.. Savingimage.. 100%

Finished WEMIsoSurface... 100%

Finished WEMIsoSurface... 100%

Four states are possible:

* Running

Finished

Canceled

Suspended

Figure 7.2. ML Background Tasks — Context Menu

Background Tasks [ 4
Status | Module |Task | Progress |
Finished GVRVolumeSav...  Saving... 100%

Canceled GVRVolumeSav... Saving... 34%
d g il (i 25

ImageSave(ImageSave) Module Context Menu  »

Finish
Finish
Finicht Show ImageSave(ImageSave) Module In Network

Clear Finished Tasks

The following options are available in the context menu:
* <ModuleName> Module Context Menu : Opens the standard module context menu.
* Show <ModuleName> Module In Network : Selects the module and zooms in on it.

» Clear Finished Tasks: Deletes all finished tasks from the list.

122



Background Tasks

Figure 7.3. ML Background Tasks — Context Menu for Running Processes

Background Tasks [ 4
Status | Module |Task | Progress |
Finished GVRVolumeSav...  Saving... 100%

Canceled GVRVolumeSav... Saving... 34%

Finished ImageSave(Ima.. Savingimage.. 100%

Finished WEMIsoSurface.., 100%

Suspend Running Task

WEMI=oSurface(WEMIsoSurface) Module Context Menu  *
Show WEMIsoSurface(WEMIsoSurface) Module In Network

Clear Finished Tasks

The following additional options are available for running processes:

» Cancel Running Task: Cancels the selected background task.

» Suspend Running Task: Pauses the selected background task (could be resumed).
The following additional options are available for suspended processes:

» Cancel Suspended Task: Cancels the suspended background task.

» Resume Suspended Task: Resumes the processing of the suspended background task.

If a network is closed while a background task is running, a warning is displayed:

Figure 7.4. Warning for Running Background Tasks

You have modules with running background tasks. Do you want to close this
document and lose all changes?

Background Task: WEMIsoSurface (WEMIsoSurface)

Background tasks are implemented for some modules, for example, GVRVol uneSave,

GVRI mageToVol une and | mageSave. For other modules, check whether their panels provide features
such as “Save in Background”.

123



Background Tasks

Figure 7.5. Save in Background for GVRVol uneSave

4 Panel GYRVolumeSave -lglﬂu
— Settings
Node Size: lm
Pad Size: lm
Parent Computation Method: lm

Parent Computation Rank:

[~ Force 8bit

[~ Cast to 8bit

~Filename

Filename: I c:\rngvr Browse... |

~Automatic Filename

[V Automatic filename

Source Filename:

Status:  Canceled. (1.1413 seconds)

Save In Background I

124



Chapter 8. Debug Output

The Debug Output View shows all events in the same way as they are written to the log file (see
Section 4.3.5, “Preferences — Paths”).

Figure 8.1. Debug Output

Debug Output s
2024-08-18 08:51:16 Info: Intel(R) Xeon(R) W-2235 CPU @ 3.80GHz with OpenGL 4.6.0 NVIDIA 537.42 (NVIDIA RTX A2000 12GB/PCle/SSE2 / 12262MB) 10bit
Loading c MeVislab.0.7 /IDE/bin e

x
/Program Files/MeVisL J
g of MeVisLab. i or detal,
i rom C./Program sL2bA0.70 Packages/FMEstabl Foundation
L s S FMEsable/PCL
o ThigParty
h o 7 o/Ecamples
: fro vis e/IE
; o v oITK
h o p /Standerd
o ; ocoqram Fles/Mel el T LIV
20240918 085117 nfc =

y.
2024-09-12 085117 nfo: Python lsngusge losded,
oszme 000 @ £

Paths and files with defined standard programs are marked as links (in blue and underlined). Click them
to open the folder or file.

To clear the Debug Output, click it and press L. This has no effect on the log file, and clear actions
are not being logged.

A context menu with editing options is available when right-clicking the Debug Output. The context
menu includes a submenu for managing message filters for info messages, errors, and warnings.
These filters do not prevent messages from being printed, but only from being shown. This means that
previously hidden messages will be shown when the message type is re-enabled, unless the Debug
Output has been cleared.

Figure 8.2. Context Menu

Select All
Select None

Copy All

Copy
Clear

Save

Message Filters » [V AN A

v Warnings

v Errors

125



Chapter 9. ML Parallel Processing
Profiler View

The ML Parallel Processing Profiler View shows the workload of all threads and how much time they
needed.

The view shows a zoomable graph and provides the following options:

» Enable: If checked, the view tracks the time consumption of each used thread. Press Update to
refresh the view.

Load: Loads a previously saved *. ti nel i ne file.

e Save: Saves a profiling result as a *. ti nel i ne file.

Update: Updates the view with the latest results.

Clear: Clears all profiling data and clears the view.

Figure 9.1. Parallel Processing View Overview

ML Parallel Processing Profiler |E|
[v¥ Enable Load | Save | Update | Clear |
Overview Arithmatic2{Arithmatic?1) gatlilz 46,9595 ms

GUI Thread I] III] ﬂl‘ I]
Page Request Producer H ﬂ[“ I ﬂ I] |
10 Thread I | ImgLoad(ImgLoad) I l

Worker Thread

Worker Thread

Worker Thread

Worker Thread

The graph shown in the view provides an overview of how many threads have been used and the
duration of their work on individual requests. The graph can be zoomed using the mouse wheel or by
interacting with the scrollbar.

On mouse-over, individual work packages show the module's name and its instance name that produced
the work, and the time taken to process the work package.

126



ML Parallel Processing
Profiler View

Figure 9.2. Parallel Processing View Details

ML Parallel Precessing Profiler

(5]

¥ Enable

Overview

GUI Thread

10 Thread

Worker Thread
Worker Thread
Worker Thread

Worker Thread

Page Request Producer

Load | Save | Update | Clear |
work
ConvolutionFilter{Convalution| ) 0828208 ms | Convolu
‘onvolutionFilter{ Convolution)

| ConvolutionFilter{Convolution2)

| Conv

127




Chapter 10. Module Browser

Similar to the Section 4.4, “Modules Menu”, the Module Browser displays a tree of all modules currently
available in the MeVisLab module database, sorted both by genres and DLLs (projects). However, it
also allows browsing the modules, viewing the basic information for each module (author, package,

etc.), and opening a context menu with various features (editing the definition file, opening the example
network, etc.).

Figure 10.1. Module Browser

Module Browser 5 x

Available Modules | Author | Type
File
Image
Geometry
Analysis
Filters
Segmentation
+- Region
+- Contour
+- Contour (CS0)
+- Draw
+- Fuzzy
+- Misc
Transformations
Devices
Registration
Visualization
Open Inventor
+- Nodes S
—I- Cameras
SoOrthographicCamera Silicon Graphics Inc InventorModule
SoPerspectiveCamera  Silicon Graphics Inc InventorModule
Draggers
Engines
Group

linhts T
4 | | »

Double-click a module to create it in the current network.

T [ [ [ [ [

1] [

F-[# [

The context menu is the same as for modules in the search results, see Section 13.3, “Module Search
Result Context Menu”.

128



Chapter 11. Module Inspector

The Module Inspector gathers and displays extensive module information. This information can also
be found in other parts of the software.

11.1. Fields

The Fields tab lists all fields available in the module.

Figure 11.1. Module Inspector — Fields

Modulenspector Threshold 5 x
Fietds | Fies | e | About | Reloted | serpting |

Soe Jin_[om [regs [vaue
S Tread

The Fields tab contains the same information as the automatic panel's Parameters tab.

Figure 11.2. Automatic Panel

o

Parameters ‘ Inputs ] Outputs

Mame Type In Out | Flags | Value
instanceMame String Threshold
threshold Double ! 420
relativeThreshold Bool FALSE
comparisonOperator  Enum Greater
conditionTrueWriteval... Enum UserDef
userConditionTrueValue Double 1
conditionFalseWriteVa... Enum UserDef
userConditionFalseVal... Double o

As they can be edited in the same way, they shall be discussed together here.

11.1.1. Editing Field Values

The values of fields can be edited. The options depend on the parameter type. Click the entry to edit.
To finish the edit, press RETURN (to save the field value) or TAB (to save the field value and open
the next field value for editing).

Figure 11.3. Module Inspector — Edit Boolean

numXSlices Integer 1

maxSlice Integer 0

keepSlicesInView FALSE L\\, -
slab Integer TRUE

lowerLeft Vector2
upperRight Vector2 11

129



Module Inspector

Figure 11.4. Module Inspector — Edit Color

overrideAspectRatioValue Float 1
alphaFactor Float 1

baseColer

—
4 Select Calar "

Basic colors
C R B 0 0 B N
C R B B 0 Bl
B 0 0 0 Al
R 0 B 0 Al
IR
|

rrrrrrrr tue: [o =] Red: [255 =
rrrrrrre sat: Jo = oeen: [os5 5
Add to Custom Colors ek IE Blue: IE

oK I Cancel |

handle3DEvents Bool TRUE

Figure 11.5. Module Inspector — Edit Text

instanceMame String SoView2D

interactionProviderID String

viewerld viewer I _I

startSlice Integer 0

Figure 11.6. Module Inspector — Edit Values

overrideAspectRatio Bool FALSE
overrideAspectRatioValue Float 1

=0644% &l?—
baseColor Color
backgroundAlphaFactor Float 0

Just like with automatic panels, parameter connections can be created by dragging the parameter of
another module onto the Fields tab.

11.1.2. Module Inspector Fields Context Menu

For the fields of the Module Inspector, a context menu is available. The options depend on the type
of the field and if it is part of a parameter connection.

130



Module Inspector

Figure 11.7. Module Inspector Fields Context Menu

Module Inspector: SoView2D [ 4
Fields ] Files ] Tree ] About ] Related ] Scripting ]
MName |Type |In | Out | Value |L|
drawlmageData Bool TRUE
k SoView2D.timePoint [Integer]: 0 0
snapTo! FALSE
standar  COPY Name TRUE
standar  Copy Value TRUE
standar  Paste FALSE
passHa  Edit Field Value... FALSE
reversel  pectore Default Value FALSE
blendW BLEND_REPLACE
filterMc  Show Defined Enum Itemns FILTER_LIMEAR
cachel  Set Open Inventor Ignore Flag SLICE_CACHING_OFF
slicedli SLICE_ALIGMX_CEMTER
sliceali  Select Field For Connection SLICE_ALIGNY_CENTER
useShar  Connect From - TRUE
applyl.  Connect To - TRUE
lutPreci  picconnect VIEW2D_LUT_AUTO
zoomM VIEW2D_AUTO_ZOOM
Touch
zoomh 1
invertki  Select Field In Module Inspector * FALSE
invertKi - pdd To Network Field WatchList FALSE
overridi FALSE
override  Show Scripting Help 1
alphafa  Show Field Help 1
baseCo
backgre Module Context Menu L4 0 1
backgre  Show Medule In Network |
startCine Trigger Trigger
stopCine Trigger Trigger
cineCenterT Integer 0
cinelntervalT Integer 0
cineCenterZ Integer 0
cinelntervalZ Integer 0
cineMode Enum CINE_Z
cineDirection Enum CIME_PINGPOMG j

<ModuleName>.<FieldName> [FieldType]: <Value>

Displays the module name, the name of the field, its type, and its current value.
Tip
If the title is selected, the <ModuleName>.<FieldName> is copied to the paste buffer. This
string can be pasted into any text editor, for example, into MATE.

Copy Name

Copies the name of the field to the paste buffer.

Copy Value

Copies the value of the field to the paste buffer.

Paste

Pastes the field's value. The field's value cannot only be pasted into an editor but can also be pasted
directly into another field.

Edit Field Value...
Opens an editor to edit the field's value.
Restore Default Value

Restores the default value of the field. This is only available if the current value is not the default value
and the field is editable. (The field's value is displayed in a bold font in this case.)

131



Module Inspector

Show Defined Enum Items...

Opens a window with four different representations of the enumeration's items:

 String list: the names of the items as strings

» MDL code: a snippet of MDL code that defines a field with the enumeration items

» Python code: a snippet of Python code that defines directives to react to each selected item

 Detailed list: a list of the enumeration items with the item's name, the item's title, and the item's integer
representation

This option is only available if the field is an enumeration field.

Set Open Inventor Ignore Flag

Toggles the field to be ignored. Only available for Open Inventor fields.

Select Field for Connection

Selects the field so that it can be connected to another field in a next step.

Connect From

Connects the selected field as source. Shows the field to connect from in the submenu.
Connect To

Connects the selected field as destination. Shows the field to connect to in the submenu.
Disconnect

Disconnects a parameter connection (to be selected from the submenu).

Touch

Touches the field value without changing it. This might trigger a recalculation of values or outputs.
Select Field In Module Inspector

Selects the field of a parameter connection to jump to in the display.

Add To Network Field WatchList

Adds the parameter to the Network Field WatchList, see Chapter 14, Network Field WatchList.

Show Scripting Help

Opens the scripting reference for the field's type in the default web browser.
Show Field Help

Opens the field's mhelp documentation in the default web browser.

Module Context Menu

Opens the module's context menu in a submenu.

Show Module In Network

Selects the module and zooms in on it in the network.

132



Module Inspector

11.2. Files

The Files tab contains a list of related files. This is the same information as in the module context menu,
Related Files.

Figure 11.8. Module Inspector — Files

Meodule Inspector: SoView2D g x

Figlds Files l Tree ] About ] Related ] Scripting ]
view2d.def at line 271
SoView2D.script

viewdd.py
CMakeLists.tet

Double-click a file to edit it in the default text editor.

11.2.1. Module Inspector Files Context Menu

For files, only two options are available in the context menu:

Figure 11.9. Module Inspector Files Context Menu

Meodule Inspector: SoView2D g x

Fields Files l Tree ] About ] Related ] Scripting ]

viewZd.def at line 271
SoView2D.script

CMakeLists  Edit File
Open Directory

Edit File
Opens the file in the default text editor (same effect as double-click).
Open Directory

Opens the directory of the file in the standard file browser.

11.3. Tree

The Tree tab displays the module source file as an MDL tree structure.

Figure 11.10. Module Inspector — Tree

Module Inspector: SoView2D & x

o [ s | o | o [ e | e
: D

SoRe.
d sends drawing and event.

der
5/MeVisLab4.0.70/Packages/MeVisLab/Standard/M,
les/MeVisLabd.0.70/Packages/MeVisLab/Standard)/.
5 SoView2DLUTRendering, SoView2DLayout, SoView2DRedraw, SoView.

inds (1)
e C:/Program Files/MeVisLab4.0.70/Packages/MeVisLab/Standard/Modules.
indow (208)
Category (63) Main
Selecti

Fiel e

Fild fiterMode

=) Field (4) alphaFactor
stey

# Catego
% Category (55) CineMode
% Category (35) Advanced

133



Module Inspector

11.3.1. Tree Context Menu

Figure 11.11. Module Inspector Tree Context Menu

A B e
o || e [ e [ i
lle (297) SoView2D

Edit Source File

Opens the . def file in the default text editor.

Show MDL Help

Opens the MDL help (HTML) in the default web browser and jumps to the corresponding entry.
Show Scripting Help

Opens the Scripting help (HTML) in the default web browser and jumps to the corresponding entry.
Show Available MDL Tags

Opens a new window displaying a list of available tags and group tags, which depend on the module
type.

The listed types of the MDL tags do not always correspond to the types listed in the MDL help. The MDL
help lists simplified versions of the tag types.

Figure 11.12. Show Available MDL Tags

© MeVisLab Available Tegs for_Module - o x

Help for_Module B

Show MDL Help
sh q Hel

Type Possible values
FIELDEXPRESSION

FIELDEXPRESSION

NAMELIST

AUTHORS

STRING

e NAME

STRING

rk MLABFILE

GENRENAVELST
GROUPNAMELIST
sooL
sooL
Kevworos
AUTHORS
SN
e
NAMELST
enuM e
NAMELST
vagesNAMELIST |
s NAMELIST
STING
Available Group Tags
=N [

11.4. About

The About tab displays the header tags and their contents from the module definition, identical to the
information presented at the top of the module's HTML help file.

134



Module Inspector

Figure 11.13. Module Inspector — About

8 x

N L s

11.5. Related

The Related tab lists all modules related to the currently selected module.

The relatedness is shown as a blue bar in the right-most column. The related modules are sorted by
default by their relatedness.

The relatedness score is computed using the seeAlso and keyword tags, as well as the modules' names.
For the seeAlso tag, the relatedness is bidirectional: if module A refers to module B via the seeAlso
tag, the relatedness score of module B to module A also increases. This ensures that only one of the
modules needs to have its seeAlso tag updated.

Figure 11.14. Module Inspector — Related

Viodulenspecto SoVien2D
ieds | Fies | T | About Relted

Relatedness

L]

Scroll to the right for more information.

Double-click a related module to add it to the workspace.

11.5.1. Related Context Menu

Figure 11.15. Module Inspector Related Context Menu

Viodulenspecto SoVien2D
Fiekds | Fies | Tree | About  Relted | serpting |

Show Example Network e
G ShowHelp
Edit Help

SoView2DPosition

Show Example Network
Opens the example network in the workspace.
Show Example Network Folder

Opens the folder of the example networks in the default file browser.

135



Module Inspector

Show Help
Opens the module help (HTML) in the default web browser.
Edit Module Definition File

Opens the . def file in the default text editor.

11.6. Scripting

The Scripting tab displays details regarding any scripts used within the module. The Script Context is
for information purposes only.

The module's FieldListeners are listed and can be edited by double-clicking an entry.

Figure 11.16. Module Inspector — Scripting

Module Inspector: SoView2D [ 4
Fields ] Files ] Tree ] About | Related Scripting ] -
Info Value |
—IiScript Context

—t Variables
MLAB MLABGlobalScriptAccess (0x6890de0)
MLABDesktop MLABScriptDesktop ((xGael b60)
MLAEFileDialog MLABScriptFileDialog (0x6ae3ccl)
MLABFileManager MLABScriptFileManager ((xGael dal)
MLABGraphic MLABScriptGraphic (0x6ael680)
MLABPackageManager MLABPackageManager ((:35ad70)
MLABSystemInfo MLABScriptSystemInfo ((xbael ded)
MLABTestCaseDatabase MLABTestCaseDatabasze (0:374430)
_ builtins__
_doc__
_file__
__name__ MLAB_350View2D
__package__
context MLABInventorModule (0x6fb6add)
chx MLABInventorModule (0x6fb6add)

— Functions
initlconFilename
setCineModeTab

Classes
Meodule FieldListeners
Windows

Click =! to refresh the scripting information. This step is necessary if the script has been modified in
MATE or an external editor.

For the context menu of ModuleFieldListeners, see Section 11.1.2, “Module Inspector Fields Context
Menu”.

136



Chapter 12. Module List

The Module List lists all modules in the currently active network.

Figure 12.1. Module List

Module List [ 4
Type | Mame
VoxelValueRescale lutRescale
IValueRescale IphaRescale
SoView2DVoxelVal ReadPix
SoView2DSliceZoom sliceZoom
SoView2DSlicer slicer
SoView2DSlicePan sliceShift
SoView2DPosition position
SoView2DBorder border
SoView2DAutoCenter autoCenter
SoView2DAnnotati tati
SoToggle lutToggle
SoMouseGrabber posMouse
SoMouseGrabber lutMouseGrabber
SoMLLUT SoMLLUT
SoGroup group
RampLUT lut
ChangelUTColor lutColor

Select a module in the list to highlight it in the network, and vice versa.

The context menu is the same as for the module in the workspace, see Section 3.9.1, “Module Context
Menu”.

137



Chapter 13. Module Search
13.1. Module Search

With the Module Search View, complex search filters can be constructed. When opened for the first
time, it looks similar to the quick search in the toolbar, see Chapter 5, Toolbar.

Figure 13.1. Module Search with Demo Entry

Click the magnifier button to select search criteria.

The search starts immediately with each entered key (incremental search). The result list can be scrolled
to the right for more information. Click a column header to sort the list by the contents of this column.

Double-click a module to add it to the network. If other Views are open, for example, the Module
Inspector, the module is also opened in this View.

Tip

A module can also be instantiated from the Module Search by dragging its name onto the
network window.

13.2. Advanced Search

The advanced search allows for more complex search statements, which can be combined. Click _+!
to show advanced search entry fields.

Figure 13.2. Module Search — Advanced

Module Search 8 x

s Bl
Modules found: 49

eRenderingExampleMacro
(CSOExampleModule

In the first list, the area to be searched in has to be selected.

138



Module Search

Figure 13.3. Module Search — Searching In

SmpleModule

In the second list, the operator has to be selected.

Figure 13.4. Module Search — Operators

Module Search 8 x

2[5 ampie

L standard

Only visible search statements are executed. By clicking =/, less search entries are visible (and active).

Search statements can be turned on or off with the checkbox in front of the entry.

Search statements provide two additional options at the end of the line:

J: Negates the statement. For example, the search is performed for “does not contain” instead of

“contains” .

<. Applies case-sensitive search.

Note

Selections in the Module Search View are persistent and set as default the next time the

View is used.

13.3. Module Search Result Context Menu

For the results of the module search, a context menu is available. The options depend on the module.
For example, if no example network is available, this option is grayed out in the context menu.

Figure 13.5. Module Search Results — Context Menu

Module Search 8 x

o [ramerkeyworss =] [eortams =] 7% sxample
Rz lfeortoms =] stonderd
Modules found: 49 EE|

n  EditHelp

Related Fles (4) »

Show Enclosing Folder (4

it Run As Application

139



Module Search

13.3.1. General Options

Show Example Network
Opens the example network in the workspace.
If a module has no example network, this option is grayed out.

If a module has multiple example networks, this entry becomes a menu with a submenu that displays
a list of all available example networks by name.

Show Help
Opens the module help (HTML) in the default web browser.
Edit Help

Opens the . mhel p file in the default text editor.

13.3.2. Additional Options for Macro Modules

Related Files

Lists all files associated with the module. Possible file types are . def/. scri pt (MDL definition files),
. mhel p/. ht M (uncompiled/compiled help files), and . py (scripting files). Select a file to open it in the
default editor (as set in Section 4.3.4, “Preferences — Supportive Programs”).

Show Enclosing Folder
Opens the module's main folder, which contains the . def file.
Run As Application

Runs the macro as an application in a stand-alone window.

13.4. Search in Network

Figure 13.6. Search in Network

Search in Network 5 x
v |M0dule Instance Name j |c0ntains j | oy lut
Search |¥ Search recursively ﬂj
Modules found: 10
MName |Type | Location |Inf0
= View2D View2D toplevel
invPreLUTIn SoGroup View2D
invPostLUTIn SoGroup View2D
= ext View2DExtensions View2D
SoMLLUT SoMLLUT View2D,/ ext
lutToggle SoToggle View2D/ext
lutRescale VoxelValueRescale View2D/ext
lutMouseGrabber SoMouseGrabber View2D/ext
lutColor ChangelUTColor View2D/ext
lut RampLUT View2D/ext
overlayRampLUT RampLUT toplevel
applyOverlayLUT SoMLLUT toplevel
J] | o

The Search in Network View works similarly to the module search but also searches within network
parameters and properties. For details, see Chapter 13, Module Search.

Search recursively

If selected, the search will also include the lower levels of embedded macro modules.

140



Module Search

‘ Note
Selections in the Search in Network View are persistent and set as default the next time
the View is used.

141



Chapter 14. Network Field WatchList

In the Network Field WatchList, parameters of all modules in the network can be tracked.

Figure 14.1. Network Field WatchList

Metwork Field WatchList 5 x
MName | Value |
View2D.startSlice 40

Locallmage.trueName Ci/Program Files/MeVislab2.. ..
overlayRamplLUT.center 0.5

overlayRamplLUT.width 1

overlayRamplLUT.alphaCenter 0.5

overlayRamplLUT.alphaWidth 1

overlayRampLUT.computel UTAnew Trigger

As the parameter values can be edited just like in the single module's Module Inspector, this enables
editing parameter values of multiple modules in one place, instead of toggling between modules.

For the options in the context menu, see Section 11.1.2, “Module Inspector Fields Context Menu”.

In addition to these options, the following two are available:
Remove From Network Field WatchList

Removes the field from the WatchList.

Clear Network Field WatchList

Clears the entire WatchList (confirmation is required).

142



Chapter 15. Output Inspector

The Output Inspector displays the output of module connectors. Compared to defined view modules
(e.g., Vi ew2D, Vi ew3D), the Output Inspector allows for a quick check of any inputs/outputs in the
network by simply clicking on them.

Output inspectors are based on inspector modules. They can be found with Quick Search. The following
inspectors are available:

* M.I magel nspect or : for ML modules

» M.Basel nspect or : for MLBase objects

» Marker Li st | nspect or : for XMarker lists

* Scenel nspect or : for Open Inventor scenes

» CSO nspect or : for CSOList objects

* M.LUTI nspect or: for LUT functions

» Curvel nspect or: for curve data and curve lists
* W\EM nspect or : for all WEM modules

* GVRVol unel nspect or : for GVR volumes

* Styl ePal ett el nspect or: for style palettes

* | tenmMbdel | nspect or : for hierarchical item models

Figure 15.1. ML Image Inspector

Qutput Inspector: Locallmage.outimage (Image) [ 4

o | 30| U

Many, but not all inspectors have different views on the data:

143



Output Inspector

Figure 15.2. ML Image Inspector: 3D View

Qutput Inspector: Locallmage.outimage (Image) [ 4
3D | ’
Proband Flinikurn Bramen pite
19780101 M HUMAFIS

oot lFL

LETFGEANVTS

Some inspectors provide more detailed information by clicking on the triangle symbol in the upper right-
hand corner:

Figure 15.3. ML Image Inspector: Detailed Information

Qutput Inspector: Locallmage.outimage (Image) [ 4
0 | 3p | IT%D alo kel
N[ ffnage Properties—————————

Image Size: (109,91,80,1, 1, 1)

Page Size: (54,48, 1, 1,1, 1)

Data Type: unsigned int16 Range: [0.0, 51

Voxel Size: 1,953, 1.953, 2

World Matrix:0.0613  0.05734 -1.998 74
1.952 -0.0028660.06271 -1:
-0.001065-1.952  -0.0587812
a a a 1

More Info...

— Optic
Update Min Max ||_ Auto
Set Default LUT ¥ Auto

View All ¥ Auto

Save Image As...

Settings... d
| »

Which Output Inspector is used for each object type is defined in the Qut put | nspect or s. def file in
the MeVisLab IDE package. It is possible to develop new inspectors and add them to this definition file.

144



Chapter 16. Parameter Connections
Inspector

The Parameter Connections Inspector works only on parameter connections, not on data
connections.

As explained in Section 3.3, “Connector and Connection Types”, data connections may be of the types
Base (square/brown), Inventor (half circle/green), and ML image (triangle/blue). Only connectors of
matching types may be connected by clicking the connector and drawing a line to the other connector.

In the case of parameter connections, field values are connected. This can essentially be used for
any type of fields. Modules without input/output connectors can only be connected through parameter
connections, such as calculation modules like ConposeRot ati on. For more examples on using
parameter connections, see the Getting Started, chapter “Parameter Connection for Synchronization”.

16.1. Parameter Connections Inspector View

Figure 16.1. Parameter Connections Inspector View

Parameter Connections Inspector [ 4
Source Field (2] Destination Field
|Iut j |cenher (Double]j & % |Iut j |alphaCenter (Dj
|Parameher Connection List
| Source Field | Destination Field | -
i lutMouseGrabbery lut.center
__lutMouseGrabberx lut.width
1 lut.center lut.alphaCenter
N lut.width lut.alphaWidth
N position.buttonl posMouse.buttonl
N position.button2 posMouse.button2
u  position.button3 posMouse.button3

Parameter connections require a source and a destination field. If the source field changes, for example,
if a value increases from 1 to 20, the destination field value increases correspondingly. Source and
destination fields can be connected bidirectionally; in that case, increasing the value in the destination
field would also increase the value in the source field (see Figure 16.2, “Parameter Connection Example
— Vi ew2D and Vi ew3D"). A destination field can also be the source for another connection, effectively
forwarding the parameter value. There is no limit to the number of parameter connections; it is only
determined by the available fields per module.

A parameter connection can be created in three ways:

» by using the drop-down lists on top of the Parameter Connections Inspector. Select the modules
and fields to connect and click the respective arrow for creating the connection. By clicking the circle
button, source and destination can be swapped.

» by dragging fields (parameter labels) from one automatic panel to the other. This works also for
buttons.

» by dragging fields from one panel or settings window to the other.

A minimalist bidirectional parameter connection might connect a Vi ew2D and a Vi ew3D module so that
the time points are synchronized:

145



Parameter Connections Inspector

Figure 16.2. Parameter Connection Example — Vi ew2D and Vi ew3D

Parameter Connections Inspector [ 4

—Source Field —————————— [2} Destination Field

| =l Y e ..ﬁ =l =l
|Parameher Connection List

| source Field | Destination Field |
n View2D.timePoint View3D.currentTimePoint
u  View3D.currentTimePoint View2D.timePoint
Locallmage |

Note

Fields cannot be connected if they are encapsulated in macros or in already defined panels.
(Such fields would only be reachable by scripting.) In this case, this means that the cine
settings of Vi ew2D cannot be connected to the movie settings of Vi ew3D.

Each source/destination field pair in the list shows an existing connection. If the fields are also the
destination or source of another connection, additional arrow symbols are displayed:

Table 16.1. Connections Symbols

Symbol Direction
b Source field
! Destination field
b Source and destination field

A more realistic example from the internal network of Vi ew2DExt ensi ons shows a complex picture with
many forwarded parameters.

Figure 16.3. Parameter Connection Example — Vi ew2DExt ensi ons

Parameter Connections Inspector F X
J Source Field s Destination Field
ﬁ &l I e o ﬁ = <]
Parameter Connection List
[ source Field [ estination Field [ =
lutMouseGrabbery lut.center
lutMouseGrabberx lut.width
lut.center lut.alphaCenter
lutwidth lut.alphaWidth
position.buttonl posMouse.buttonl b
position.button2 posMouse.button2 b
position.button3 posMouse.button3 -
position.shift posMouse.shift -
position.control posMouse.ctrl b
posMouse.buttonl positien.buttonl -
posMouse.button2 position.button2 -
posMouse.button3 position.button3 N
posMause.shift position.shift b
posMouse.ctrl positien.control -
lut.width lutMouseGrabberx -
lut.center lutMouseGrabbery ad
lut.imaaeRanaeMinValue lutMouseGrabberxmin LI
To navigate from destination and source and vice versa, double-click on the respective arrows.
. . “ . . .
Example: In Figure 16.4, “Parameter Connection Example Navigating Between

Fields”,| ut. grayWw dt h is the source of a parameter connection to the destination | ut . al phaw dt h.
I ut. al phaw dt h itself is the source for another connection. Double-clicking the arrow symbol will
highlight the list entry where | ut . al phaWw dt h is the source field.

146



Parameter Connections Inspector

Figure 16.4. Parameter Connection Example — Navigating Between Fields

Parameter Connections Inspector [ 4
Source Field (2] Destination Field ‘

|posih’on j |conh’o| (Enum} j & [» |posl‘~‘|ouse j |v:h'| (Enum} j

|Parameher Connection List

| Source Field | Destination Field | =
lutMouseGrabbery lut.center

lutMouseGrabberx lut.width

lut.center lut.alphaCenter

lut.width lut.alphaWidth

position.buttonl posMouse.buttonl

position.button2 posMouse.button2

position.button3 posMouse.button3

position.shift posMouse.shift
position.control
posMouse.buttonl
posMouse.button2

posMouse.button3

!---#----:

posMouse.shift

posMouse.ctrl position.control

lut.width lutMouseGrabberx

lut.center lutMouseGrabbery

lut.imaaeRanaeMinValue lutMouseGrabberxmin j

16.2. Parameter Connections Inspector
Context Menu

In the Parameter Connections Inspector, a context menu is available:

Figure 16.5. Parameter Connections Inspector Context Menu

Parameter Connections Inspector [ 4
Source Field g Destination Field

A
|Iuﬂ~‘|ouseGrabbuj |x (Float) j |Iut j |widﬁ1 (Double) j

@ (%

|Parameher Connection List

| Source Field | Destination Field |
i lut.center
l lut.ceni  Disconnect
N lutwidi  Gg Back

positiol posMouse.buttonl
= positiol EDIRIEE posMouse.button2
N pDS?EDI Show lut.width posmouse.b:.tfioﬂ

ositiol osMouse.shi
N Eositiol Show lutMouseGrabberx SosMouse.ctrI
= posMouse.buttonl position.buttonl
N posMouse.button2 position.button2
m  posMousebutton3 position.button3
Options:

» Disconnect: Disconnects the parameter connection.

» Go Back (depending on connection): Selects the parameter connection in which the current source
field is the destination field.

» Go Forward (depending on connection): Selects the parameter connection in which the current
destination field is the source field.

» Show <field>: Highlights the associated module in the network. If other Views are open, like the
Module Inspector or the Module List, it also highlights the corresponding field or module there.

For more information about the context menu of parameter connections in the network, see
Section 3.10.2.1, “Context Menu of Parameter Connections”.

147



Chapter 17. Profiling

The Profiling view generally measures time and memory consumption of modules in a network.

17.1. Introduction to Profiling

Profiling is a dynamic program analysis (as opposed to static code analysis) and is used to identify
slow functions, frequently called functions, and memory usage during runtime. Outside of MeVisLab, a
number of profilers exist: gprof, GlowCode, Valgrind, DevPartner/BoundsChecker.

The advantages of profiling in MeVisLab are:

* Network performance can be analyzed by profiling at the C++ and Python levels, with an inherent
awareness of MeVisLab entities like modules, Pagedimages, etc.

* No code recompilation is required.
» No additional programs are required, which may make profiling faster.

What can be profiled?

Figure 17.1. Functions to be Profiled

PythonQt
- C++/Qt Wrapper Functions

Inventor Binding Python
- GL Rendering Events - Imports
- Functions

- MDL Inline Scripts
- Class Definitions

MeVisLabh Profiler J

MeVisLh
- MDL Commands

- Field Notifications

ML WEM
- WEM Processing

» All ML modules offer profiling as it is implemented in the base class ni : : Mbdul e.

- handleNotification
- calculateOutputimageProperties
- calculateOutputSublmage

* WEM and CSO modules also support profiling of time consumption. However, in general, profiling of
memory consumption is not supported, as this requires the memory to be managed by the internal
memory manager of the ML. Thus, the memory managed by these modules is either not profiled at
all, or only the portions of the module that use ML methods are profiled.

» Python functions, scripts definitions, and Python Qt wrappers

148



Profiling

¢ Open Inventor bindings

« MDL commands and field notifications

Note
&

The Profiling view marks processes that use multi-threading and shows only their
accumulated time in this view. If you need detailed profiling information about each thread,
use the view described in Chapter 9, ML Parallel Processing Profiler View.

17.2. Using Profiling

In the Profiling View, the modules of networks to be profiled are listed.

» Entries have the same color as corresponding modules (brown for macros, blue for ML modules, and
green for Inventor modules).

¢ Entries are italicized if the module has been deleted (not just removed).

Figure 17.2. Profiling

¥ Enable [ Auto update Update | Reset |SaveR.eport...| Tracing... |

Time: 6.91s V¥ Show macros  Show: ICunentNetworkR.emrsively LI

MName N |Self Time | Cur. Memory | Memory | Elapsed Tl;

- View2D 5732 ms 0B (0.00%) 0B

- SoView2DOverlay 0ms 0B (0.00%) 0B

- SoView2DCS0ExtensibleEd... 0 ms 0B (0.00%) 0B

- SoGroup 0ms 0B (0.00%) 0B

-+ SoCSOEllipseEditor 0ms 0B (0.00%) 0B

[ OrthoReformat3 19.80 ms 1.26 MB (50.00%) 893.75KB

B- ml:Module 0ms 0B 0B 0ms

B Outputlmage2 19.80 ms 1.26 MB 893.75KB 2441 ms
- Qutputimagel 0ms 0B 0B 0ms
- Outputlmaged 0ms 0B 0B 0ms

H- Locallmage 0ms 0B (0.00%) 0B

E

I"lI-- CSON istContainer 1 m= 01 R 0.00%) 1] RI _ILI
a4 »
Filter: I Time Threshold: 0.000ms =] Function Filters '| Reset |

The consumption is also displayed in the network: Two vertical bars to the left of a module indicate the
percentage of memory (m) consumption and time (t) consumption of that module in the current network.

« The memory bar's color ranges from green over teal to magenta (for 0%..50%..100%).
* The CPU time bar's color ranges from green over yellow to red (for 0%..50%..100%).
That means that small green dots indicate low memory/time consumption while full magenta or red bars

indicate high memory or time consumption. The colors are chosen to make memory and time easy to
distinguish from each other.

149



Profiling

The Profiling View and the network are linked as follows:
 Clicking an entry on the Modules tab selects the module in the network (and vice versa).

» Double-clicking an entry on the Modules tab navigates to the module or, in the case of a scripting
function being counted, to the line of the scripting in MATE (this also works for modules inside macros).

Options:

« Enable: Enables the profiling and toggles the visualization of the relative time/memory consumption
of the modules.

« Auto update: Enables the automatic display of profiling results every second.

 Filters visible (Functions only): Enables the display of the filter section for function filtering, see
Figure 17.9, “Functions with Filters Visible”.

Buttons:
« Update: (Only if no auto-update is set) Updates the displayed results manually.

» Reset: Resets the list of modules and the profiling results. Memory/cache that is still in use will remain
listed in the Current Memory column.

e Save report: Generates an HTML page with reports for Modules, Call Graph, Flat Profile (for
functions), and Fields.

Figure 17.3. Profiling Report

Profiling Report: profilingReport

Di 16. Feb 14:47:44 2016

Modules Call Graph Flat Profile Fields

Name Tipe Elapeed Time Self Time Time In Children Min Time Max Time Cur. Memory Memorv  Count
+Viewl2D View2D (Macro Module) 37.32ms 0B (0.00%) 0B

DOverlay So

+5 ator Module) Oms 0B

S DCSOExtensibleEditor  SoVi 1bleEditor (Inventor Module) Oms 0B
SoGroup SoGroup fule) Oms
SoCS0EllipseEditor SoCSOEIL or (] 1 Module) 0ms
+0OrthoReformat3 OrthoReformat3 (ML 19.80 ms 15KB
+Locallmage Locallmag ro Module) Oms
+CE0ListContainer CSO0ListContainer (ML Module) Oms 0
+C80ConvertTolmage CSOConvertTolmage (ML Module) 1564 ms 1.26 MB (30.00%) 126 MB

17.2.1. Modules

On the Modules tab, the modules and their profiling information are listed. When hovering over the
headings, a context-sensitive tooltip is displayed for each.

Options:

* Show macros: If enabled, it shows information about macros in the network and modules inside the
macro as a tree. If disabled, the information is presented flat, without the macros.

» Show: Defines which networks and depths should be profiled:

150



Profiling

Figure 17.4. Profiling Modules

Profiling =
[v¥ Enable [+ Auto update Update | Reset | Save Report... | Tradng... |
Modules ] Fields ] Functions ]
Time: 6,96 5 [v¥ show macros  Show: |Current Metwork Recursively |+
Current Network
Name | self Time [ Cur. Memory
- View2D 5732ms  0B(000%)  -AlNetworksReausively
+- SoView2DOverlay 0 ms 0B (0.00%) 0B
SoView2DCS0ExtensibleEd... 0 ms 0B (0.00%) 0B
SoGroup 0 ms 0B (0.00%) 0B
SoCSOElipseEditor 0 ms 0B (0.00%) 0B
-t OrthoReformat3 19.80 ms 1.26 MB (50.00%) 89375 KB
= ml:Module 0ms 0B 0B 0ms
+- Qutputlmage? 19.80 ms 1.26 MB 893.75KB 2441 ms
+- Qutputlmagel 0ms 0B 0B 0ms
+- Qutputlmaged 0ms 0B 0B 0ms
+- Locallmage 0 ms 0B (0.00%) 0B
+| CSON istContainer 1 m= 01 R 0.00%) 1] R| Jj |I
4 3
Filter: Time Threshold: 0.000ms =] Function Filters ~ Reset |

Right-clicking the headings opens a context menu where the columns to be displayed can be configured.

Figure 17.5. Profiling — Heading Configuration

Prefiling

el

[v¥ Enable [+ Auto update Update | Reset | SaveReport...| Tradng... |

Modules ] Fields ] Functions ]

Time: 6,96 5 [v¥ show macros  Show: |Current Metwork Recursively j
| Colé Timmg | Cur. Memory | Memory | Elapsed T|L
. @ Tips 0B (0.00%) 0B
+- SoView2DOver X 0B (0.00%) 0B
SoView2DCS0t ¥ Elapsed Time 0B (0.00%) 0B
SoGroup v Self Time 0B (0.00%) 0B
SoCSOEllipseE: . . 0B (0.00%) 0B
= OrthoReformat ¥ 1 1n Children 1.26 MB (50.00%)  893.75 KB
= ml:Module  Min. Time 0B 0B 0ms
#- Output  pax. Time 1.26 MB 89375KE 2441 ms
+- Qutput 0B 0B 0ms |
#- Qutput o Cyr. Memary 0B 0B 0ms
+- Locallmage 0B (0.00%) 0B
4. CSOlistCantai ¥ Memory 0 R 0.00%) n n| ﬁ |
4 »
v Count

Filter: Time Threshold: 0.000ms 3: Function Filters =

» Type: Shows the type of the module.

» Elapsed Time: Shows the total time spent in the profiled routines (the sum of self-time and time in
children).

» Self Time: Shows the time spent only in routines of the module.

» Time In Children: Shows the time spent in routines called by the module.

* Min. Time: Shows the minimum measured total time.

* Max. Time: Shows the maximum measured total time.

» Cur. Memory: Shows the memory currently allocated by the module.

* Memory: Shows the total accumulated memory allocated by the module to ML pages during profiling.

» Count: Shows a counter of method calls. Expand a module's node to see the details; for example, the
calls to cal cul at eQut put | magePr operti es and to cal cul at eQut put Subl nage are counted, Page

151



Profiling

17.2.2. Fields

On the Fields tab, all fields that have been touched at least once are listed here.

 Name Shows the field name.

e Type : Shows the field type.

» #: Shows the number of field triggers (notifications).

Figure 17.6. Profiling Fields

Cache hits and misses are counted, and calls to scripting methods are counted. On mouse-over,
details are displayed.

Prefiling @
[v¥ Enable [+ Auto update Update | Reset | Save Report... | Tradng... |

Modules Fields Functions ]

Show: <

MName |Type |# -

View2D.startSlice Integer EEN

View2D.plane Plane EEN

View2D.lutWidth Double 67

View2D.lutCenter Double 66

CSOConvertTolmage.progress Float 19

CSOConvertTolmage.isProcessing Bool 2

SoView2DOverlay.image Image 1

CSOConvertTolmage.output( Image 1

CSOConvertTolmage.outputXMarkerList MLBase 1

CSOConvertTolmage.apply Trigger 1

CSOConvertTolmage.done Trigger 1

CSOConvertTolmage.startVoxelBoundingBox Vector3 1

C50ConvertTolmage.endVoxelBoundingBox  Vector3 1 j
Filter: Time Threshold: 0.000ms |  Function Filters ~ Reset |

17.2.3. Functions

On the Functions tab, all functions that have been called at least once are listed here.

Right-clicking the headings opens a context menu where the displayed columns can be configured.

Two display options are available under Select view:

Elapsed Time Per Call: Shows the time spent per call.

Type: Shows the function type. The possible types are listed under the Function filters button.

Elapsed Time: Shows the total time spent in the profiled functions (the sum of self-time and time
in children).

Self Time: Shows the total time spent only in functions of the module.
Self Time Per Call: Shows the time spent in functions of the module per call.
Time In Children: Shows the time spent in routines called by the module.

Calls: Shows the total number of calls for this function (only in Flat Profile view).

» Flat Profile: Shows the functions in a flat list. No hierarchy/dependency is visible. Calls of the same

function are automatically bundled and summed up.

152



Profiling

Figure 17.7. Profiling Functions as Flat Profile

Profiling =

[v¥ Enable [+ Auto update Update | Reset | Save Report... | Tradng... |
Modules ] Fields Functions ]

[v¥ Combine call stacks [~ Verbose Inventor profiling Select view: |FlatProfile -
Function |Type | Elapsed Time | Self Time | SeIfTimt| Time In Clﬂ
2 extlutGrayWidth Field Notification 0 ms 0ms 0ms 0ms
# extAppCmdCh... Python Function 0ms 0ms 0ms 0ms
GL GL Render GL Rendering Event 162 s 160s 272ms 1941 ms e
#  groupsSelectio... Python Function 0ms 0ms 0ms 0ms
# indexlistClicked Python Function 3.713ms 0ms 0ms 314 ms
# initListitems Python Function 263 ms 157ms 157ms 106 ms
& initWindow Python Function 2061 ms 167ms 167ms 1894 ms
‘;i; Inventor.proces.. C++ Function 687s M 5215 653ms 167s
2% lutalphaCenter  Field Notification 0 ms 0ms 0ms 0ms
£ lutalphaWidth  Field Notification 0 ms 0ms 0ms 0ms
‘_'-3—3 lut.center Field Motification ~ 15.00 ms 615 ms 0ms 885ms T
4 »

Filter: Time Threshold: 0.000ms 3: Function Filters = Reset |

» Call Graph: Shows the functions in the hierarchy they were called in. In the case of types that should
be not be displayed due to filtering, these types may still appear if the functions to be displayed are
below them in the hierarchy.

Figure 17.8. Profiling Functions as Call Graph

Prefiling @
[v¥ Enable [+ Auto update Update | Reset | Save Report... | Tradng... |
Modules ] Fields Functions ]
[v¥ Combine call stacks [~ Verbose Inventor profiling Select view: |Call Graph -
Function |Type | Elapse| Elapse| Self Ti| Sﬂ
# 13MLABPreferences <module> Python Fu.. Oms Oms Oms 0
+#- & C50ConvertTolmage.apply Field Noti.. 578.. 578.. Oms 0
-+ GL GL Render GL Render.. 189.. 947.. 184.. QJ
i CSOConvertTolmage::calculateOutp... ML Functi.. Oms Oms Oms 0
= faf C50ConvertTolmage:getTile() ML Functi.. Oms Oms Oms 0
i CSOConvertTolmage:calculateO.. MLFuncti.. Oms Oms Oms 0
‘_ﬁ; OrthoReformat3:getTile() ML Functi.. Oms Oms Oms 0
= ‘;i; Inventor.processDelayQueue C++ Func... 68780362.. 5218 6
+#- & annoReadPixintegerPosition Field Noti.. 3.09.. Oms 275.. 0
2 annoReadPix.outputValue Field Noti.. Oms Oms Oms 0
2 annoReadPix.outputValueString Field Noti.. Oms Oms Oms 0¥
4| | »
Filter: Time Threshold: 0.000ms |  Function Filters ~ Reset |

Double-clicking a function navigates to the module the function is called in, even if it is in the network
of a macro module.

The option Reduce call graph (resets profiling) combines all calls of the same function to one entry
in the call graph list.

153



Profiling

Figure 17.9. Functions with Filters Visible

Profiling =
[v¥ Enable [+ Auto update Update | Reset | Save Report...| Tradng... |
Modules ] Fields Functions ]
[v¥ Combine call stacks [~ Verbose Inventor profiling Select view: |Call Graph -
Function |Type | Elapse| Elapse| Self Ti| Sﬂ
# 13MLABPreferences <module> Python Fu.. Oms Oms Oms 0
+#- & C50ConvertTolmage.apply Field Noti.. 578.. 578.. Oms 0
-+ GL GL Render GL Render.. 189.. 947.. 184.. 9
i CSOConvertTolmage::calculateOutp... ML Functi.. Oms Oms Oms 0
= CSOConvertTolmage:getTile() ML Functi.. Oms Oms Oms 0
i CSOConvertTolmage:calculateO.. MLFuncti.. Oms Oms Oms 0
‘_ﬁ; OrthoReformat3:getTile() ML Functi.. Oms Oms Oms 0
= ‘;i; Inventor.processDelayQueue C++ Func... 68780362.. 5218 6
+ ‘_'-2—3 annoReadPix.integerPosition Field Moti.. 309.. 0ms 275..0
2 annoReadPix.outputValue Field Noti.. Oms Oms Oms 0
2 annoReadPix.outputValueString Field Noti.. Oms Oms Oms 0¥
4| | »
Filter: Time Threshold: 0.000ms 3: Function Filters = Reset
v C++ Function
v Field Motification
v GL Rendering Event
v MDL Command
v ML Function
v ML WEM Function
v Main Function
v Python Function
v Python Qt Function

When Filters visible is selected, the functions filter options are displayed.
Options:
* Filter: A text field where the filter text can be entered.

e Time Threshold: Sets a value below which the row is filtered, making more time-consuming functions
more visible.

Buttons:

» Function Filters: Opens a list of all function types to filter which types should be displayed. Checked
types are shown.

» Reset: Deletes entries in Filter and Time threshold, and resets the Function filters so that all types
are listed again.

The function types have different icons in the list:

Table 17.1. Function Type Icons

Type Icon
ML call (typically ML image) i
ML WEM call &
Field call (Field notification) =
Python call e
Python Qt call &
Open GL call GL

Some special functions:

154



Profiling

main: Pseudo function that is active when profiling is enabled.
__tmpScriptHandler: Generated Python functions for MDL inline code (“py:some python code”).
ScriptFile <inline script definition>: Definition of inline script functions.

PyModuleName <module>: Code executed at the Python module level, which is not contained within
any function; typically invoked when importing Python modules.

<python qt wrapper>: PythonQt wrappers of Qt functions.

155



Chapter 18. Recent Outputs

The Recent Outputs view displays a list of the recently selected input or output connectors. If the
module with the listed connector is removed from the network, its connector is also removed from the
list. The most recently clicked connector is sorted to the top.

Each list entry features the context menu of the connector. A list entry in the view can be selected; the
content of the selected item is shown in the Chapter 15, Output Inspector if that view is open. Selecting
an item does not make it the most recent, so that the list is not re-sorted on selecting an entry.

Figure 18.1. Recent Outputs

Recent Outputs [ 4
Threshold.outputd Image size: 109,91,80,1,1,1 unsigned int8
GVRImageToVolume.outVolume MLBase GVRVolume
WEMIsoSurface.outWEM MLBase WEM
SoView2DOverlay.self SoMNode SoView2DOverlay

156



Chapter 19. Screenshot Gallery
19.1. Screenshot Gallery

The Screenshot Gallery maintains the screenshots and movies made with MeVisLab's viewers. The
screenshot gallery offers a preview of all screenshots and movies, as well as options to show an enlarged
version, and to copy, rename, or delete a screenshot or movie.

For showing movies, additional video software may be necessary.

Figure 19.1. Screenshot Gallery

Screenshot Gallery [ 4

3= i

View2D...  View2D..

View2DWithOverlay

To capture a screenshot, select any viewer and press F11. A thumbnail of the screenshot is added to
the gallery.

For each screenshot, two files are saved locally in . png format:
» animage file in
$USERPATH\ scr eenshot s\ scr eenshot _<Mddul eNane>_<nunber >. png
* athumbnail file in
$USERPATH\ scr eenshot s\ scr eenshot _<Mddul eNane>_<nunber >. png. t hunb. png.

The path for screenshots can be changed in the Preferences; see Section 4.3.5, “Preferences — Paths”.

To view a larger version of the screenshot, click on it. The screenshot is displayed below the gallery,
and its displayed size depends on the available space.

19.2. Screenshot Gallery Context Menu

In the Screenshot Gallery, a context menu is available. To open it, right-click the thumbnail.

157



Screenshot Gallery

Figure 19.2. Screenshot Gallery Context Menu

Screenshot Gallery [ 4

) = CE

Open In External Viewer

m  Show Enclosing Folder
Copy Image To Clipboard
Save As

Delete Selected Screenshots

Show All Screenshots

Show Recent Screenshots

Open In External Viewer: Opens the selected screenshot in the default viewer for . png format or the
selected movie in the default player for the video format (the viewer can be set in the Preferences, see
Section 4.3.4, “Preferences — Supportive Programs”). Alternatively, double-click the thumbnail.

Copy To Clipboard: Copies the screenshot or movie to the clipboard.
Save As: Saves the screenshot or movie under another name and path.

Delete Selected Screenshots: Deletes the selected screenshots and movies from the hard drive. To
select more than one screenshot, use the platform's standard features. (For example, on Windows use
SHIFT+click for selecting continuous and CTRL+click for selecting multiple screenshots.)

Show All Screenshots: Shows all screenshots and movies that are saved in the mevislabscreenshots
folder.

Show Recent Screenshots: Shows all screenshots and movies of the current day.

19.3. Movies in the Screenshot Gallery

To add movies, a module that supports a movie output must be available. For 2D, movies can be
recorded by moving through slices (for example in the CineMode of the Vi ew2D module) in combination
with a Viewer.

For a 3D example, open the Syncr oVi en2DExanpl e network, add the Vi ewdD module and connect it
with an Or t hoRef or mat 3 connector. Open the panel of the Vi en3D module and click the Advanced tab
to find the movie recording settings. Record a movie and then click Create Movie so that the output
is generated.

Movies are saved in the same folder as screenshots, as nmovi e_<nane>_<nunber >. <vi deof or mat > and
screenshot _<nane>_<nunber >, <vi deof or mat >. t hunb. png.

The final result will be displayed as a thumbnail in the Screenshot Gallery with a video symbol in the
top left corner. Click on it once for a small preview in the gallery or double-click on it to open it in a video
viewer (for example, Windows Media or Quicktime player).

158



Chapter 20. Scripting Console

General scripting console for testing Python without any meaningful network or module context.

If you want to test scripting in the context of a certain module, either use the Section 4.7.1, “Show
Scripting Console” or open a scripting console from the module's context menu (Section 3.9.1, “Module

Context Menu”).

159



Chapter 21. Scripting Assistant

The Scripting Assistant is a useful tool that translates actions (like (dis-)connecting modules or
parameter fields, setting parameter values) into the corresponding scripting commands.

Figure 21.1. Scripting Editor

Scripting Assistant [ 4
Shows scripting equivalents to user actions:

™ Auto-paste to pasteboard

chx. field("WEMIsoSurface.input0”). connectFrom{ctx. field{"Locallmage. outimage 7))
chx. field("WEMIsoSurface.input0”). disconnect()

Auto-paste to clipboard: If selected, the Python code generated from an interaction in the network is
automatically pasted to the clipboard, ready to be used in other editors.

160



Chapter 22. Search in Network

Searches for a specified named item in the current network. Optionally, the search is applied recursively
so that it also searches in macro modules.

Figure 22.1. Scripting Editor

Search in Network 5 x
v |Module Instance Name j |contains j | oy lut
Search ¥ Search recursively ﬂj
Modules found: 15
MName |Type | Location Info |
= View3D View3D toplevel
uselutEditor SoToggle View3D
SoMLLUT SoMLLUT View3D
SolUTEditor SoLUTEditor View3D
RampLUT RampLUT View3D
invPreLUTIn SoGroup View3D
invPostLUTIn SoGroup View3D
ChangelUTColor ChangelUTColor  View3D
= View2D View2D toplevel
invPreLUTIn SoGroup View2D
invPostLUTIn SoGroup View2D
=} ext View2DExtensions View2D
SoMLLUT SoMLLUT View2D/ext
lutToggle SoToggle View2D/ext
lutRescale VoxelValueRescale View2D/ext
lutMouseGrabber SoMouseGrabber View2D/ext
lutColor ChangelUTColor View2D/ext
lut RampLUT View2D/ext

A listed item has a context menu. Its first entry is an option to show the item in the network. If chosen,
the network is opened, the module is highlighted, and the highlighted module is centered. Alternatively,
a listed item can just be double-clicked to highlight and show it.

Figure 22.2. Scripting Editor

uselutEditor

SolUTEditor

SoToggle

SoLUTEditor

View3D
AN

Vi Show Module In Network

Search in Network 5 x
v |Module Instance Name j |contains j | oy lut
Search ¥ Search recursively ﬂj
Modules found: 15
MName |Type | Location Info |
= View3D View3D toplevel

RampLUT RampLUT Vin
invPreLUTIn SoGroup Vi LisiaEmiEilize D
invPostLUTIn SoGroup View3D
ChangelUTColor ChangelUTColor  View3D
= View2D View2D toplevel
invPreLUTIn SoGroup View2D
invPostLUTIn SoGroup View2D
= ext View2DExtensions View2D
SoMLLUT SoMLLUT View2D/ext
lutToggle SoToggle View2D/ext
lutRescale VoxelValueRescale View2D/ext

lutMouseGrabber SoMouseGrabber View2D/ext
lutColor ChangelUTColor View2D/ext
lut RampLUT View2D/ext

This search can look for different kinds of items. For some options, additional choices are available.
* Module Type: searches in the modules' type strings

* Module Tag: searches in the modules' meta tags

* Module Instance Name: searches in the modules' instance name

» Module Definition Tree: searches in the modules' definition tree for a tag with the given value

161



Search in Network

Field Name: searches in the fields' names

Field Value: searches in the fields' values

Script Function: searches in the (Python) scripting functions

Script File Content: searches in the modules' GUI definition files

Figure 22.3. Scripting Editor

Search in Network 5 x

v |Module Instance Name |+ |contains j | s lut
Module Type

__ Module Tag FVE'YL‘\’ ﬂ j
.

¢ Module Definition Tree
Mz :::g t‘:ﬁ: |T?,rpe | Location Info |
| Seript Function View3D toplevel
Script File Content SoToggle View3D
~ SoMLLUT SoMLLUT View3D
SolUTEditor SoLUTEditor View3D
Ramnl UT Ramnl LIT View3n

162



Chapter 23. Search in Documentation

With the Search in Documentation View, the documentation of MeVisLab can be searched (including
all Doxygen references, all DocBook books, the Openlinventor reference, Python, and NumPy). The
search starts immediately with each entered key (incremental search).

Note

As the index is read upon calling the search for the first time, the first search might take
longer than expected. Further searches are fast.

Figure 23.1. Search in Documentation

Search in Documentation 5 x
| field
Entries found: 500 (truncated)
Title Document -
|
MLABModule.field

Scripting Reference (Python)
MDL (Panel/GUI) Reference
MDL (Panel/GUI) Reference

mdl.Accel field
mdl.Menultem.field

numpy.recarray.field NumPy1.6.2

Field The ML Guide
SoMotRec.FIELD Open Inventor Reference
mdl.Field MDL (Panel/GUI) Reference
ml.Field ToolBox Reference
ml.Field.Field

ToolBox Reference

MeVisLab Resolution Independence API
MeVisLab Resolution Independence API
Scripting Reference (Python)

Open Inventor Reference

Open Inventor Reference

Open Inventor Reference j

FieldSyncEntry.fieldSensor
FieldSyncEntry.fieldSensorCB
MLABSqIQuery.fieldNames
SoCenterballDraggerfieldSensorCB
SoCenterballManip fieldSensorCB
SoDirectionalLightDraggerfieldSensorCB

Click the entry to open the linked documentation in a browser window.

The search works case-insensitive. However, correct spelling is preferred, as different best match results
will be obtained for “field” and “Field”.

The search is index-based. When using a local repository, the documentation needs to be built locally
to generate the index databases.

Note

Selections in the Search in Documentation View are persistent and set as the default the
next time the View is used.

See the following example screenshots for some possible search terms:

Figure 23.2. Search in Documentation — ML Example

Search in Documentation 5 x

| ml::Module: :cal
Entries found: 5

Title
ml.Module.calculatelnputSublmageBox

ml.Module.calculateQutputSublmage

ml.Module.calculateQutputimageProperties

ml.Module. CALC_OUTSUBIMAGE_OMN_ALL ...
ml.Module. CALC_OUTSUBIMAGE_OMN_STD_...

Document

ToclBox Reference
ToolBox Reference
ToolBox Reference
ToolBox Reference
ToolBox Reference

163



Search in Documentation

Figure 23.3. Search in Documentation — MDL Example

Search in Documentation 5 x

I mdl.Button|
Entries found: 40

Title

mdl.Button

Document
MDL (Panel/GUI) Reference

mdl.Button.accel
mdl.Button.activeOfflmage
mdl.Button.activeOnlmage
mdl.Button.autoRepeat
mdl.Button.border
mdl.Button.command
mdl.Button.disabledOfflmage
mdl.Button.disabledOnlmage
mdl.Button.fieldDragging
mdl.Button.globalStop
mdl.Button.image
mdl.Button.normal Offimage
mdl.Button.normalOnlmage
mdl.Button.popupMenu

MDL (Panel/GUI) Reference
MDL (Panel/GUI) Reference
MDL (Panel/GUI) Reference
MDL (Panel/GUI) Reference
MDL (Panel/GUI) Reference
MDL (Panel/GUI) Reference
MDL (Panel/GUI) Reference
MDL (Panel/GUI) Reference
MDL (Panel/GUI) Reference
MDL (Panel/GUI) Reference
MDL (Panel/GUI) Reference
MDL (Panel/GUI) Reference
MDL (Panel/GUI) Reference
MDL (Panel/GUI) Reference

|~ |

Figure 23.4. Search in Documentation — Python Example

Search in Documentation 5 x

I os.path
Entries found: 35

Title

Document

os.path.abspath
os.path.basename
os.path.commonprefix
os.path.dirname
os.path.exists
os.path.expanduser
os.path.expandvars
os.path.getatime
os.path.getctime
os.path.getmtime
os.path.getsize
os.path.isabs
os.path.isdir
os.path.isfile

Python 2.7.9
Python 2.7.9
Python 2.7.9
Python 2.7.9
Python 2.7.9
Python 2.7.9
Python 2.7.9
Python 2.7.9
Python 2.7.9
Python 2.7.9
Python 2.7.9
Python 2.7.9
Python 2.7.9
Python 2.7.9

164



Chapter 24. Full-text Search in
Documentation

The installer of MeVisLab is shipped with index files of all available HTML pages, so that users can
perform a full-text search in the documentation.

Index files for wuser-editable packages <can be generated with the module
I ndexUser PackagesHTMLFi | es. These files can be regenerated with that module as often as necessary,
for example, after each update of the user's documentation.

Selecting Full-text Search In Documentation... or pressing CTRL+SHIFT+F opens a panel that
provides a full-text search in MeVisLab's documentation and module help pages.

165



Full-text Search
in Documentation

Figure 24.1. Full-text Search in Documentation Window

Query: |region growing Search Mumber of re
Score PackageGroup Package Title

67,3737 MeVisLab Standard RegionGrowing — Module help

44 0206 MeVisLab Standard RegionGrowinghacro — Module help

15,4323 MeVisLab Resources Chapter 6. Excursion: Functionality Overview

15,4323 MeVisLab Resources 1.3. ML Classes - Overview

The full-text search supports boolean and compound search queries. If single words separated by
SPACE are given, the search concatenates the words implicitly with AND. If multiple words are given
enclosed in quotes, the search will look for the exact phrase. Boolean operators AND, OR, and NOT
can be used, as well as brackets.

Compound and boolean operators can be mixed:
 "region growing" AND value
» compute AND NOT (time OR space)

Clicking the cog icon opens a modal dialog where the suggestions feature and the maximum number
of results can be adjusted.

The settings are saved per user when changed.

166



Full-text Search
in Documentation

Figure 24.2. Full-text Search Settings

U
[ Enable suggestions
Min. query length to start suggestions: | 1

Max. number of results: 100

» Enable suggestions: On typing a minimum number of characters, a list of suggestions is shown.

* Min. length query to start suggestions: Sets the minimum number of characters that must be typed
in before the search suggests a query.

» Max. number of results: Sets the maximum number of displayed search results.
Tip
When using a compound phrase, it is recommended to turn off suggestions.

If the query term is found, a number of results are displayed. Each result includes a score, a package
group, a package, and a title. Click on any header to sort the list of results by that criterion.

Hovering over a result displays a tooltip with context.

Double-clicking a result opens a simple HTML browser with the corresponding HTML page. The search
term is highlighted where possible on that page, and all previously folded sections are expanded.

167



Full-text Search

in Documentation

Figure 24.3. Full-text Search Results Browser

6 FullTextSearchinDocumentationBrowser

URL: I Ci/Program Files/MeVisLab4.0,70/Packages/MeVisLab/Standard/Documentation/Publish/ModuleReference/Re

Query: Iregion growing

Table of Contents

RegionGrowing

Purpose

Usage

Details

Tips

Windows

« Default Panel

Input Fields

s inputd

» inMarkerList

Output Fields

= output0

= output

Parameter Fields

« Field Index

« Visible Fields

« Module Status

Abort

Update

Clear

Update Mode

Lower Threshold

Upper Threshold

Automatic (based

on average seed

value and

threshold interval

size)

¢ Neighborhood
Relation

« Extended
MNeighborhood
Type

& |Jse additional
seed point

¢« Position

s Type

o o o0 0 0 0 0

‘ RegionGrowing

MLModule
genre Region
author MeVis Medical Solutions AG
package MeVisLab/Standard
dll ML5Segmentation
definition MLSegmentation. def
see also  RegionGrowingMacro, Draw3D
keywords segmentation, fill, 3D, 4D, thresholding
Purpose
The module RegionGrowing implements fast a threshold i
algorithm.
Usage

Specify a threshold interval and at least one seed point befo

Details

Starting with all seed points, the module segments all voxels

1. connected regarding the selected neighborhood relatic
2_within the specified threshold interval [Lower Threshols

g P

168



Chapter 25. Snippets List

The Snippets List View allows reusing often used modules and network snippets. Unlike the normal
copy and paste of selections, the snippets are saved and available in future sessions.

Figure 25.1. Snippets List

Snippets List g x |

= %

CSOBase  Big Network Groups

To add modules or networks from the workspace to the snippet list, select them, right-click, and choose
Add Selection To Snippets List from the context menu. Enter a snippet name and click OK to save
the snippet.

To add snippets to a network, either double-click the thumbnail to insert the snippet in the middle of the
workspace, or drag the thumbnail from the snippets list to the designated position.

The context menu offers the following options:

* Rename: Opens a dialog to rename the snippet.

* Delete: Deletes the snippet (with confirmation).

» Open Enclosing Folder: Opens the folder where the snippets are stored.

» Delete All: Deletes all snippets (with confirmation).

» Size: Sets the thumbnail size for all snippet thumbnails (small, medium, or large).

Figure 25.2. Snippets List — Context Menu

Snippets List [ 4

B W
[ csog]

Rename

Delete
Show Enclosing Folder

Delete All

—
]

Size L4

Multiple snippets can be de-/selected by selecting snippets while holding SHIFT
All selected snippets can be deselected by pressing ESC.

The snippets can be re-arranged by dragging them. Note that a dropped snippet will either be inserted
as the first or as the last element; snippets cannot be inserted by dropping between other snippets.

169



Chapter 26. Project Wizard
26.1. Project Wizard Introduction

With the project wizard, packages, and modules can be created and added to the MeVisLab packages
and module database.

. Note
As user packages are necessary to save new modules, all options except for New Package
are disabled when first using the Project Wizard.

Figure 26.1. Project Wizard (no user packages available)

3 Project Wizard Menu - O *

Select a wizard:

Modules (C++) Creates a new Package
Inventor Module
ML Algorithm Module
ML Module
Modules (Scripting)
Algorithm Macro Module
Macro Module

Packages

Information

Please create a new Package to enable the
wizards that require a target package.

Load Previous Wizard Setting...| Run Wizard| Close |

Figure 26.2. Project Wizard (with user packages available)

3 Project Wizard Menu - O *

Select a wizard:

Modules (C++) Specialized ML module with predefined control and
Inventor Module status field interface
ML Algorithm Module
ML Module

Modules (Scripting)
Algorithm Macro Module
Macro Module

Packages
New Package

Load Previous Wizard Setting... Run Wizard Close

170



Project Wizard

The following can be created:

* Programmed Modules: Inventor, ML modules, and Algorithm module

* Modules (Scripting): macro modules and algorithm macro modules for bundling modules and script
files

» Packages: for organizing modules in a package structure

26.2. Modules (C++) Wizard
Tip
For details on using the C++ module creation wizard, see the Getting Started, chapter
“Developing ML Modules”.

The Wizards for programmed modules of the type Inventor, ML, and WEM module start rather similar,
with a first dialog on which the name, package and other descriptors are added.

The Wizard leads through the creation process. Move between the dialogs with Back and Next. The
settings can be saved at any point as . wi z file via Save Setting.

Please refer to the Getting Started document for a complete list of the files that are generated by the
wizard.

. Note
After module creation, the module database has to be reloaded before the new module can
be used in a network.

26.2.1. First C++ Module Wizard Dialog

Figure 26.3. First C++ Module Wizard Dialog — ML Module Example

([ Modules (C++)/ML Module ol oo |
Module Properties

Enter the general properties of the module.

General Module Properties

Name: * |MLCurveFitSpeciaI Author: * | 1Doe

Comment: |Specia| curve fit

Keywords: |sm00th average least squares

See Also: |Cur\reFiIter

Genre: |Diagram Choose | ™ Add reference to example network
Group: | j (Default module group)

Select Target Package

Package: * |MyOwnPackageGroup,-’GeneraI j

Project Properties

Directory Structure: |Classic =
Project: * |MLCur\reFitSpeciaI| Prefix: ML Select

¥ Include project files

* : Required fields

< Back Next = Create Save Setting Close

171



Project Wizard

Name

Enter the <ModuleName> here. It must be a uniqgue name within the MeVisLab module database

(including the SDK module database).

Author, Comment, Keywords, See Also, Genre:

Enter descriptors to classify the module within the MeVisLab module database. Author, comment, and
genre are mandatory entries. See the descriptions of existing modules for inspiration of what to enter
here. Errors in the descriptions will be displayed in the Debug Output upon loading the module database.

Add reference to example network

If selected, an empty example network <Mbdul eName>Exanpl e. nl ab is created, which may be edited
later (optional). It is recommended that each module should be completed by an example network to

explain its function and usage in an exemplary application.

Select Target Package

Sets the Package for the module project. Select one from the list. For more information on Packages,

see Section 26.5, “Packages”.

Project Properties

Directory Structure

» Classic: the project files are separated into Sources and Modules folders

» Self-contained: all project files are located in one self-contained folder that makes it easy to move

and exchange the entire folder

Figure 26.4. Create an ML Module in a Self-contained Folder

r B

Module Properties

Enter the general properties of the module.

General Module Properties

Name: * |MLCur\reFitSpeciaI Author: * | 1Doe

Comment: |Specia| curve fit

|| | Keywords: |sm00th average least squares

See Also: |Cun.reFiIter

Genre: |Diagram Choose | ™ Add reference to example network

Group: | j (Default module group)

Select Target Package

Package: * |MyOwnPackageGroup,"GeneraI j

Project Properties
Directory Structure: =

Project: * | MLCurveFitSpecial Prefix: ML

Project Path: * |Pr0jects Browse

¥ Include project files

* : Required fields

‘! < Back Next = Create Save Setting Close | \!l

172



Project Wizard

Select

Allows adding the project to an already existing ML project within the selected Target Package. The
selected project name is inserted in the field Project.

If working without a license file, the project prefix receives a leading underscore, for example, “ ML".

Include project files

If selected, the following C++ files are also created (in addition to the files listed above):
CMakelLi st s. t xt, <Mbdul eName>Syst em h, <Mbdul eNanme>I ni t . h, <Modul eNane>I ni t. cpp.

Click Next for the next screen, which is specific for each module type available in the Wizard.

26.2.2. Inventor Module

For the first dialog, see Section 26.2.1, “First C++ Module Wizard Dialog”.

Figure 26.5. Inventor Type

7 Modules (C++)/Inventor Module E@éj

Module Type

Select the type of the module to create.
Module Type

+ SoShape

" SoGroup

" SoSeparator

" SoNode

" SoView2DExtension

Properties
I~ Add NodeSensor [~ Example code
[~ Verbose comments

Info

Creates an Inventor Shape.
The virtual defs for GLRender, computeBBox, handleEvent, etc. are provided.

< Back | Next = | Create | Sa\.reSetting| Close |

The Open Inventor module has to be assigned a module type. Select a type to see additional comments
in the Info area.

* SoShape: Creates an Inventor shape, representing a geometric object, for example, cones, spheres,
cubes and alike. Functions for GLRender, handleEvent, etc., are provided.

e SoGroup: Creates an Inventor group, which provides a dynamic number of inputs.

e SoSeparator: Creates an Inventor separator. In addition to a SoGroup, the OpenGL state is pushed
and popped.

* SoNode: Creates a basic Inventor node.

» SoView2DExtension: Creates a View2D extension, which renders in Open GL on a 2D viewer and
processes user interaction (mouse, keyboard).

173



Project Wizard

» Add Node Sensor: Adds a SoNodeSensor that will trigger on any field changes and thus allows for
user interaction. The necessary code is provided to fill in the gaps.

» Verbose comments: Adds verbose comments that you might want to add when first trying out this
Wizard.

« Example code: Adds additional example source code.

e Has group inputs: (not for all Open Inventor module variants): Sets whether the MeVisLab GUI
allows multiple SoNode inputs.

Click Next for the next screen, see Section 26.4, “Module Field Interface”,

26.2.3. ML Module

ML modules generate compilable C++ code and platform-dependent project files to implement a new
image processing template module in MeVisLab. Define the number of image inputs and outputs of the
module as well as module parameters (fields). After compilation and reloading of the module database

via Extras —» Reload Module Database (Clear Cache), you can create the new module on your network
document. If you created the module in an existing Project (DLL) you may have to restart MeVisLab

(use File —» Restart With Current Networks).

‘ Note
The properties available in this dialog are also described in the ML Guide, chapter “Deriving
Your Own Module From Module”. The Project Wizard simply makes it easier to implement
these methods.

Two implementation styles of ML modules are available, new and classic. The difference is that
in the classic ML style, the standard assumption was that input and output image were of the
same data type, and changes to the data type had to be programmed manually. In the code, this
was done via Tenpl at e that had the data type as parameter, and during compilation, the function
M__Cal cul at eQut put Subl mage was compiled as a routine for all data types.

In contrast to this, the new style ML module does not use the Tenpl at e mechanism but uses handler
classes for the input/output routine. The wizard supports the handling configuration already in the GUI.

For the first dialog, see Section 26.2.1, “First C++ Module Wizard Dialog”.

174



Project Wizard

26.2.3.1. ML Module (New Style)

Figure 26.6. Imaging Module Properties (New Style)

r B

Imaging Module Properties ‘
Enter imaging properties of the module.

~Module Type
& MNew style ML module

" Classic ML module

—~Number of Input/Output Images
Inputs: I 2 3:_ Outputs: I 1 3:_
~Configuration of Input/Output Types

Image |Hand|ing |Reference Type Support
Output Image Input Image 0
Input Sublmage 0  uses same data type as  Output Image
Input Sublmage 1  uses same data type as  Output Image

Current setup uses 1 variable type.

~Image Processing Methods
v Add calculateInputSubImageBox()
[v Add voxel loop to calculateOutputSubImage()

< Back | Next = Create Save Setting Close

Number of Input/Output Images
Inputs, Outputs: Sets the number of image processing inputs and outputs.
The handling of the datatypes of output and input image is done in via the drop-down lists in the window.

In the following figures, the number of Inputs is set to two so that the extended Handling and Reference
options are better visible.

Figure 26.7. New Style ML Module

Configuration of Input/Output Types

Image |Hand|ing |Reference |T',rpe Support
Output Image |uses data tvoe of 7l Input Image 0 all scalar types
Input Sublmage 0 uses fixed data type Output Image

Input Sublmage 1 [IEEREI GRS Output Image

Two options are available for the handling of the output image:

» uses fixed data type: Sets the output data type to a fixed format that has to be entered in the column
Type Support, see Figure 26.8, “New Style ML Module — Uses Fixed Data type ".

175



Project Wizard

Figure 26.8. New Style ML Module — Uses Fixed Data type

Configuration of Input/Output Types

Image |Hand|ing |Reference |T',rpe Support |

Output Image uses fixed data type |double l},
Input Sublmage 0  uses same data type as  Output Image unsigned int32
Input Sublmage 1  uses same data type as  Output Image unsigned int16
float
unsigned int64
int32
intl6
unsigned int8
intd
Current setup uses no variable types. int64

» uses data type of: Sets the output datatype to the same format as the selected input image. In
addition, the supported types can be limited to certain types in the column Type Support.

Figure 26.9. New Style ML Module — Uses Data Type Of Input Image

Configuration of Input/Output Types

Image |Hand|ing |Reference |T',rpe Support |

Output Image uses data type of |Inout Imaae 0l all scalar types
Input Sublmage 0  uses same data type as m
Input Sublmage 1  uses same data type as  Input Image 1

Figure 26.10. New Style ML Module — Entering The Supported Types

Configuration of Input/Output Types

Image |Hand|ing |Reference |T',rpe Support |
Output Image uses data type of Input Image 0 |all scalar tvoes =]

Input Sublmage 0  uses same data type as  Output Image all scalar and default extended types
Input Sublmage 1  uses same data type as  Output Image all floating point type A,
all scalar types

all integer types
complex<float> a... complex<double

Three options are available for the handling of the input image:

Figure 26.11. New Style ML Module — Configuring The Input Handling

Configuration of Input/Output Types

Image |Hand|ing |Reference |T',rpe Support |

Output Image uses data type of Input Image 0 all scalar types
Input Sublmage 0  uses same data type as  Output Image

Input SubImage 1 |uses same data tvoe a k Output Image

uses input image data typ
uses fixed data type

» uses fixed data type: Sets the input image data type to a fixed format that has to be entered in the
column Type Support, identical to the selection for the output image, see Figure 26.8, “New Style
ML Module — Uses Fixed Data type ".

» uses input image data type: Keeps the input image data type. In addition, the supported types can
be limited to certain types in the column Type Support.

e uses same data type as: Sets the input image data type to the same format as the selected image,
see Figure 26.9, “New Style ML Module — Uses Data Type Of Input Image ".

176



Project Wizard

Figure 26.12. New Style ML Module — Uses The Same Data Type As

Configuration of Input/Output Types

Image |Hand|ing |Reference |Type Support |

Output Image uses data type of Input Image 0 all scalar types
Input Sublmage 0  uses same data type as  |Output Imaae Lv
LD Je

Input SubImage 1  uses same data type as

Input Image 1

Below the configuration of the input/output types, two image processing options are available:
Image Processing Methods

Add calculatelnputSubimageBox(): If enabled, the method cal cul at el nput Subl mageBox() is
added. It is required if the calculation of an output page requires another (smaller or larger) image region
from the input than the one of the output page.

Add voxel loop to calculateOutputSublmage(): If enabled, an example loop is implemented that
reads all voxels from input O (if available) and copies them to the output page. It simplifies loop-based
implementations of cal cul at eQut put Subl nage() .

Click Next.

26.2.3.2. ML Module (Classic Style)

. Note
For new modules, it is recommended to use the new style. The classic style implementation
is offered as legacy option. For an explanation of new style versus classic style, see
Section 26.2.3, “ML Module”.

177



Project Wizard

Figure 26.13. Imaging Module Properties (Classic Style)

i Modules (C++)/ML Module C=NA=Al X )

Imaging Module Properties
Enter imaging properties of the module.
Module Type
" Mew style ML module

Number of Input/Output Images
Inputs: I—Zil Outputs: l—lil
Image Processing Methods

v Add calculateInputSubImageBox()

™ Modify input/foutput data types

v Add calculateOutputSubImage() template

v Add voxel loop to calculateOutputSubImage()
I™ Use type free loop

< Back | Next = Create Save Setting Close

Number of Input/Output Images
Inputs, Outputs: Sets the number of image processing inputs and outputs.
Image Processing Methods

Add calculatelnputSubimageBox(): If enabled, the method cal cul at el nput Subl mageBox() is
added. It is required if the calculation of an output page requires another (smaller or larger) image region
from the input than the one of the output page.

Modify input/output data types: If enabled, adds demo code for the modification of input/output image
data types in classic style. (For new style ML module, the modification of data types is supported in the
methods and the GUI, see Section 26.2.3.1, “ML Module (New Style)”.)

Add calculateOutputSublmage() template: If enabled, a template function is added for the
implementation of the virtual method cal cul at eQut put Subl mage() . This is the typical way to implement
the algorithm independent of the voxel type.

Add voxel loop to calculateOutputSublmage(): If enabled, an example loop is implemented that
reads all voxels from input O (if available) and copies them to the output page. It simplifies loop based
implementations of cal cul at eQut put Subl nage() .

Use type free loop: (Only active for certain selections) If enabled, an example loop is implemented that
reads all voxels from input O (if available) and copies them to the output page. It is implemented without
using any voxel types, but only copying the image memory voxel by voxel. Useful if the algorithm is
type-independent or specific for a known voxel type.

Click Next.

26.2.3.3. Additional ML Module Properties

For both new and classic style ML modules, the same additional options are available:

178



Project Wizard

Figure 26.14. Additional ML Module Properties

i Modules (C++)/ML Module C=NA=Al X )

Additional Module Properties

Enter additional properties of the module.

Parameter Handling

v Auto-update output images on field changes

[~ Add handleInput()

[~ Add activateAttachments()
Documentation / GUI

v Add configuration hints

v Add MDL window with fields

<Back |! Next> Create Save Setting Close

Parameter Handling

Auto-update output images on field changes: If enabled, code is added to the
handl eNoti fi cati on() method that causes a touching of the output image field(s) on changes of any
input or parameter field.

Add handlelnput(): If enabled, the method handl el nput () is added. It is required if the module shall
be able to operate with optionally disconnected or invalid image inputs.

Add activateAttachments(): If enabled, the method voi d acti vateAttachnments() is added. It is
called after module clones or reloads and is needed to update the internal module state/members after
reload or clone operations if it depends on field values.

Documentation / GUI

Add more detailed comments: If enabled, more comments to the generated code, for example,
possible parameters, their effect, or details about the methods or functions to be implemented are added
to the code.

Add configuration hints: If enabled, hints for inplace, bypass, voxel type, and multi-threading support
are added to the code.

Add MDL window with fields: If enabled, a window section with all fields is added to the MDL definition
file of the module.

Click Next for the next screen, if you want to add fields, see Section 26.4, “Module Field Interface”;
otherwise, click Create to create the new ML module.

26.2.3.4. ML Module — Created Files

When creating the new ML module, a number of files are generated, some of which have the same
purpose in another surrounding/operating system:

179



Project Wizard

In the path: <Package>/ Modul es/ <Modul eType>/ <Modul eName>
* <Modul eNane>. def : MeVisLab definition file

In the path: Modul es/ <Mbdul eType>/ <Mbdul eNane>/ net wor ks
» test Exanpl e. m ab: Example network (template)

In the path: <Package>/ Sources/ <Modul eNanme>

e <Modul eNane>Syst em h:

* <Modul eNane>I ni t. h: C++ header file

e <Modul eNanme>I ni t. cpp: C++ file

» CMakeli sts. t xt: MeVisLab project file, see CMake documentation.

26.3. Modules (Scripting) Wizard

This wizard creates functioning macro modules by generating the template files <Mbdul eNane>. def and
<Modul eName>. scri pt (optional: <Mbdul eName>. m ab and <Mbdul eNane>. py).

For the first dialog, see Section 26.2.1, “First C++ Module Wizard Dialog”.

In the second dialog, the module properties can be set and a local macro can be chosen as a starter
for the macro module.

Figure 26.15. Project Wizard

7 Modules (Scripting)/Macro Module | (e S

Macro Module Properties

Enter the properties of the macro module.

Macro Module Properties
™ Add macro network file

Network File Name: | Browse

Scripting

@+ Mo dynamic scripting
" Add Python file
" Add JavaScript file

< Back | {oNext> Create Save Setting Close

Add Macro Network File

Enables if the macro module shall encapsulate a module network. Either generates an empty
<Modul eNare>. ml ab document or uses an existing one.

Add Python

180



Project Wizard

Creates an empty file (<Modul eName>. py ), which is included in the module's definition file
<Modul eName>. scri pt . Used to define script commands embedded in the MDL script code to implement
dynamic user interfaces.

Click Next for the next screen, if you want to add fields, see Section 26.4, “Module Field Interface”;
otherwise, click Create to create the new macro module.

After module creation, the module database has to be reloaded before the new module can be used
in a network.

26.4. Module Field Interface

Add fields to the interface of the module.

Figure 26.16. Module Field Interfaces

rﬁ' Modules (Scripting)/Macro Module — C=AE N
Module Field Interface

Add fields to the interface of the module.

Name |T',rpe |Comment |Va|ue |Enum Values
directory String "

numFiles Int 0

fileType Enum xml,.doc,.config

E—

New | Import All Fields Remaove | RemoveAII|

Field Name: |ﬁIeType Field Type: |Enum -

Field Comment: |

Field Value: |

Enum Values: |.xm|,.d0c,.c0nﬁg|

|l < Back | Next = Create | Save Setting| Close |
é

=

New

Adds a new field. Click the entry first and then edit the field parameters.
Import All Fields

Imports all fields of all modules of the internal network.

Remove

Removes the selected field.

Remove all

Removes all fields.

For each field, the following may be entered, depending on the field type:

Field Name

181



Project Wizard

Provides the field name. Has to be unique in the module.
Field Type

Provides the field type. Available types are String, Enum, Bool, Int, Float, Double, Progress, Notify,
Base, and SoNode.

Field Comment

Adds a comment to the field, useful for the generated code.
Field Value

Sets the field value.

Enum Values (for enum field only)

Sets the enumerator values. Separate the values by commas.

This is the last screen of the Wizards. Click Create to create the module.

26.5. Packages

Packages are the way MeVisLab organizes projects. A package can contain any number of C++/Macro
Modules, Installers, Documentation, etc. The creation of an own package is mandatory for SDK users,
all other wizards require a valid target package.

With the Package Wizard, new packages can be created. For detailed information on the package
structure, see the Package Structure documentation.

Figure 26.17. Package Wizard

i} Packages/New Package =B

Package Wizard

General settings for your package

Package Information

Package Group: * |

Package Name: * |Genera| j

Package Owner: |JDUe

Package Description: |

Target Directory

Target Directory: * | Browse...

Advanced

I~ Add master builder files

Info
Packages are the way MeVisLab organizes projects. A package can contain any number of

C++/Macro Modules, Installers, Documentation etc. The creation of an own package is mandatory for
SDK users, all other wizards require a valid target package.

* : Required fields

< Back Next = Create Save Setting Close

Package Group

Sets the package group in which the package is saved. Enter a name, for example your company or
site name.

182



Project Wizard

Package Name

Sets the package name. Select a typical user package name from the list or enter a new package name.
Package Owner

Sets the package owner. Meta description.

Package Description

Sets the package description.

Target Directory

Sets a target directory.

The information entered in the dialog is saved in the Packages. def file. The new package is added to the
User Package Path, including all subdirectories and files (see the Package Structure documentation).
After this, a reload of the MeVisLab module database is necessary to use the new package.

26.6. Example .Wiz File (Inventor Module),
Indented for a better readability

// NMDL vl utf8

wi zard = | nvent or Modul eW zar d
fields {
i nst anceNane = w zard
nodul eNane = SoTest
aut hor = JDoe
genre = SoGenre
comment ="
keywor ds = SoG oup
seeAl so ="
exanpl eNet wor k = TRUE
pr oj ect SoTest
proj ect Prefix So
i ncl udeProj ectFiles FALSE

"Modul e Field Interface"

"Add fields to the interface of the nodule."
MyPackageG oup/ | nt er nal

"fiel dNamre@i el dType@i el dComment @[ . . . ]

stepTitle

stepl nfo

packagel denti fi er
st or edFi el dLi st

fieldSel ected TRUE
nodeSensor FALSE
ver boseComment s FALSE
exanpl eCode FALSE
hasG oupl nput s FALSE
type SoShape
typeExtra Shape
fields Test

183



Chapter 27. MATE
27.1. What is MATE?

MATE is the internal text editor for MeVisLab. MATE is an acronym that stands for MeVisLab Advanced
Text Editor.

MATE supports the programming languages MDL, Python, and JavaScript, offering auto-completion
(with a list of suggestions), context-sensitive specific help, syntax highlighting, and indentation.

It also supports HTML, CSS, and XML with simple syntax highlighting.

Additionally, MATE has a built-in debugger for Python scripting, a GUI editor for module panels, and
functions as an editor for help files for modules (. mhel p).

For . mhel p, HTML, CSS, and XML, the editor checks the spelling of written text using Hunspell.

Besides all this built-in functionality, MATE offers a scripting API to configure MATE on startup by user
written Python scripting, as well as adding new features to MATE's GUI by writing Python user scripts,
similar to Section 4.8, “User Scripts”

MATE also offers direct access to a module's panel and automatic panel, and the related files via the
Module menu.

For quick scripting, a scripting console is available.
The following file types are supported:
* MDL files, namely

e . dat (MeVisLab license files written in MDL)

o . def (MeVisLab module definition)

« . mhel p (MeVisLab module help file, see Section 27.9, “"Module Help Editor”)

e . m ab (MeVisLab network)
« . prefs (MeVisLab preferences file, for packages or other purposes)
e .script (MeVisLab MDL script)

» Other MeVisLab specific files

e« .nlinstall,.nli (Installer specification used by the ADK add-on)

. py (Python)

* .js (JavaScript)

e .htm (HTML)

» . css (Cascading Style Sheets)

» . xnl (Extensible Markup Language)

* . txt (Generic text files)

Open MATE via File —~ Show Integrated Text Editor (to start it without files) or File — Open File in
Integrated Text Editor (to start it with a file dialog for selecting a file).

184



MATE

MATE is also used as editor for source code by default (this can be changed in the Preferences, see
Section 4.3.4, “Preferences — Supportive Programs”). For example:

» For Related Files in the context menu of a module when selecting one of the possibly available . def ,
.script, or. py files.

» When clicking on a link to a license . dat file or a module . def file in the Debug Output of MeVisLab.

MATE runs in a process separate from MeVisLab. This allows using it for Python debugging, see
Section 27.8, “Python Debugger”.

27.2. Text Editor User Interface

Figure 27.1. User Interface

E? MeVisLab MATE Debug - [Locallmage.script - F:/usiems/svn/integrati .!n’llathe\n‘isl.ab!StandardfMuiufemlemmli@w

.\¥| «4 | 2 Attached Module: Locall Reload Goto RunTests Windows ~ Files + Add To Project Workspace

Locallmage. script @ |

Outline g X E]
4 Interface -

> Outputs

> Parameters
4 Commands

m

FieldListener name {
4 Window droppedFileCommand = fileDropped
4 Vertical | & margin = 8
4 Box S0 { »
. Horizontal
4 Horizontal
Field name Field name { alignGroup = groupl } i
Button { = "Browse..." command = fileDialog }
Button il N
Project Worl = 8 x 40 Field trueName { alignGroup = groupl trim = left } -

Scripting View V] Fiters = 42 expandY = yes 1

}

* [ Locallmage x Examples {

} E5 FileHandling

ﬁ 45 expandY = yes | &
: Locallmage.def . HyperLabel {
i+ Locallmagemlab a7 cxpandy = ves

[ Locallmage.py 45 title = "<table>

T Locallmage.script 4 <trr<tdr<nobrr>S<b> (NETWORK) </b>/test.tif</nobr>
<tdr»<nobr>for images relative to this network</nob: o
<tr><td><nobr>$<b> (HCME) </b>/images/test.tif</nobr:
<tdr»<nobr>for images in users home directory</nobr

5 <trr<tdr<nobr>S<b> (DemoDataFath)</b>/test.tif</nob: -

4 g | [T ] G

#2 Type to locate (Ctrl+K) Window { Vertical { Box { Horizontal { Button {
Debug Output

B seedlso 4 P [|Matchcase [[] Wholewords & Search wrapped

The user interface provides the following areas:

* the menu bar

 the Attached Module menu (can be switched off in the Views submenu)

+ the Outline area with a list of related modules (can be switched off in the Views submenu)
* the Edit area, with tabs for open files

» the Project Workspace area displays a list of projects that are collections of related files (this can
be switched off in the Views submenu)

185



MATE

» the Debug Output area with the same information as in MeVisLab (see Chapter 8, Debug Output;
this can be switched off in the Views submenu)

 the Find menu for incremental and normal search (this can be switched off in the Views submenu)

27.3. Menu Bar

In the menu bar, the following entries are provided.

In the File menu, New, Open, Close, Save, Save As, Revert To Saved, Recent Files, Project, Recent
Projects, Project Workspace, Recent Project Workspaces, Close Project Workspace, Session,
Recent Session, and Quit are available.

Figure 27.2. MATE File Menu
Edit View Window Debug Extras

L] New 4
L+ Open. Ctrl+O
Close Ctrl+W
=l Save Ctrl+5S
Save As...
Revert To Saved Ctrl+U

Recent Files 3

Project 3

Recent Projects 3

Project Workspace 3
Recent Project Workspaces 4 [
Close Project Workspace l

Session 3

Recent Sessions 3

Quit

Inthe Edit menu, Undo, Redo, Cut, Copy, Paste are available. In addition to these standards, a number
of options for searching and code formatting are available. In the search, regular expressions may be
used.

» Find: Opens a Find dialog where you can enter a search term.

» Find Next: Finds the next entry, search direction down.

» Find Previous: Finds the previous entry, search direction up.

» Find and Replace: Opens a Find and Replace dialog. Enter the old and the new term.

e Find Incremental: Opens an independent search bar at the bottom of the MATE screen and starts
searching immediately while the term is entered.

» Use Selection for Find: Uses only the currently selected text portion as input for the Find dialog.

» Auto Indent Selection: Arranges the selection according to indentation per level. Alternatively, TAB
may be used.

+ Shift Left Selection: Shifts the selection to the left.

» Shift Right Selection: Shifts the selection to the right.

» Comment Selection: Comments the selection (available for Python, MDL, and JavaScript).

* Uncomment Selection: Uncomments the selection (available for Python, MDL, and JavaScript).

» Go Back: Jumps to the last cursor position.

186



MATE

e Go Forward: Jumps to the next cursor position.

* Go To Line...: Opens a dialog to enter a line number in the currently active document to set the
cursor to.

» Preferences: Opens the preferences for the MATE editor, see Section 27.7, “Preferences”.

Figure 27.3. MATE Edit Menu
View Window Debug Extras Help

Undo Ctrl+Z |
Redo Ctrl+Y
>& Cut Ctrl+X
4y Copy Ctrl+C
1) Paste Ctrl+V
Find... Ctrl+F
Find Mext F3
Find Previous Shift+F3
Find and Replace... Ctrl+H
Incremental Find Ctrl+I
Use Selection for Find Ctrl+E
Auto Indent Selection
Shift Left Selection Shift+Tab
Shift Right Selection
Comment Selection Ctrl+Alt+M
Uncomment Selection Ctrl+Alt+Shift+M
4 GoBack Ctrl+-
P Go Forward Ctrl+Shift+-
Go To Line... Ctrl+G
Preferences... Ctrl+P

In the View menu, select the user interface areas for display: Attached Module toolbar, Outline
area, Project Workspace area, Session area, Debug Output area, the search functions Search in
Documentation area, Find Results area, Find toolbar, the Python debugging options Stack Frames
area, Variables area, Watches area, Evaluate Expression area, Breakpoints area, Debugging
toolbar, and the GUI editor options Preview area, Tag Editor area, MDL Controls area, and the Fields
area.

Figure 27.4. MATE View Menu
Window Debug Extras

| ¥ Attached Module: -
v | Outline
] v | Project Workspace
| Session 'Default’
v | Debug Output

Find Results
v | Find

Search in Documentation

Breakpoints
Debugging
Stack Frames
Variables
Watches

Evaluate Expression

Preview

Tag Editor
MDL Controls
Fields

187



MATE

In the Window menu, the files in the Edit area can be closed and selected: Close, Close All (you will
be asked if you want to save changes).

Figure 27.5. MATE Window Menu
Debug Extras Help

Close Ctrl+W l
Close All Ctrl+Shift+W

v 2 Locallmage.script - C:/developer l

In the Debug menu, debug options are available, see Section 27.8, “Python Debugger”.

In the Extras menu, the following options are available:

» Attached Module: see Section 27.4, “Module Menu”.

* Enable GUI Editor: see Section 27.12, “GUI Editor”.

» Open File In External Editor: Opens file in the default editor (this may be set in Section 4.3.4
“Preferences — Supportive Programs”).

» Open All Files In External Editor: Opens all files in the default editor (this may be setin Section 4.3.4
“Preferences — Supportive Programs”).

» Show Enclosing Folder: Opens the folder containing the currently active document.

» Show Regular Expression Dialog: Shows a dialog where the user can test regular expressions with
own sample texts.

» Show MATE Scripting Console: Opens the MATE scripting console, see Section 27.13, “Scripting”.

e Edit MATE Startup Scripting File: Opens the MATE startup scripting file for editing, see
Section 27.13, “Scripting”.

» SVN: Contains a submenu with subversion commands that are applied to the currently open file. This
requires an SVN command-line executable to be available in the PATH environment variable.

» String Tools: Contains a submenu with assorted string manipulation tools. The scope of these
operations usually is the selected text.

Figure 27.6. MATE Extras Menu

Extras  Help
Attached Module: - 4 l

3¢ Enable GUI Editor

Open File In External Editor Ctrl+Alt+E |
Open All Files In External Editor
Show Enclosing Folder

Show In Project Workspace
Show Regular Expression Dialog

Show MATE Scripting Console
Edit MATE Startup Script File

Selected Installer L4

SVN 2
String Tools L4

27.4. Module Menu

MATE communicates with a running MeVisLab instance to get information about a currently edited
module, which is used for tasks like auto-completion. For this, the MeVisLab instance might create

188



MATE

the required module that is invisible to the user. The module menu allows for a direct handling of the
attached module. If no attached module is available yet, it has to be created (loaded). For this, select
the module in the Outline area and then click Create.

Figure 27.7. MATE Module Menu — Without Attached Module

Attached Module: - Create

& x [

e

Locallmage

Figure 27.8. MATE Module Menu - With Attached Module

Attached Module: Locallmage Reload Goto RunTests Windows + Files « Add To Project Workspace
8 X E| * Locallmage. script [ |
- 1

Once a module is attached, more options are available.

Click Reload to reload the module information. This is useful if the module files were changed (for
example, DLL, . scri pt, or. def file).

Click Goto to select and center the associated module in MeVisLab. This is only available if the file has
been opened from the context menu of an existing module in MeVisLab.

Run Tests will run the associated tests of an associated module in MeVisLab. If the currently edited file
belongs to a test case instead, this test case will be executed.

Figure 27.9. MATE Module Menu — Windows Submenu

Attached Module: Locallmage Reload Goto RunTests | Windows |« | Files + Add To Project Workspace

g X E| Locallmage. script Panel l

- . Automatic Panel
12 Parameters {

The Windows submenu has the same options and effects as the module context menu entry Show
Windows in the MeVisLab user interface. The panels or viewers will be opened in MeVisLab.

e

Figure 27.10. MATE Module Menu — Files Submenu

Attached Module: Locallmage Reload Goto RunTests Windows | Files E] Add To Project Workspace
8 x EI Locallmage. script Locallmage.def at line 4 l
Locallmage.script
= { Locallmage.mlab
name { type = strirg

d trueName { de Locallmage.py

o

T
=R

w
A

d load { in
d autoLoad { i
d close { in
d status {1

Show Related Folder

In the Files submenu, all source files related to the attached module are listed. Select one to open it
in the editor.

‘ Note
Not all related files may be available as source; for example, compiled modules delivered
with the SDK.

Add To Project Workspace adds the files of the module to the Project Workspace as an automatic
project if it is not already contained there.

189



MATE

27.5. Outline Area

The Outline area provides an overview over the content of the currently selected file; for example, if the
M.Coor dUti | s1. def file is opened, all modules defined there will be listed.

The nested elements of the module definition can be expanded by clicking the plus sign. Double-click
the entries to go to the code line in which this entry is defined.

Figure 27.11. Outline Area

CQutline g x

= MLMadule OrthoSwapFlip
—|- Descripkion
Field FlipHarizontal
Field Flipvertical
Field FlipDepth
Field pageX
Field pagey
Field pageZ
Field autoPageSizel
Field autoPageSize'
Field autoPageSizeZ
Field usetiswDir
Field view
Field useCrientation
—|- Field orientation
+- ikems
Field applyCrientation —
Field useGlobalinputImage
Field applyPage
= Windaw
= Cateqgary Main
Field mode
—I- Box View Direction %

Field view
—I- Box Swap And Flip
=1 Row
Field orientation
=1 Row
CheckBox FlipHorizo. ..
CheckBox Flipvertical

=1 Row j

27.6. Edit Area

In the Edit area, the source code is displayed. For each open file, a tab with the file name is displayed.
For the supported languages MDL, Python, HTML, CSS, XML, and JavaScript, syntax highlighting is
available.

For the text portions of . mhel p, CSS, HTML, and XML files, MATE performs spell checking based on
Hunspell. If a word is unknown to the spell checker, it is underlined in red; the context menu of this word
offers to replace the unknown word with a selectable known variant or to add the word to the user's
dictionary.

The spell checker is based on Hunspell and uses three dictionaries: the standard American English
dictionary, a MeVisLab-specific dictionary, and the user dictionary to which new words can be added.

At the bottom of the area, the line where the cursor currently stands is displayed. In addition, the cursor
position in the source code in terms of level/depth is displayed, if applicable.

190



MATE

Figure 27.12. MATE Edit Area

- ":_r; MLCoordUtils 1.def ":_r; OrthoSwapFlip. script @
16 Field useOrientation { deprecatedName = UseOrientation } &
17 Field orientation {
8 deprecatedName = Orientation

19 items {

20 item XYZ { title = "X¥z" }

21 item YZX { title = "Yzx" }

22 item ZXY { title = "ZXY" }

23 item XZY | tle = "XZY" }

24 item ZYX { title = "Z¥X" }

25 item YXZ { title = "YXza" }

26 }

27 }

28 Field applyCrientation { deprecatedName = ApplyCOrientatior
29 Field useGlobalInputImage {

30 deprecatedName = UseCache

31 iepre:a:eixam3|= useCache

32 }

33 Field applyPage { removed = yes }

34 }

35

3 v
39 ¢ >
Description { Field useGlobalInputimage { Line 31

Figure 27.13. MATE Edit Area— Code Completion for Keywords

ti o I_

title = e

titleField = 21

titlsFile = b1
ooy

o1

Code completion is available for the supported languages MDL and Python. Select the option with the
cursor keys and press ENTER.

In Python scripting files, the auto-completion provides information about functions of included libraries
and about local variable names.

Figure 27.14. MATE Edit Area— Code Completion for Commands Defined in MDL

droppedFileCommand = fileq
initCommand = s

i ! fileDialog
FieldListener name { fileDropped i

For the supported languages, context-specific help is available. Either press F1 or right-click to open the
context menus and select a help to be displayed in the default browser (this may be set in Section 4.3.4
“Preferences — Supportive Programs”).

Figure 27.15. MATE Edit Area — Context Menu

Commands  {
source
droppedFileCommand
initCommand

"3 (LOCAL) /LocalImage. js"
fileDropped
init

FieldListeipv wmwms  cmweesnd = wawesThancad
¥ Show MOL Help For ‘FieldListener!

Show Scripting Help For ‘FieldListener'
Tip
If you double-click a word in the editor, the word is selected, and all other occurrences

of that word are highlighted in the text (except for keywords). To remove the highlighting,
simply hit ESC.

191



MATE

27.7. Preferences

Under Edit - Preferences, the preferences for the user interface regarding indentation, fonts, and
syntax highlighting can be edited.

Figure 27.16. MATE Preferences

2

General

MDL General

Python

JavaScript Default Indentation

Module Help =
Appearance Tab Size: 2 4
Shortcuts Indent Size: |2 - |

Auto-Indentation Options

Tab key always auto-indents Auto-indent on paste

Visual Opticns

Color Scheme: | Automatic -
Show line numbers Show graphical scrollbar

L] Enable line wrap [] show spaces as dots

Use spellchecker Dots Color:

Document Options

L] Automatically save docurments L] Silently reload changed files
[] Keep closed documents in sessions Load last session on startup

[] Clese all secendary windows with Escape

Connected MeVisLab Options

Disable automatic module creation Show rmessages from all MeVisLab instances

oK Cancel Apply

192



MATE

Default Indentation

Sets Tab Size (for TAB) and Indent Size (for automatic indents).

Auto-Indentation Options

Select Tab key always auto-indents to use the TAB key to auto-indent a selection.
Select Auto-indent on paste to automatically indent the pasted text.

Visual Options

Selecta Color Scheme from “Automatic”, “Light”, or “Dark”. A restart of MATE is required after changing
this option.

Select Show line numbers to show line numbers in the editor.

Select Show graphical scrollbar to show a scroll area with an approximated text display in the edit
area instead of the usual vertical scrollbar.

Select Enable line wrap to enable wrapping of lines too long to display. This option can be set
individually for other document types.

Select Show spaces as dots to display spaces in the edited files as dots.

Set the color of the dots with Dots Color.

Select Use spellchecker to enable spell checking in . mhel p, CSS, HTML, and XML files.
Document Options

Select Automatically save documents to automatically save open documents periodically.
Select Silently reload changed files to automatically and silently reload changed files.

Select Keep closed documents in sessions to keep documents on closing in the currently active
session. Otherwise, a document will be removed from the session on closing the document.

Select Load last session on startup to load the last active session and its files on starting MATE. The
session files are being loaded lazily.

Select Close all secondary windows with Escape to close secondary windows by pressing ESC.
Secondary windows include the error check view window, the results windows for “Find in Files”, and
the “Debug Output”.

Connected MeVisLab Options

Select Disable automatic module creation to disable the creation of a module when starting to edit
module files (.def, .script, .py).

Select Show messages from all MeVisLab instances to display messages written to the debug output
console of all running MeVisLab instances in the debug output console of MATE. If not selected, only
messages from non-application, non-background instances will be shown.

Under the links MDL, Python, JavaScript, and Module Help, the tab, indent sizes, and line wrap
behavior for each language can be set. This will override the general settings.

Select Use internal HTML preview in the Module Help preferences to tell MATE to open generated
module help documents in an internal HTML view instead of the system web browser.

193



MATE

27.8. Python Debugger

MATE includes an integrated Python debugger. Its symbols and basic functions resemble those of Visual
Studio. Depending on the operating system, the available key commands are taken from Visual Studio.

Debugging can be used for . py Python files and for . scri pt files. In case of the latter, only lines with
real Python code (i.e., starting with " py: or " *py: ) will work as breakpoints.

There are two main ways to open code in the integrated debugger:

Click the on bug button #® in MeVisLab to start MATE in a separate process with debugging enabled,
and then open a file. The button is part of the Script Debugging toolbar, see Figure 4.30, “View —
Toolbars Submenu” for enabling and disabling the toolbar.

» Open a Python or Script file in MATE, then select Debug+Enable Debugging. (If the Debug menu
is disabled, MATE is not set up to start as separate process. In this case, change the Preferences
setting, see Section 4.3.4, “Preferences — Supportive Programs”.)

If debugging is enabled, the views Debug Output, Breakpoints, Stack Frames, Variables, and the
Debugging toolbar are switched on in the standard configuration.

Note
Configuration changes made by the user will be saved separately for MATE without

debugging and for MATE with debugging enabled. This way, two basic configurations are
available.

194



MATE

Figure 27.17. MATE with Python Debugger

@ MeVisLab MATE - [TestPython.py - C:/Program Files/MeVisLab4.0.70/Packages/MeVisLab/Standard/Modules/Macros,/ Tests/"

File Edit View Window Debug Extras

| # Typeto locate (Ctrl+K) |

Help

TestPython.script

» .-i_'| Attached Module: TestPython Relocad Gote RunTests Windows = Fil

[

c2 = QColor{lE, 32, 64)
print (c3)
print ("QPixmap")

ht

= -QPixmap ()

print (p)

def testFields():

field =-ctx.field("nam=") ;
MLZE.log(fisld.className () ) ;
MLZE.log (field.nams) ;
MLAE.log(field.value=);

field.value "= "trewtwe";

try:
field = ctx.field{"v=c");
MLAE.log(fisld.valus);
f -num = -int (str{field.valu=))

field = 'ctx.field{"bool™);
MLAE.log(field.value) ;
field = 'ctx.field("float");
MLLAE.log(fiseld.valus=) ;

& X Stack Frames

Outline 8 x|[] O
import statistics A 115
import TestPython2 116
import TestSubModule 117
import time 118
from mevis import * iéi
from Pythongt import * 121

» class DerivedFromStr 122

» class MyClass 1226
class MyClass2 124
class MyClass3 125

* clas= MyReceiver 126
class MySender 127

» clas= MyWorkerThread 128
def  contains 12%
def _ getitem EI
def  init 132
def  init 133
def setitem 134
def execute 1355
def fieldChanged 136
def init
def myDecorator W

Debug Output

{(MLABStringField (name: TestPython.name,
value: trewtws, at: O0x000001RRIFSSOCRO),)
[12736] 2024-09-24 0%:19:00 Info: MLABStringField
[12736] 2024-09-24 09:1%00 Info: name
[12736] 2024-09-24 09:1%:00 Info: trewbwe

]

[12736] 2024-05-24 09:1%00 [nfo: fieldlistener inline name

trewtwe

[12736] 2024-09-24 09:1%:00 [nfo: (0.0, 0.0, 0.0)
[12736] 2024-09-24 09:1%9:00 Info: False
[12736] 2024-09-24 09:19:00 [nfo: 0.0

Find Results  Debug Output

o

Line
TestPythonpy 123
TestPython.script 70

Filenarme

Mame

testFields
TestPython.Button.command

195



MATE

Figure 27.18. MATE Debug Menu
Extras Help

Enable Debugging
Toggle Breakpoint

Clear All Breakpoints

Select MeVisLab: Pid:

Break
Continue

Run To Cursor
Step In

Step Over
Step Out

Stop

F9
Ctrl+Shift+ F9
812 ,

F5
Ctrl+F10
Fi1

F10
Shift+Fl1
Shift+F5

Once debugging is enabled in principle, the actual process needs to be started. For a first test, the
module Test Pyt hon can be used.

1.

In a line with executable code, click between the line number and the code to set a breakpoint. A

red dot @ wi

Breakpoints

Il be displayed at that position.
offer context menus.

noifield.walne

137 MLAR.1
138 Remave Breakpaoint |
139 Disable Breakpoint

140 Set Condition For Breakpoint
141 T = NLEE.HeEwILee (1.

Breakpoints

can be set to conditional; the condition can also be removed. Conditions have to be

entered in Python syntax, for example: a==12.

137 MLAE. logifield.values)
138 Remove Breakpoint |

139 Disable Breakpoint

140 Set Condition For Breakpoint

141 Clear Condition For Breakpoint

142 TITT=TTUEP RN T TE ]

In a next step, do something on the module's panel in MeVisLab, e.g., click a button.

Note

It is important to remember that the Python scripts in MeVisLab are part of a module or
network, and not stand-alone. Therefore, you cannot simply open a script in the MATE
debugger and debug it at runtime. What looks like a Start button is actually a Continue
button.

Note

During debugging, MeVisLab is unresponsive! Finish the debugging by letting it run its
course before trying to interact with MeVisLab.

Note

The debugger needs an up-to-date . pyc file for associating the run-time state with the
lines in the . py file. The debugger will not work (correctly) if you have multiple . pyc
copies of the same Python file on your system!

The script stops at the breakpoint, showing a yellow arrow. The Debug Output is the same as in

MeVisLab. |

n the Breakpoints view, a list of all breakpoints can be found, and a context menu is

available for editing them. The Stack Frames view shows the current location of the script. In the
Variables view, existing variables can be examined.

196



MATE

3. Click the Continue button » to run to the next breakpoint, or other buttons for other actions.

Table 27.1. Buttons for Debugging

Button Description Explanation
" Break Pauses the running function.
u Stop Stops and finishes the running function.
> Continue Runs to the next breakpoint or the end of the routine.
>l Run to cursor Runs to line where the cursor is placed.
= Step In Steps through the code one statement a time. If the

statement executes another function, the debugger will
step into that function.

il

Step Over Step Over is the same as Step In, except that when it
reaches a call for another function, it will not step into it.
The function will run, and then go to the next statement
in the current function.

Tl

Step Out If Step In has been used, Step Out can be used to run the
currently called function and return to the function from
which it was called.

Table 27.2. Icons for Debugging

Icon Description Explanation
(] Breakpoint Static breakpoint set by user.
if] Conditional breakpoint Breakpoint depending on a statement to be true. The

condition (in Python syntax) can be set via the context
menu of a breakpoint.

o Top stack location Last executed statement.
Current stack location Displayed via double-clicking the stacks in the Stack
Frames view.

27.9. Module Help Editor

A module's help is created based on . nhel p files. When these are edited in MATE, a number of
additional, help-specific features are available: a customized GUI with special outline appearance
and toolbar, syntax highlighting, and auto-completion. The goal is to keep the actual documentation
generation process invisible to the user; for details on the workflow behind the scenes, see
Section 27.9.3, “How it Works”.

The free text areas use the reStructuredText (reST) markup, see Section 27.9.2, “Formatting”. Aside
of the usual formatting, two expressions are important. “Roles” refer to extensions for inline markup in
reST, in our case for field and module references. “Directives” refer to extensions that add support for
new constructs, in our case links to images, screenshots, and cross-references.

To open MATE as Help Editor, either open a . mhel p file or right-click a module and select Help -
Edit Help.

197



MATE

Figure 27.19. MATE for Module Help

F) MeNisLab MATE Debug - [0 pFlip.mhelp - C/Developer/MeVisLat fard/Modules/ML/MLCsordUtilsl /mhelp] o[ ]
FF File Edit View Window Debug Extras Help NEE
Attached Module: OrthoSwapFlip Rebad Goto Windows = Fles » - Il B ] = [ = N
Outline x| ¥ CrthaSwapFip. mhelp [x |
4 Qutputs Al = = q | 1 ¥ g— p
|2 | buttonbar AAFMp® | 0 @]
4 Parameters
4 Visible Figlds 1 If checked, the module works internally on a global image (:cross-ref: MLGuide/Global'}.
Use Global Input Image (useGlob... N R . B e Tolume (o e E MR A AT T Etm 1 T ] et e et
4 Mode {made] 3 Otherwise, it works on a Virtual Volume (:cross-raf:'M le/Virt v . Dt} .
UseSwapFlip
UseViewDir

Fields visible in GUI

4 View (view)
o ] (documented)

Fields visible in GUI
(undocumented)

Flip Viertical (flipVierticall
Flip Depth (HipDepth)
Auto (autoPageSizeX)
X (pageX)

Auto [autoPageSizeY)

Y [pageY)
Auto [autoPageSize)
Z (pageZ)
4 Hidden Fields Fields not visible in GUI

; / (documented)
useOrientation

Debug Cutput & X

Line 1

B o Previous 7= Mext Case sersitve || Whale words

When editing the help file of a module, all important information of the module down to the field
specifications are extracted automatically. The basic module information is therefore always available
in the module help. Additional documentation should be added by the user, especially into the areas
Purpose, Usage, Details, Interaction, and Tips.

The directives for screenshots (. . screenshot:: [wi ndow ) are already prepared, one entry for every
window of the module. To remove the screenshot from the module help, just remove the text from the
screenshot entries.

The help is aware of changes, this results in the following for field and enumeration items:
» Field is added: field is marked as new and needing documentation.

» Field is removed: documentation text is kept but marked as being removed. Previously written help
text is stored in the . mhel p file but will not be visible in the resulting HTML help.

» Field is renamed: if the field name is depr ecat ed, the text is copied. (Otherwise, the system interprets
the renaming as an adding and removing of fields, so documentation text needs to be moved to the
new field manually.)

Tip
With these change-tracking mechanisms, the TestCenter can be used to test for

documented fields.

For fields and enumerations, the first paragraph of the help is used as a tooltip in the panels. This should
be kept in mind while entering information.

The outline formatting is as follows to show the state of the documented items:
* red italic: User-added documentation still missing.

» black bold: User-added documentation exists.

198



MATE

« light-gray italic: Element with “Needs documentation” unchecked.

» dark-gray italic: Fields not visible in the GUI.

 dark-gray italic bold: Fields not visible in the GUI, for which user-added documentation exists.

Formatting of the text can be done via the buttons in the middle of the toolbar (see Table 27.3, “Help
Toolbar Buttons”), using the context menu (see Figure 27.21, “Text Context Menu”), and manually

entering the markup in reST syntax (see Section 27.9.2, “Formatting”).

Generating the actual HTML help can be done with () or without (L) prior screenshot generation. The
result is automatically displayed in the default browser.

Tip

On the first generation of the HTML help, MATE checks for screenshots being made no
matter which of the two buttons above you press.

Table 27.3. Help Toolbar Buttons

Button Description Explanation
Check screenshots and generate |Opens a window first in which the screenshots to be

help created can be selected. For the selected screenshots,
the images are created and added to the . . . scr eenshot
directives.
If the module window is open with visible data, the
window will be captured as-is; this allows for adding
illustrative information via the screenshots.

Generate Help Compiles the help project to create HTML output without
creating new screenshots.

A Bold Formats selected text in bold (** ** in reST syntax).

A Italic Formats selected text in italic (* * in reST syntax).

7 Field link Adds a field link in the editor.

M Module link Adds a module link in the editor.

& Image link Opens a dialog to browse for images relative to the mhelp
folder of the module's help.

Y Insert cross reference Opens a dialog in which references to other documents
and sections in the MeVisLab help can be entered.

= Show reST Opens the help source in reST format in a new tab.
The reST format serves as the basis for HTML creation;
therefore, in case of help generation problems, check this
to identify the problematic lines.

Q Show information Toggles an information area on top of the editor area.
It shows information about the selected element and
module.

Q Help Toggles a help area on top of the editor area. It shows
general information on how to enter contents in the help
format.

27.9.1. Context Menus

Two options for the outline display are available from the context menu:

199




MATE

* Needs Documentation [element]: If checked, the entry appears in red italic; if not checked, it appears
in light-gray italic.

» Hide Fields Not Needing Documentation: Hides all fields for which “Needs Documentation” is
unchecked.

Tip
The context menu entry can be selected by using the right mouse button. If you need to

toggle the requirement for documentation for multiple fields, simply use the right mouse
button to bring up the context menu and select the option with the same button.

Figure 27.20. Outline Context Menu

Outline 8 x| 7 Wit
Purpose - o )
usoge @

Detais =]
m}.&m g v Meeds Documentation: Interackion
= Wingi
m\l‘i:\iSD Hide: Fields Mot Needile_Documentation
Yiewer

The context menu of the text area offers shortcuts to the three basic formatting styles bold, italic, and
fixed (see below). If more than one word is selected, the formatting will be applied to the entire selection.
If the cursor is placed on a word, the formatting is only applied to this word. It also offers shortcuts to
format words as roles (field, module, overview) and directives (screenshot, image, image in package,
cross-reference), and to add new directives (images and crosslinks).

If a word is unknown to the spellchecker, it will be underlined in red. The context menu (of that word)
offers known variants as a correction or to add the unknown word to the user's dictionary.

Figure 27.21. Text Context Menu

wiwapFlip® performs an
together with possible

:lected in the Main tab

arbitrary coor
flips along an

view either by

e awnlicditls,

. permuatiss and rtha £15
Bold

Italic
Fixed

Format Role
Format Directive

Add Directive

permutation
permeation
perpetuation
perforation
superannuation

peregrination
Add word: permuation

Ctrl+Z

Undo

Redo Ctrl+Y

Cut Ctrl+X
Copy Ctrl+C
Paste

Delete

Select All Ctrl+A

27.9.2. Formatting

For the formatting, reStructured Text (reST) syntax is used. It has some similarity with MarkUp or Wiki
syntax.

200



MATE

The editor supports the editing process by two
autocompletion.

Selected formatting options:

Table 27.4. Inline markup

means: syntax highlighting of reST elements and

Markup Output
*text* italic text
*REextr* bold text
Ttext fixed space text
* ¢ bullet list
#. 1. numbered list
[ nunber]. (e.g., 2.) 2. explicitly numbered list
1 *Level One e Level One
2 o first
3 :first,d o second
e +imira o third
6 o Level Two
7 *Level Two 1 first
=]
9 #. first 2 sgcond
10 #. second 3. third
11 # third e Level Three
1z
13 *Lewvel Three
1| Column1 |Column 2 | Column 3
2 Column 1 Coluwn 2 Colunn 3 d
| a g
4 a d o b =] h
5 b e h C f i
(=} [~ £ i
7
Table 27.5. Directives
Directive Effect

i mage: :

rel ativel/ path/to/ mel pfile

Inserts the referenced image.

i mage- i n- package: :

packagei dentifier.relative/path/to/inage

Inserts the referenced image from another

package.

screenshot : :
w ndownane. Panel Nare. nanme
or

wi ndownane. TabNane. nane)

Inserts the screenshot (if already created) or a link
to the screenshot.

Example with autocompletion:

. screenshot:: Set,t,ings.|

Settings,PanelMame
Settings, TabMame %I

201




MATE

Table 27.6. Roles

Role Effect
:field: " (nodul enane.)fiel dnane’ Links to a field of a module.
: nodul e: " nodul enane’ Links to a module.

Example with autocompletion:

:overvi ew. " overvi ewnane’ Links to an overview.

:cross-ref: document/targetptr’ Links to targetptr in another document. Use
“Insert Cross-Reference” to insert this role (see
Table 27.3, “Help Toolbar Buttons”)

:file-in- Links to a file in a package. This is similar to the
package: " packagel dentifier.rel ative/ image-in-package directive.

path/to/file’

:relative-link: relativel/path/to/file’ Links to a file relative to the mhelp file.

:sub: “superscript’\ text Adds a superscript to the text.

:sub: “subscript®\ text Adds a subscript to the text.

For more information about the reST syntax, see Sphinx reStructuredText Primer.

27.9.3. How it Works

. mhel p files are written in MDL and have an MDL tree structure. They are created from the module
interface definition and the GUI definition. Upon every edit initiated from a module's context menu
in MeVisLab, this MDL tree is created again with all module data in the module help being updated
automatically. The texts that the user adds in the actual “Edit Help” step are merged with the updated
data. If the module has changed in structure, e.g., elements, fields, or enumerators are moved or
renamed, this will be handled as follows: deleted elements will be removed, added elements will be
added, renamed elements will be renamed, and a help text will be added to the element.

Figure 27.22. Automatically Documented Elements

&l MeVisLab MATE Debug - [OrthoSwapFlip.mhelp - C:/Developer/MeVisLab/Standard/Modules/ML/MLCoordUtils!
7% File Edit View Window Debug Extras Help

Attached Module: OrthoSwapFlip Reload Goto Windows « Files m » » G

Qutline g X | b OrthoSwapFlip. mhelp

Purpose - _|

Details
Interaction
Tips
4 Windows
Default Panel
4 [nputs

. screenshot:: _default

4 Qutputs

m

4 Pgrameters
4 Visible Fields
Use Global Input Image (useGlob...
4 Mode (mode)
UseSwapFlip
UseViewDir
4 View (view)

Cither

Upon creation, the following information from module sources is extracted and added to the module help:

202


https://www.sphinx-doc.org/en/master/

MATE

» Windows: For each window of the module, an outline entry with the respective screenshot directive
is added.

 Inputs: Each input is added as outline entry. Available comments are added as documentation for
the respective inputs.

» Fields: All fields used in the GUI windows are added as outline entry (red italic). After that, all
fields not visible in the GUI (“hidden”) are listed (dark-gray italic). Available tooltips will be added as
documentation for the respective fields.

The conversion of the . mhel p file to HTML happens in two major steps:

» The MDL file is converted to reStructured Text (see reST) by a core macro module .

* Inasecond step, the reST format is converted to HTML via Sphinx (see Sphinx Python documentation

generator). To enable every MeVisLab user to create module help, Sphinx is provided with and
integrated into MeVisLab.

The help system is implemented in MeVisLab core libraries, this makes the automatic generation of
tooltips from help texts (and from tooltips to help text upon first creation of a help file) possible.

All module help source files are generated in a mhel p directory alongside the module definition files to
which they belong.

Resulting HTML files are placed in the Docunent at i on folder of the package.

27.9.4. Internal HTML Preview

You can tell MATE to open generated module help documents in an internal HTML view instead of the
system web browser (Section 27.7, “Preferences”). The HTML view is an additional tab in the workspace:

Figure 27.23. HTML View

Fle Edit View Window Debug Extras Help

¥ L] > Attached Module: ImageLoad Feload Windows ¥ Files

Session ‘Default (&)%) | F  imageLoad.mhelp [ - ImageLoad.html 1]
Documents - B = _']
ImageLoad.mhelp B S
ImageLoad.html [« =]
Table Of Contents Imageload
Imageload MLMadule
Purpose
Usage genre FileMain
Details
= Notes on the authors  Tobias Boskamp, Dirk Selle
DICOMITIFF format mP
Windows ackage MeVisLab/Standard
TR pi g VeVisLab/Standard
Output Fields dil MLImageFile
» outputd ;
Parameter Fields definiion mlimageFile.def
= Field Index
= By Eﬁ'-iigor'r' seealso ImageSave, Openimage,
o Read Raw Savelmage, MakeName,
« Page Size ImagelLoadMulli, LoadBase,
1S FileDirectory, DicomBrowser,
o Load File = Locallmage, ]
o Auto Load &l MLImageFormatLoad, =
| & el Ml ImnnaE arn st aus hd
Session ‘Def... | Ou.. | (4] [EX 0]

Debug Qutput

[
[

24 2013-12-05 08:35:24 Info: TextEditor: Creating module ‘ImagelLoad’ to allow for auto completion
24 2013-12-05 08:35:27 Info: Generating help for module: Imageload...
24 2013-12-05 08:35:28 Info: Help generation finished,

A

You can view the module help editor and the HTML view at the same time, by decoupling the HTML
view from the workspace as a separate window:

203


https://docutils.sourceforge.net/rst.html#user-documentation
https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/

MATE

Figure 27.24. HTML View Decoupling

£ Debug - [ImageLoad.html - /home/mbarann/Development/mms_dev/mey
Window Debug Extras Help

Attached Module: ImageLoad Reload Windows » Files
EIx] [ 7 3 iy |
= imansload il : Image Show Enclosing Folder |
@ » 2 O Copy Full Path
Close
Table Of Contents  ™|mage Coss At BuRThe
Decouple
ImagelLoad MLModule
Purpose
Usage enre laMai
Detalls g FileMain
= Notes on the authors  Tobias Boskamp, Dil
DICOMITIFF format P
AR Amsaim

By pressing the Add To Workspace button, the HTML view is returned to the workspace:

Figure 27.25. Decoupled HTML View

nageLoad.html - fhome/mbarann/Development/mms_dev MeVisLab MATE Debug - [ImageLoad.mhelp - /home/mbarann/D
@ » & [ pdd ToWorkspace | 12 Edit View window Debug Extras Help
= e - R [ 3 Attached Module: ImageLoad Reload Windows + Files «
= | —— y
Table Of Contents Imageload H Session ‘Default’ (@3] [ & |mageload.mhelp [3 |
ImageLoad = = i —
Purpose MLhodule b_i"’s @Ee A A4AFMa®» »
Usage ileMai . - -
D;tg; genre FileMain imageLoad.html =
= Notes on the authors  Tobias Boskamp, Dil ed e T
DICOMITIFF format ol P o ’
Windows sl
Default Panel "
(_..‘u::E: ,fjleld;np package MeVisLab/Standard
= output0 -
Parameter Fields dil MLImageFile
= Field Index o
= By Category definiion mllmageFile.def
o Main
o Read Raw see also  ImageSave, Openlm L
o Page Size Savelmage, MakeNz H
= Visible Fields ImageLoadMulti,
= Filenam . .
. Llcidafrfg LoadBase, FileDirec | _
o Auto Load DicomBrowser, | Session 'Def... [Ou_|| [tne 1
o g_l-;;,jnﬁle Locallmage, Debug Output &)X
e d =3
o X MLimageFormatl.nag 4971 2013-12-05 08:35:24 Info: TextEditor: Creating module 'ImageLoad' to allow for auto
o Y MLImageFormatSave || completion
o Z - MLImageFormatFile( — 2013-12-0508535521" Generatinghelpfor_r:odule: Imageload...
a 9 = MLI:nngoForn‘aIlnfoJ‘l 497] 2013-12-05 08:35:28 Help generation finished.,
'ci i 1 [l Nicaml 11T _ |7| |
4 4|
&

27.10. Session Management

MATE offers a session management. MATE can maintain multiple, named sessions and a session
consists of a list of associated files.

One default session called Default always exists and cannot be removed. New sessions can be
generated and named, and existing sessions can be cloned. This can be done either via the session
view's context menu or via the File menu.

If a session is active, all opened and created documents will be stored in that session. In MATE's
Preferences dialog, you can toggle to keep closed documents in the session.

The last active session can be set in the Preferences to be loaded on starting MATE. Note that MATE
loads the documents of a session lazily; only a tab with a corresponding title is prepared and the actual
document content is only loaded on opening that tab.

In the session and in the corresponding documents window, the so-called extended selection is enabled.
That means that multiple entries can be selected by either holding the CTRL key pressed for selecting
successively or by holding the SHIFT key pressed for selecting a range of entries.

Pressing DEL or BACKSPACE removes the selected entries. Only the default session cannot be
removed.

A single click selects a session or a document. A double click opens a session or a document.

204



MATE

Both the session and the documents window offer more options via the context menu.

Session ‘MeVisLab Manual'

g X

Sessions
Default
MeVisLab Manual

Documents

ch-Shortcuts.xml
ch-SnippetsListxml
ch-TipsTricks.xml
ch-ToolBarxml
ch-UserScripts.xml
MeVisLabManual.mldoc
ReferenceBook.xml
ch-BackgroundTasks.xml
ch-BottomBarxml
ch-CodingStyleGuidexml
ch-DebugOutput.xml
ch-Introduction.xml
ch-Matexml
ch-MenuBarxml

ch-5earchInDocumentation.xml

m

27.11. Project Workspaces

MATE offers to organize files and directories in projects, which are referenced from a workspace. Only
one workspace can be open at a time.

If no persistent workspace is open, MATE manages a default workspace, whose content and state is
lost on closing MATE. A persistent workspace can be created from the File menu by selecting Project
Workspace - New.... Existing workspaces can be opened with Project Workspace - Open... and by
selecting an entry from the Recent Project Workspaces menu. The default workspace can be restored
by selecting Close Project Workspace. A workspace can be saved under a different filename from the
File menu by selecting Project Workspace - Save As.... The default workspace can also be saved
to convert it into a persistent one.

Project Workspace: MyWorkspace

g X

|Scripﬁng\c'iew v| Filters

hd ﬁ Locallmage
} E5 FileHandling
w5 Locallmage.def
" Locallmage.mlab
2 Locallmage.py
5 Locallmage.script
- [ MyProject
b & External
. examplel.mlab
. examplelb.mlab
. examplelc.mlab
. example.mlab
. example2b.mlab
. example3.mlab
+ exampled.mlab
v [ View2D
» El Viewers
. View2D.mlab

-

m

Type to locate (Ctrl+)

27.11.1. Project Types

There are two different types of projects: regular projects and module projects.

27.11.1.1. Regular Projects

Projects are stored as files in the filesystem and provide a view of all the files and directories from
their parent directory. Files and directories from other locations can be added to the project by right-

205



MATE

clicking on the project in the workspace view and selecting Add -> Existing File or Add -> Existing
Directory... from the context menu. These files and directories are listed under the paper clip symbol
that is named External.

To create a project, go to the File menu and select Project — New..., the project will be added to the

current workspace. Existing projects can be opened with Project — Open... and by selecting an entry
from the Recent Projects menu.

Projects can be removed from the workspace by right-clicking them in the workspace view and selecting
the Remove Project entry from the context menu.

27.11.1.2. Module Projects

Module projects are automatically managed and contain all related files of the module, as well as the
parent directory of these files. It is not possible to add files or directories to these projects, except by
editing the related files and directories of the module.

If the default workspace is open, then module projects are automatically added to the workspace when
a related file of a module is opened and MeVisLab is available to create the attached module. If a
persistent workspace is open, then a module project is not automatically added. Instead, it can be added
manually by clicking on Add to Project Workspace in the attached module menu.

Module projects can be removed from the workspace by right-clicking them in the workspace view and
selecting the Remove Module Project option from the context menu.

27.11.2. Context Menu

The project workspace context menu contains different actions.

Project Workspace: MyWorkspace 5 X
|Scriph'ng View v| Filters
* [ Locallmage -
b |E5 FileH
o Local [z i’
. Local
. Open Externall
2 Local . . g
= Show Enclosing Folder
mo Local
v B MyProjec pojere Ctrl+Del
hd @ Extery
a Rename F2
ly
v exam Expand Directory

Collapse Directory
Collapse All

Sync View With Filesystem F5

o exam Show File Locator
v [ View2D T
b B Viewers 4

Type to locate (Ctrl+)

The possible actions vary depending on the selected item:

Add - File... and Add - Directory... (available on regular project's root item):

Adds an existing file or directory to the External section of the project.

* Remove Project or Remove Module Project (available on any project root item):
Removes the project from the workspace.

* New - File... and New - Directory... (available on directory entries):

Creates a new file or directory in the filesystem. New files are immediately opened in MATE.

206



MATE

 Remove File From Project and Remove Directory From Project (available on immediate children
of the External section):

Removes the file or directory from the project.
» Delete (available on any file or directory object):

Deletes the file or directory in the filesystem.

‘ Note
Deleting a file or directory also removes the project reference to it if it was an external
resource.

Deleting a file or directory does not remove the related file or related directory entry of
the module. This must be done manually.

* Rename (available on any file or directory object):

Renames the file or directory in the filesystem and in the project.

‘ Note
Renaming a file or directory does not adapt the related file or related directory entry of
the module. This must be done manually.

e Expand [...] and Collapse [...] (available on any item with children):
Expands or collapses the item in the workspace view.
» Collapse All (available everywhere):
Collapses all items in the workspace view.
» Sync View With Filesystem (available everywhere):
Scans the filesystem for changes that are not yet reflected in the workspace view.
Usually you do not need this since this is done in regular intervals.
* Show File Locator (available everywhere):

Shows the file locator, which is the search input line below the workspace view.

27.11.3. Views

MATE offers two different views for the project workspace: the Scripting View and Filesystem View.
Those views allow to manage exclude filter rules for the displayed files and directories. The Scripting
View includes several rules by default, which aim at showing only relevant files and directories for
scripting MeVisLab modules.

Project Workspace: MyWorkspace 5 X

Fiters =

Scripting View =
cripting View
Filesyste

* [ Locallmage
} E5 FileHandling

- Locallmage.def

. Locallmage.mlab

m View

2 Locallmage.py

» Scripting View only shows the relevant files of your projects; many temporary or generated files are
filtered away.

207



MATE

» Filesystem View shows all files in your project by default.

The set of filtered files can be configured for both views:

Inputs {

- . x 5
Project Workspace: MyWorkspace =) . Field inTmage {

[Scrlphng View '][ Filters 'J 7 internal¥Name = wview.image
¥ [§ Locallmage v *ftmp

» E FileHandling
o Locallmage.def
. Locallmage.mlab
2 Locallmage.py
e Locallmage.script
hd E MyProject
v @@ Exteral
% mevis.py

= examnlel .mlah

27.11.4. File Locator

Many files can be contained in the workspace view. To quickly find certain files, you can use the file
locator input field below the workspace view:

*bin[*.dlI[*.dmg|*.dylib|*.exe[".lib[*.pkg[*.pdb|*.s0™|".pyc
P

v
v *.bat]*.cbp|*/Makefile*|*.prf[*.pri[*.pro[*.sh|* vcproj|* voproj|* xcodeproj[*. mlworkspace*|*.mlsession|*.mlproject
v

*c[*.cpp|*h[*hpp

Edit...

}
18 Field inInvPostLUT {

EH 16 e.g. for overlays independent of LUT settings"

Project Workspace: MyWorkspace 5 X

[Scriph'ng View V] Filters

* [ Locallmage |«
} E5 FileHandling

Locallmage.def

Locallmage.mlab
Locallmage.py
Locallmage.script

Z BN BN

yProject
External
' mevis.py

gl

m

L)

' examplel.mlab
+ examplelb.mlab
. examplelc.mlab

' example2.mlab

. example2b.mlab
exampled.mlab
. exampled.mlab

- [ View2D
b E5 Viewers -

2 exam|

..b/SoManagedInteraction Examples/examplel.mlab
examplel b.mlab .../SoManagedinteraction Examples/examplel b.mlab
examplel c.mlab .../5oManagedinteraction Examples/examplel c.mlab
example2.mlab ..b/SoManagedinteraction Examples/example2.mlab

example2b.mlab .../SoManagedinteraction Examples/example2b.mlab

example3.mlab ..b/SoManagedinteraction Examples/exampled.mlab

exampled.mlab ..b/SoManagedinteraction Examples/exampled.mlab

Show All...

This input field can be closed by pressing Escape when the input focus is in the input field. It can be
opened again with Show File Locator from the context menu in the workspace view, or by pressing
CTRL+K.

27.12. GUI Editor

MATE offers basic GUI editor functionality. The GUI editor is not a straightforward WYSIWYG editor but
provides lists of defined fields, available GUI controls, a preview window, and a tag editor. All those views
and data representations are synchronized and most of them offer basic drag-and-drop functionality.

The GUI editor in MATE is not meant to support the creation of large and complex user interfaces,
such as application interfaces, but should provide a fast and easy way to create a simple module panel
in a short amount of time. Most importantly, the GUI editor provides a panel preview that is updated
in realtime while writing the GUI description, while configuring it via drag-and-drop, or while adjusting

208



MATE

parameters of single controls. The preview also shows the scope of edited GUI controls and layout
groups for an easy orientation, which also helps learning how to build a panel for MeVisLab modules.

In the screenshot below, the GUI description of the Mask module is being edited in MATE's GUI editor.
In the editing window, the text cursor is set to the description of the field bl endi ng; the same field is
automatically highlighted in the outline to the left, and also highlighted with a yellow rectangle in the
preview to the right. Those three representations are all synchronized. Selecting another field in the
outline leads the preview to show the new selection and sets the text cursor in the editing area to the
corresponding field. Additionally, clicking on a field control in the preview highlights the field in the outline
and places the text cursor in the field's description in the editing area.

Hnsiis v e S = |

REIE:

=
4 P Attached Module: Mask Reload Goto Windows = Fles = SWN =

|Outline 8 X[ F  dhMatesm o Mask. seript | Preview 8 x
# Description /f **Insertlicense** co
Fi:ld mode - i nserriacEns ae Moda: Masked Crignal
Field blending j Background: o
4 Window I =] —
4 Category Main recatediame = "MaskMode" }
4 Vertical (V| scale preview
Field mode ne = "blendFactor®™
Field background Tag Editor: Field g X
Field blending | . Tags
= General | Miscellaneous | Layout | sty
12 Tag ° Value Type *
3 acceptDrops False BOOLE
{ in € dependsOn  (mode == "MaskOve... FIELD
- { edit True BOOL
mode { } enabled False BOOL
. ;.:.acquau"d 1 hintText STRIM
ndsOn = "% (mode == "MaskedOriginal®) || ({(mod minLength 5 UINT |~
« il »
ble;d;?q ¢ Possible subgroups
] comboltems
Session ‘Default 8 x| 24 On = "* [mode == "MaskOverOriginal™) || (m style
Sessions 26 }
Default =R !
Documents <[ i n r
ch-Matexml | Append
Mask.script - - - 2 - =
P ‘Window { Categary Main { Vertical { Field blending { Linz 23 | TagEditor: Field | MOL Controls | Fields
Debusg Cutput a x

Drag-and-drop is implemented for the most views of the GUI editor. In the outline, controls can be re-
arranged by drag-and-drop, fields from the Fields can be dropped onto the editing area to generate a
control description (another window pops up to offer a selection how that field should be displayed), and
general controls can be dragged out of the MDL Controls view onto the editing area.

If the text cursor is in a control's description in the editing area, the Tag Editor offers a list of all available

tags, with the currently set tags displayed in bold. All shown tags' values can be edited in the Tag Editor.
If an edited tag changes the visualization of the field, the preview is updated accordingly.

27.13. Scripting

MATE can be augmented by Python scripting, very similar to the Section 4.8, “User Scripts” in MeVisLab.
For the scripting API, please refer to the MATE and the MATEDocument scripting references.

In addition to the user scripts, MATE can also execute a startup script. To edit that script, choose Edit
MATE Startup Script File from the Extras menu.

Other than that, custom user scripts for MATE are just like the user scripts in MeVisLab. MATE comes
with some predefined user scripts that manage SVN operations on files and directories, as well as
implementing some string functions on text selections. Have a look at those scripts to learn more.

209



MATE

27.14. Pylint Integration

MATE has Pylint integration: Python files are automatically checked for errors with Pylint if Pylint is
installed for Python in the user's Python package directory. (This is not the system's Python package
directory!)

27.14.1. Installation

Installation of Pylint can be done with the pip tool, e.g., from a Python installation with the command line

pip install --user pylint orfromthe Preferences dialog of MATE in the Python section:
@ MeVisLab MATE Preferences % X
General
MDL Python
Python
JavaScript Indentation
Maodule Help =
Appearance Tab Size: |U5e General Default o |
Shortcuts Indent Size: |4 = |
Extras

[ Enable line wrap

Debugger

[ Break on Python warnings

Code Checking

Linter to use: pylint ~
pylint is installed Upgrade
[ Run automatically Linter timeout: Seconds

[] Show error check view

Pylint message reference URL: | http://pylint-messages.wikidot.com/messages:%1 |

Disabled Checks: | C,R bad-indentation unused-wildcard-import, global-statement |

Inference Limit: |[J |

Reset Disabled Checks to Default

Optional pylintrc File: | | Browse...

Code Formatting

black is installed Upgrade Run On Save
Refactoring
rope is not installed Install

Cancel Apply

‘ Note
Automatic installation from the Preferences dialog requires an Internet connection.
Python code checking can be disabled from the preferences even if Pylint is installed. You can also

configure which checks should be suppressed (see the Pylint message documentation for this); code
convention warnings, recommendations, and some other warnings are not displayed by default.

27.14.2. Usage

Pylint checks are performed automatically on Python code when Pylint is installed and activated. Results
are displayed on the left side of the text file and indicated on the right side of the scroll bar for a complete

210


https://www.pylint.org
http://pylint-messages.wikidot.com/all-messages

MATE

overview. Result symbols are displayed according to the highest message category for that line, and
the tooltip for each symbol contains the error message(s) for that line:

8

a Locallmage.py™® D |

def nameChanged|() :
ctx.expandFilename (ctx.field ("name"™) .stringValue () )
er.exists (exp) :
r.isDir (exp):
logWarning ("LocalImage.name — File is a directory (" + exp + ")™)

ctx.field ("Imgload.filename"”) .setStringValue (exp)

B T BT T R R I

.logWarning ("LocalImage.name - File does not exist (" + exp + ")")
ctx.field ("ImgLoad.filename"”) .setStringValue ("")

&,
[
f
3
£
¥

WL L DO LY LY L0 DO LA L L Rd ORI R R

B e I YT R ST

def fileDialog():
= ctx.expandFilename (ctx.field ("name™) .stringValue()):
fi BEFileDizalog.getOpenFileName (exp, "", "Cpen file™)

m

TS
oo

ctx.field ("name") .value = ctx.unexpandFilename (file)

| Undefined variable ‘files' i

def fileDialog : if : ’1 @2 @1 Line 44

Below the Python text, an indicator displays the total number of messages generated by Pylint. Clicking
this indicator will jump to the next result in the text. A tooltip will show how much time was spent in
the last check run.

def fileDialog():

42 ctx.expandFilename (ctx.field ("name") .stringValue {} ) =
HE FileDialog.getOpenFileName (exp, "", "Cpen file"™) 1
44 les|: B
45 tx.field("name") .value = ctx.unexpandFilename (file) [ ]
46 return

def fileDialog : if : ’1 @2 @1 Line 44

Errors were detected by Pylint. = 22

Click to jump to next error line.

Time spent in check: 0.94s

A busy indicator will be shown in this place while a Pylint check is performed.

Note

The Pylint integration is not perfect, and Pylint may not interpret the code in the same way
as MeVisLab, which means it might raise complaints about unknown identifiers even if the
code executes without issues in MeVisLab.

Note

Pylint runs continuously while the currently edited Python file changes, and the process will
run at full steam in the background. If your computer has only one available CPU core, you
may not want to use this feature.

27.15. Black Integration

Optionally, you can install Black, which provides automatic code formatting for Python code in
accordance with PEP-8.

By default, CTRL+ALT+L runs the code formatting on a Python file, formatting and saving the file. You
can change the keyboard shortcut in the “Shortcuts” section of MATE's preferences.

You can automatically format an edited Python file when saving it manually by enabling the Run On
Save option.

211


https://pypi.org/project/black/
https://peps.python.org/pep-0008/

MATE

The formatting uses the default settings for black. There are a few settings that black allows to configure,
most notably the maximum line length, which defaults to 88 (the current de-facto standard). To change
these settings, you can create a configuration file named pypr oj ect . t onl in the package root or in one
of the subdirectories below which your Python files are located. For example, to change the maximum
line length to 120 characters, you can use:

[tool . bl ack]
line-length = 120

in your pyproj ect. tom file.

27.16. Rope Integration

Optionally, you can install Rope, which provides Python code refactoring such as renaming and function
extraction.

Once Rope is installed, the context menu in MATE includes the entry Refactoring, which opens a
submenu with the entries Rename and Extract Function, depending on the current selection.

’ Note
For renaming to work properly, you need a workspace and an active project (see
Section 27.11, “Project Workspaces”). The file where you want to rename something must
be in the active project. Otherwise, renaming defaults to a string replacement.

‘ Note
The renaming parses all files in the workspace, which may take some time depending on
the number of files in that workspace.

Tip

Rename and Extract Function take effect immediately; the changed files are saved, and
the operation cannot be undone. Ensure you save the original files or store them in your
source control system, such as SVN or Git.

27.16.1. Rename

When you select this entry, a dialog opens for entering the new name. After scanning your workspace,
a window displays a DIFF view listing the files where strings will be renamed, along with the proposed
changes in each file. You can then either press Perform Changes or Cancel to proceed or cancel the
operation.

27.16.2. Extract Function

When you select this entry, a dialog opens for entering a name for the new function or method. You can
then either press Yes or Cancel to proceed or cancel the operation.

212


https://black.readthedocs.io/en/stable/usage_and_configuration/the_basics.html#command-line-options
https://black.readthedocs.io/en/stable/usage_and_configuration/the_basics.html#configuration-via-a-file
https://github.com/python-rope/rope

Chapter 28. Tips and Tricks
28.1. Command-Line Options

MeVisLab can be started with command-line options.
Windows: To start MeVisLab from the command line, enter the following:
Mevi sl ab [ OPTIONS] [networkfile].mab [networkfile2].nmab ...

Linux: To start MeVisLab from the command line, enter the following:

<nevi sl ab install path>/bin/Mevislab [ OPTIONS] [networkfile].mab [networkfile2].mab ...

To get a list of all available options, start MeVisLab with the - hel p option. This will open a window with
all available options.

213



- ~Pwant

SMuAlTo TVIVUVUTOLO UiTLuilviTeo 1TV TToevy Tile .

-noscan Uses existing Modules cache files and does not
scan Modules directories for new files.

-quick Tips anf jEdekgxisting Modules cache files and does not
check for any file changes (allows a very quick
restart).

T&bic 281 Command-Line Options , , , :

-diagnosis Shows a diagnosis console while starting.

-logfile FILENAME

Sets the logfile. Overwrites any logdfile from the
. pr ef s file and the registry.

-userscript FILENAME [argl arg?2....]

Runs the given user script (see Section 4.8, “User
Scripts”). Instead of the filename, the name of the
Action can also be given.

-runmacro MACRONAME argl arg?2....

Runs a macro by calling its consoleCommand
(requires a license with ‘cmdline’ feature).

-runapp APPNAME argl arg?2....

Runs a MeVisLab application, passing arguments
to its runApplicationCommand, and opening the
application's window afterward (requires a license
with ‘cmdline’ feature).

-runappbatch APPNAME argl arg2....

Like -runapp, but does not open the application
window and exits after the execution of
runApplicationCommand in conjunction with the -
noide option.

-appname APPNAME

Specifies the application name that is used when
accessing registry keys and settings.

-showfullscreen

Shows the application's window fullscreen.

-showmaximized

Shows the application's window maximized.

-help Shows all available command line options.
-nosplash Does not show MeVisLab's splash screen.
-nowelcome Does not show MeVisLab's Welcome screen

(debugging option).

-singleinstance

Only allows one MeVisLab instance to be started
and passes the files of the command line to another
running MeVisLab (debugging option).

-noninteractive

Prints error messages instead of showing error
dialogs.

-hide-diagnostic-mevislab-messages

Prevents MeVisLab from printing diagnostic
messages like “Loading package MeVisLab/IDE
(Installed) from ...".

-show-diagnostic-mevislab-messages

Tells MeVisLab to print diagnostic messages
like “Loading package MeVisLab/IDE (Installed)
from ...".

-disable-logging-timestamp

Prevents MeVisLab from printing the timestamp
when logging output.

-enable-logging-timestamp

Tells MeVisLab to print the timestamp when
logging output.

-exec EXECUTABLE argl arg?2... ---

Runs the given executable with the given
arguments on startup of MeVisLab.

The --- delimiter tells MeVisLab that the
arguments end here and that the rest of the
commandline are normal MeVisLab options. The
executables are terminated again when MeVisLab
is exited.

-v/-version/--version

Prints the version of MeVisLab.

Some of these options are not available when using the MeVisLabStarter executable on

Windows; if required, use MeVisLab instead.

214




Tips and Tricks

28.2. MeVisLabPackageScanner.exe

MeVi sLabPackageScanner . exe is a tool with which you can search for and analyze packages. Itis used
by various others tools; for example, it is used by the ToolRunner.

MeVi sLabScanner . exe is located in MeVisLab/Packages/MeVisLab/IDE/bin/.

If you enter no arguments or - hel p, the help file will be displayed automatically.

Figure 28.1. MeVisLabPackageScanner Help

C:~2>c snprogrammesmevis lab2 . Bavc8spackages mevislabsideshinsmeviszlabpackagescanne
. exe
MelUisLabPackageScanner [arguments]
fvailable arguments:
—helps-h
print this help page
—run program argl arg? ...
run the given program with given args (sets the MeUisLabh Package environment
variahles>
—runForEachPackage program argl arg2 ...
run the given program for each MelUisLabh Package{(sets the MeUizLab Package en
vironment variables)
replaces EPACKAGER in the arguments with the root directory of each package
—requirePath RELATIVE_PATH_IN_PACKAGE
filters the packages. only uses packages that contain the requiredPath. e.g.
—regquirePath Modules
—verhose
prints verhose scanning information
—info
prints information about all found packages
—scanPath
sets a scan path to search for packages. the default paths are ignored when
scanPath is set
—printiMLInfo
prints the environment variabhles in BML format
—cleanupPackages
cleans the installed packages by removing the Modules cache file and the Mod
ule Reference html files
—printColonSeparatedLibPaths
prints the library paths of all packages joined by colon

28.3. Connecting Inventor Engines to ML
Modules

There are two types of Inventor modules: nodes (basically objects with a state) and engines (basically
functions/actions, for example, a calculator or a time counter). Inventor modules of the engine type
cannot be directly connected to ML connectors. In this case, a field bridge has to be used.

215



Tips and Tricks

Figure 28.2. Field Bridge Example

({74 Panel Constantt. S | B[ 5 ]
x: [ 256
¥:

z [ 1
~Image Data

,_, Panel 5. = l? | 2 Data Type: Iunsigned intd 'l
aTimeCounte

Fill Value: g |17r
¥ Auto Apply |

Step:

¥ On -

Frequency: SolnventorFieldBridge
Duty:

Time In: 6137608.308

Sync In: Sync In |
Reset: I 0

output: [P EngineOutput
Sync Out: Englne{)utput

Integer
A:=-b |

Min:
Mane:

28.4. Using SyncFloat to Reduce System
Load

When creating parameter connections between ML modules and Inventor modules, system load may
increase considerably. This increase is due to the delay queue handling of Open Inventor modules,
which may cause notification loops. To avoid this, the SyncFl oat or SyncVect or modules can be used.

SyncFl oat is a macro module offering an input parameter Fl oat 1, an output parameter Fl oat 2 and
an Epsi | on parameter. As long as the difference between the floating-point fields Fl oat 1 and Fl oat 2
is smaller than Epsi | on, SyncFl oat filters the notifications. Only when the difference between Fl oat 1
and Fl oat 2 is larger than Epsi | on, notifications are sent. For vectors, the similar module SyncVect or
is available.

In the following paragraphs, the two basic situations in which SyncFl oat reduces load are described.

28.4.1. Case 1: Two Inventor and One ML Module
Connected in a Circle

If a circular parameter connection between two Inventor modules and one ML module is created, the
system load will increase because of a constant notification of the fields. To avoid this, the SyncFl oat
module needs to be inserted, either between the Inventor modules or the ML and an Inventor module.

216



Tips and Tricks

Figure 28.3. SyncFloat Example — ML and Inventor Modules

~Image Size
) IE
= IE
73 128

~ImageData———————————— o -
Data Type: Ifk)at vl
" S0Sot Bottom Radius: ]
Fill Value: =-b|11 SaSphare I
Height: =->| 11

v Aut .
ki Apply . — ~Tesselation————————
iyl T Sides: I—o

— Seftings

- Settings Sections: | 0

Radius:ﬂ-»| 11

~ Tesselation

Subdivision: I 1]

28.4.2. Case 2: A Macro Module (Including an Inventor
Module) and Another Inventor Module Connected in a
Circle

If a macro module encapsulates an Inventor module with fields that can be connected, and a circular
parameter connection is established between the macro's Inventor field and another Inventor module,
this also increases the system load. To avoid this, the SyncFl oat module needs to be inserted between
the macro module and the Inventor module.

217



Tips and Tricks

Figure 28.4. SyncFloat Example — Macro and Inventor Modules

Main | Appearance | CineM *
Inventor In/Output

[~ Show Inventor input fields
[ Show Inventor output field Floatt: |—5
Voxel Value | Color Chanm ﬂl Float2: |->|—6
¥ Show all voxel components Epsilon: W

Component Precision: 45

— Seftings
Start Slice: | 0
Slab: b | 6

Blend Mode: [Replace -]
Time Point: I—{J ~Seftings
MaxTime Point: | 0 Parts: ALL
Voxel Filter: Im ne Bottom Radius: l—ﬁ
¥ Snap to center Height: b I—G
[¥ Use standard keys ~ Tesselation

[ Enable slicing Sides: I—o

Reset LUT Sections: I a

~Rendering

[¥ High resolution render area

28.5. Printing MeVisLab Networks

MeVisLab offers no print function. Networks have to be captured as image and printed via image
processing software.

On Windows, press Print and paste the result to Paintbrush or a similar program.

On Linux, use your tool of choice, for example, Gimp.

Note
For better printing result, the Network Rendering Style in the Preferences can be set to

print styles, see Section 4.3.7, “Preferences — Network Appearance”.

28.6. Multi-threading in MeVisLab
28.6.1. Multi-threading in the ML

In order to profile modules using multi-threading, use the view described in Chapter 9, ML Parallel
Processing Profiler View.

28.6.2. Background Tasks

The Background Tasks feature allows for sending complete tasks into the background of MeVislab, for
example to disconnect calculation tasks from the GUI functionality. However, Background Tasks handle
only complete tasks and will not allow breaking a task into a number of parallel processes.

218



Tips and Tricks

For more about Background Tasks, see Chapter 7, Background Tasks and the ToolBox Reference,
chapter “Background Tasks".

28.6.3. Modules for Multi-threading

Many modules do not have multi-threading enabled because it requires a good understanding of
common multi-threading pitfalls to determine if a module is already thread-safe or what needs to be
done to make it thread-safe.

28.7. Set Open Inventor Override Flag
(Inventor Modules)

In the context menu of Open Inventor modules, the option Set Open Inventor Override Flag is available
(see Section 3.9.1, “Module Context Menu”). This option has an effect on how Open Inventor scenes
are rendered.

@ Tip
For information on Open Inventor scenes, see Getting Started, chapter “Creating an Open
Inventor Scene”, or the Inventor Module help, first chapter.

Here is an example for the effects of the Override option:

Figure 28.5. Open Inventor Scene Without Override

i Viewer SoExaminerViewer |£IEIL|

SoExaminer\Viewear

X

L]
SoSeparator;
[ 1

]
]

-]
[

w w
rad blue
SoMaterial SoMaterial

| Q<O 8

Rotx Roty Dolly

In a normal scene rendering, the blue color overrides the red color. However, if in the context menu of
SomMat eri al (red) the Override Flag is set, the red color overrides the blue color.

219



Tips and Tricks

Figure 28.6. Open Inventor Scene With Override

SoExaminerViewear
o A

L]
SoSeparator,
[

fi#

w
redl blue
| Solatarial SoMaterial
Show Window
Instance Name

Help

Run In Separate Process

Reload Definition 5 Restore Default Values

Related Files (2) L4 L\\)
[ ENIRRRAREE) -
183 [Ty _ Dolby Show Enclosing Folder Tests 3
Grouping L4 |

‘ Note
The Override Flag only works for modules within the traversing route. For example, if
SoMat eri al (red) were connected to a SoSepar at or module, the override would have no
effect outside this SoSeparator.
In addition to the override on module level, an ignore flag for each parameter can be set in the context

menu of the automatic panel. In the example with the module override, if the red color is ignored, all
colors are overridden with the default gray.

Figure 28.7. Open Inventor Scene With Ignore Flag (Red)

SoExaminerViewer
{ T
L_J

SoSeparator

7 Viewer SoExaminerViewer |ﬂl

L_J
blue -
SoMaterial SoCane

i1 MaterialEditor ..

Ambient Color:

—
red.diffuseColor [String]: 0.8 0.196078 0030196

Diffuse ¢

Emissive CopyName

Specular  Copy Value

Paste
Shinines

Edit Field Value...
Restore Default Value

Rotx Roty Dolly

Transpa

Show Defined Enum Items

v

Select Field For Connection

Cannect Frnm -

220



Tips and Tricks

The ignore flag can also be set in the Somat eri al (blue) panel. In the example without module override,
if the blue color is ignored, the red color is visible.

Figure 28.8. Open Inventor Scene With Ignore Flag (Blue)

Ambient Color:

i I
Diffuse Colo— .
blue.diffuseColor [String]: 0164706 0.301961 0.8

Emissive Co
Copy Name

Specular Co  Copy Value

Paste

Edit Field Value...

Restore Default Value

Shininess:

Transparenc

Show Defined Enum Iterns

v Set Open Inventor Ignore Flag
Ly

Select Field For Connection

Connect From -

221



Chapter 29. Settings File and
Environment Variables

MeVisLab reads a settings file, mevi sl ab. prefs, on startup that can be used to configure certain
settings that may not be available through the GUI.

There are also some environment variables that change the behavior of MeVisLab in certain places.

29.1. Possible Locations of mevislab.prefs

This settings file is searched for in various places. If the file exists in more than one place, all files are
evaluated, but if contradicting settings are given, the last file wins. The searched locations are:

* First the directory of the MeVisLab executable (. ../ MeVi sLab/ | DE/ bi n).
* Then, depending on the platform:
¢ Windows
1. The user's home directory
2. The user's document folder
3. The folder "MeVis" in the user's document folder
e Linux
1. Directory $HOMVE/ . | ocal / shar e/ MeVi s/ MeVi sLab
2. The user's document folder
3. The folder "MeVis" in the user's document folder
(This can be suppressed by adding the -i gnor epr ef s command line option.)

» The file name is defined by the MEVISLAB_PREFS environment variable. Also suppressed by -
i gnoreprefs.

» The file name is specified after the - pr ef s command line option.

For applications created with MeVisLab, the same search rules apply. However, the "MeVisLab" part
in the file, directory, or environment variable name must be replaced by the application name. This
replacement should use uppercase, lowercase, or camel case corresponding to how MeVisLab is
spelled in the rules provided above.

29.2. Options in mevislab.prefs

The syntax of nevi sl ab. prefs is as described in the MDL Reference. All settings must be contained
in a "Settings" element like this (example):

Settings {

// show wi ndows when network is | oaded
Rest or ePanel s = YES

/] autoreload the MDL/script files when a wi ndow of a nodul e i s opened
Aut oRel oad = YES

222



Settings File and
Environment Variables

/'l aut osave networ ks when changed
Aut oSave = YES

The settings file can contain any variable name. The value of a variable can be queried from scripting with
MLAB. hasVari abl e, MLAB. vari abl e, and MLAB. vari abl el sTr ue. Variable names are case-sensitive.
Besides self-defined variables, there are some pre-defined variables for various - sometimes very
specialized - purposes, which are listed in the following table. This list does not include (with some
exceptions) variables that can also be set from the Preferences dialog in MeVisLab.

Name Type Description
Development
PackagePat hs Complex This allows for the definition of additional
user packages that should be available in
MeVisLab.

This attribute has two subattributes:
pat hRoot and pat h. pat hRoot specifies
a root path to which all subsequent pat h
entries are relative. pat h should typically
consist of a pair of package group and
package, separated by a slash.

Example:

PackagePat hs {

pat hRoot = "C:/Users/a_user/Docunent s/ Packa
pat h = MyPackageG oup/ MyPackage
pat hRoot = "C:/Users/a_user/ Docunent s/ Devel
pat h = MyOrgani zat i on/ Packagel
pat h = MyOrgani zat i on/ Package2
}
Logfile File path Writes all console output to the specified

file. You can use $(LOCAL) to reference
files relative to the settings file.

Rest or ePanel s Bool Shows module panels when the network
is loaded. It is also available from the
Preferences dialog.

Aut oRel oad Bool Automatically reloads the MDL/script files
of a module when a module panel is
opened (recommended for fast prototyping;
no explicit module "reload" is required). It is
also available from Preferences dialog.

Aut oSave Bool Automatically saves networks when
changed. It is also available from
Preferences dialog.

Ver boseScri pting Bool Prints messages when entering and leaving
command-handling scripting functions.

Showvbdul esByUser Bool By default, deprecated modules (or
modules in other hidden module groups)
do not appear in the module search. If this

223



Settings File and
Environment Variables

Name

Type

Description

option is set, modules by the current user
will always be shown.

‘ Note
The author name for a module

must be exactly the same
as the wusername in the
Preferences dialog.

Ext er nal Docunent ati onUr |

URL

Overrides the location of the MeVisLab
documentation, giving the base path as a
URL. A suitable default is, e.g.: https://
www. mevi sl ab. de/ docs/ current.

User Spel | checkFi |l e

File path

MeVisLab has an integrated spell checker
(based on Hunspell) for English text in the
module help editor. With this option, users
can include an extra dictionary file.

Pr el oadModul e

Module name

With this option, modules can be loaded
at startup of the IDE (created in an
invisible network), which can in turn execute
code and, for example, initialize preference
variables. This tag can be specified multiple
times.

di sabl el medi at eDebug-
Cut put Consol eRefresh

Bool

The MeVisLab debug console, by default,
refreshes immediately after each output
to remain up-to-date (for example, in
the case of crashes). However, this can
lead to problems with event handling
and may slow down performance. Disable
immediate refreshes by setting to YES;
then the console is only updated when
MeVisLab is idle or processes events for
other reasons.

General

ExtraD | LoadPat hs

Directory path

Windows only.

Sets additional directories from which to
load DLLs. Multiple paths can be specified,
separated by “;"; this entry can also be
provided more than once.

It is also possible to reference environment
variables in a path with ${}, e.g.,
${ CUDA_PATH V11_4}, or even ${ PATH} .

M_CacheSi zel nMB

Integer

Sets the cache size for the ML image
processing (in MB). It is also available from
Preferences dialog.

OverrideCursorDirectory

Directory path

Allows the specification of a directory that
can contain alternative mouse cursors to be
used in Inventor scenes. See the comments
in $( MLAB_ROOT) / MeVi s/ Foundat i on/
Sour ces/ M.l nvent or GUI Bi ndi ng/

SoQx Vi ewer Proxy. h.

224




Settings File and
Environment Variables

Name

Type

Description

Vi ew2DEnabl eQ@ Font Renderi ng

Bool

Use Qt for rendering fonts in SoView2D
and similar viewers if set to YES (default).
Otherwise, it uses a simpler font rendering
engine that lacks Unicode support.

GL2DFont _Def aul t Syst enfont

Name

Sets the font to use for font rendering.

GLDef aul t Syst enfont Proporti onal

Name

Same as above, but only affects the
simpler, not Qt-based font rendering.

d obal Scal eFact or

Float

Scales all MDL panels with this factor.
Default is 1.

gm Style

Name

Defines the QML style to be used in the
QuickView control.

Deployment

Rel easeOpt i m zed

Bool

If set to YES, MeVisLab will not look for
updated MDL/script files after the initial
load. It is used for application deployment
(defaults to YES for applications and NO for
IDE).

LowPriority

Bool

Runs MeVisLab with a low process priority.

Spl ashPenCol or

Hex value

Sets the color with which text is drawn on
the splash screen. It must be a 6-digit hex
value (without '#").

Spl ashHi deMessages

Bool

Hides initialization messages on the splash
screen.

Advanced

Pyt honMul ti Thr eadi ng

Bool

If set to NO, it disables Python multi-
threading support. Disable this in case of
issues.

M_Rest ri ct MaxNuniThr eads

Integer

Sets the maximum number of threads to be
used by the ML image processing pipeline
for standard image processing. The default
is the number of virtual cores in the system.

Cor eMaxNuniThr eads

Integer

Sets the maximum number of threads to
use by the GVR framework. The default is
the number of virtual cores in the system. It
is also available from Preferences dialog.

Enabl eHi ghPr eci si onLoggi ng-
Ti meSt anps

Bool

If enabled, time stamps in the log will be
printed with a higher precision (the actual
precision depends on the system). This can
be useful if the exact timing of events is
important.

Di sabl eMbdul eW ndowsPer si st ence

Bool

If this option is ON, . ni ab files will not store
the position and state of module panels if
they are closed at the time of saving. This
can reduce the changes displayed in DIFF
tools when using a version control system.

Ful | screenFl i cker Fi x

Bool

If set to ON, it fixes flickering of fullscreen
panels with OpenGL content (for some
setups).

Pr ef er Rel easeMbdeExecut abl es

Bool

If set to NO, Debug mode tools (according
to the debug suffix of the executable

225




Settings File and
Environment Variables

Name

Type

Description

name) will be called from MeVisLab if
MeVisLab is in Debug mode. Otherwise, the
faster release mode variant will always be
preferred. The default is YES.

St or eMbdul eCachel nUser Li brary

Bool

Sets whether to store the module cache
files in a directory outside the installation
directory. Default is NO.

Dont Show consl nMenus

Bool

If this option is set, pop-up menus do
not show icons for their entries (on some
platforms this is a no-op, as there are no
icons shown anyway).

Di sabl eLi censeExpi r ati onWar ni ng

Bool

If this option is set, MeVisLab (and
applications based on MeVisLab) will not
display a warning if the current license is
about to expire.

29.3. Environment variables

Similar to the values in the mevi sl ab. pr ef s file, there are also settings that can be configured through
environment variables, primarily to correct certain issues of the platform. We have collected some here

that might be useful for you:

Name

Type

Description

General

M_LAB_ROOT

Directory path

Sets the path where the MeVisLab
packages are installed. This must be
set if you call some shell scripts that,
e.g, create compiler projects or generate
installers. The Windows installer will set this
automatically.

Fixes

MLAB_FORCE_MESA

Bool

(Windows only) If set to 1, MeVisLab will
always attempt to use the Mesa software
OpenGL driver supplied with the SDK. This
can be used if the system OpenGL driver
does not work.

MLAB_QT_OPENGL_W DGET

"old" or "new"

Qt deprecated the old OpenGL widget with
Qt 5. Since the first versions of the new
widget had problems on some systems,
you can switch back to the old widget
by setting the value "old" - but since the
widget is deprecated you might run into
other problems.

M.AB_OPENGL_10BI T

Bool

Forces MeVisLab to support 10-bit color
depth in OpenGL if the auto-detection fails.

M.AB_TTF_FONT

File path

Overrides the font to use for font rendering.
It must be a true type font.

M_.AB_DI SABLE_BUSY_CURSCR

Bool

Disables the display of a busy cursor when
MeVisLab is calculating.

M_LAB_SOQT_ROUNDUP_WHEEL DELTA

Bool

Fixes misbehaving mouse wheel in Inventor
views (for some buggy mouse drivers).

226



Settings File and
Environment Variables

Name Type Description

SOvVI EV2D_NO_SHADER Bool Toggles the use of OpenGL shaders in
SoView2D views.

Debugging

MEVI SLAB_DEBUGGER String (Linux only) Sets a debugger command to
call if MeVisLab crashes. The command is
called with executable name and process
ID.

M_AB_DEBUG PYTHON | MPORT String Prints additional information about imports
occurring in Python code.

| V_DEBUG_SHADER, Bool (Used by SoShader framework) Receives

| V_DEBUG SHADER LOG,
| V_DEBUG SHADER STRI NG

and

additional log output to debug. shaders.

GVR (Giga Voxel Renderer) - OpenGL Compatibility

GVR_NO 3D TEXTURES Bool Toggles the use of 3D textures in the GVR
rendering.

GVR_NO _G.SL Bool Toggles the use of OpenGL shader
language.

GVR_NO_NONPOW2 Bool Toggles the use of textures that do not have
a size that is a power of two.

GVR_NO_GEOVETRYSHADER Bool Toggles the use of geometry shaders.

GVR_USE_FLOAT_LUT Bool Uses look-up-tables with float values
(instead of integer).

GVR_NO_BI NDLESS Bool Toggles the use of bindless textures.

GVR_PRI NT_SHADER WARNI NGS Bool Prints additional diagnostic messages
when OpenGL shaders are compiled.

Special Settings

MLAB_GPU_AFFI NI TY Integer (Nvidia graphics only) Forces MeVisLab to
run on a specific graphics card if several are
installed on a system.

M_AB_CUDA_DEVI CE Integer (Used by the PathTracer framework)

Selects the CUDA device to perform
calculations on.

M_LAB_NUVBER_ CONCURRENT PANEL_RENDER

RINeger

(Used by RemotePanelRendering module)
Serializes GPU access of parallel running
processes.

227




	MeVisLab Reference Manual
	Table of Contents
	Chapter 1. Introduction
	1.1. About the MeVisLab Reference Manual
	1.2. Associated Documents

	Chapter 2. MeVisLab User Interface
	2.1. Overview
	2.2. Views

	Chapter 3. Modules and Networks
	3.1. Types of Modules
	3.2. Module Network Panels
	3.3. Connector and Connection Types
	3.4. Connecting, Disconnecting, Moving, Copying, and Replacing Connections
	3.4.1. Connecting Modules
	3.4.1.1. Connecting by Dragging
	3.4.1.1.1. Connecting to Open Inventor Groups by Dragging
	3.4.1.1.2. Connecting from Open Inventor Groups by Dragging

	3.4.1.2. Connecting by Proximity
	3.4.1.2.1. Connecting to Open Inventor Groups by Proximity

	3.4.1.3. Connecting by Inserting into an Existing Connection
	3.4.1.4. Inserting a Module with More than One Input Connector
	3.4.1.5. Variation of Inserting a Module with More than One Input Connector

	3.4.2. Disconnecting Modules
	3.4.2.1. Disconnecting by Dragging to the Background
	3.4.2.2. Disconnecting by Selection
	3.4.2.3. Disconnecting by Context Menu

	3.4.3. Moving Connections
	3.4.3.1. Moving Connections Within Open Inventor Groups

	3.4.4. Copying Connections
	3.4.5. Replacing Connections

	3.5. Mouse Pointers
	3.6. Mouseover Information
	3.7. Module Halo
	3.8. Module Highlighting
	3.9. Module Handling
	3.9.1. Module Context Menu
	3.9.1.1. Show Window
	3.9.1.2. Instance Name
	3.9.1.3. Help
	3.9.1.4. Extras
	3.9.1.5. Reload Definition
	3.9.1.6. Related Files
	3.9.1.7. Show Enclosing Folder
	3.9.1.8. Groups

	3.9.2. Additional Inputs
	3.9.3. Show Internal Network (Macro Modules)

	3.10. Network Handling
	3.10.1. Network Context Menu
	3.10.2. Connections Context Menus
	3.10.2.1. Context Menu of Parameter Connections
	3.10.2.2. Context Menu of Data Connections


	3.11. Using Groups
	3.11.1. Creating Groups and Adding/Removing Modules
	3.11.2. Editing, Converting, and Deleting Groups
	3.11.3. Copying Groups Including Modules

	3.12. Using Notes
	3.12.1. Creating Notes
	3.12.2. Handling Notes
	3.12.3. Editing and Deleting Notes
	3.12.4. Copying Notes Including Text

	3.13. Using the Mini Map
	3.14. Network Quick Search
	3.15. Network Selector
	3.16. Network Preview
	3.17. Network Mouse Gestures
	3.17.1. Gesture for Closing the Current Network
	3.17.2. Gesture for Closing the Current Network Without Prompt


	Chapter 4. Menu Bar
	4.1. File Menu
	4.1.1. New
	4.1.2. Open
	4.1.3. Close
	4.1.4. Close all
	4.1.5. Save
	4.1.6. Save As
	4.1.7. Save Copy As
	4.1.8. Revert To Saved
	4.1.9. Recent Files
	4.1.10. Open Most Recent File
	4.1.11. Run Project Wizard
	4.1.12. Create Local Macro
	4.1.13. Add Local Macro
	4.1.14. Open File in MATE
	4.1.15. Show MATE
	4.1.16. Run ToolRunner
	4.1.17. Run TestCaseManager
	4.1.18. Recent Test Cases
	4.1.19. Run Most Recent Test Case
	4.1.20. Restart with Current Networks
	4.1.21. Quit

	4.2. Edit Menu
	4.2.1. Undo
	4.2.2. Redo
	4.2.3. Clear Undo History
	4.2.4. Cut
	4.2.5. Copy
	4.2.6. Paste
	4.2.7. Duplicate
	4.2.8. Delete
	4.2.9. Select All
	4.2.10. Deselect All
	4.2.11. Invert Selection
	4.2.12. Align / Distribute
	4.2.13. Auto Arrange Selection
	4.2.14. Reload Selected Modules

	4.3. Preferences
	4.3.1. Preferences — General
	4.3.2. Preferences — Packages
	4.3.3. Preferences — Module Groups
	4.3.4. Preferences — Supportive Programs
	4.3.5. Preferences — Paths
	4.3.6. Preferences — Scripting
	4.3.7. Preferences — Network Appearance
	4.3.7.1. How to define your own badge scripts

	4.3.8. Preferences — Network Interaction
	4.3.9. Preferences — Error / Debug Handling
	4.3.10. Preferences — Shortcuts

	4.4. Modules Menu
	4.5. Applications Menu
	4.6. Extras Menu
	4.6.1. Reload Updated Shared Libraries
	4.6.2. Reload Module Database (Keep Cache)
	4.6.3. Reload Module Database (Clear Cache)
	4.6.4. Reload Imported Python Modules
	4.6.5. Show Global MDL Definitions...
	4.6.6. Run Module Tests...
	4.6.7. Run Tests On Selection...
	4.6.8. Generate Module Reference for User Packages (HTML)
	4.6.9. Show Widget Explorer
	4.6.10. Debug Widgets
	4.6.11. Show Connector Details
	4.6.12. Show Image Connector Preview
	4.6.13. Clear Image Cache

	4.7. Scripting Menu
	4.7.1. Show Scripting Console
	4.7.2. Scripting Context Menu
	4.7.3. Edit Network Script
	4.7.4. Start Network Script

	4.8. User Scripts
	4.8.1. Example Scripts
	4.8.2. Run User Script...
	4.8.3. Run Last User Script: <NameOfUserScript>
	4.8.4. Run Recent User Script
	4.8.5. Example Scripts

	4.9. View Menu
	4.9.1. View All
	4.9.2. Zoom To Selection
	4.9.3. Zoom In
	4.9.4. Zoom Out
	4.9.5. Zoom 100%
	4.9.6. Layout
	4.9.7. Toolbars
	4.9.8. Views

	4.10. Networks Menu
	4.10.1. Close
	4.10.2. Close All

	4.11. Panels Menu
	4.11.1. Panels Stay In Front Of Main Window
	4.11.2. Hide Panels Of Invisible Networks
	4.11.3. Close All Panels
	4.11.4. Close Panels Of Current Network
	4.11.5. Minimize All Open Panels
	4.11.6. Show All Minimized Panels
	4.11.7. Working with the Panel List

	4.12. Help Menu
	4.12.1. (Search in documentation and menu entries)
	4.12.2. Full-text Search in Documentation...
	4.12.3. Show Context Help...
	4.12.4. Show Help Overview
	4.12.5. Browse Help Pages
	4.12.6. Welcome
	4.12.7. About
	4.12.8. Enter License


	Chapter 5. Toolbar
	5.1. File Operations
	5.2. Edit
	5.3. Zooming
	5.4. Script Debugging
	5.5. Quick Search
	5.6. Align / Distribute

	Chapter 6. Bottom Bar
	6.1. Loop! indicator
	6.2. ML Cache
	6.3. Stop Button
	6.4. Toggle Layout

	Chapter 7. Background Tasks
	Chapter 8. Debug Output
	Chapter 9. ML Parallel Processing Profiler View
	Chapter 10. Module Browser
	Chapter 11. Module Inspector
	11.1. Fields
	11.1.1. Editing Field Values
	11.1.2. Module Inspector Fields Context Menu

	11.2. Files
	11.2.1. Module Inspector Files Context Menu

	11.3. Tree
	11.3.1. Tree Context Menu

	11.4. About
	11.5. Related
	11.5.1. Related Context Menu

	11.6. Scripting

	Chapter 12. Module List
	Chapter 13. Module Search
	13.1. Module Search
	13.2. Advanced Search
	13.3. Module Search Result Context Menu
	13.3.1. General Options
	13.3.2. Additional Options for Macro Modules

	13.4. Search in Network

	Chapter 14. Network Field WatchList
	Chapter 15. Output Inspector
	Chapter 16. Parameter Connections Inspector
	16.1. Parameter Connections Inspector View
	16.2. Parameter Connections Inspector Context Menu

	Chapter 17. Profiling
	17.1. Introduction to Profiling
	17.2. Using Profiling
	17.2.1. Modules
	17.2.2. Fields
	17.2.3. Functions


	Chapter 18. Recent Outputs
	Chapter 19. Screenshot Gallery
	19.1. Screenshot Gallery
	19.2. Screenshot Gallery Context Menu
	19.3. Movies in the Screenshot Gallery

	Chapter 20. Scripting Console
	Chapter 21. Scripting Assistant
	Chapter 22. Search in Network
	Chapter 23. Search in Documentation
	Chapter 24. Full-text Search in Documentation
	Chapter 25. Snippets List
	Chapter 26. Project Wizard
	26.1. Project Wizard Introduction
	26.2. Modules (C++) Wizard
	26.2.1. First C++ Module Wizard Dialog
	26.2.2. Inventor Module
	26.2.3. ML Module
	26.2.3.1. ML Module (New Style)
	26.2.3.2. ML Module (Classic Style)
	26.2.3.3. Additional ML Module Properties
	26.2.3.4. ML Module — Created Files


	26.3. Modules (Scripting) Wizard
	26.4. Module Field Interface
	26.5. Packages
	26.6. Example .Wiz File (Inventor Module), indented for a better readability

	Chapter 27. MATE
	27.1. What is MATE?
	27.2. Text Editor User Interface
	27.3. Menu Bar
	27.4. Module Menu
	27.5. Outline Area
	27.6. Edit Area
	27.7. Preferences
	27.8. Python Debugger
	27.9. Module Help Editor
	27.9.1. Context Menus
	27.9.2. Formatting
	27.9.3. How it Works
	27.9.4. Internal HTML Preview

	27.10. Session Management
	27.11. Project Workspaces
	27.11.1. Project Types
	27.11.1.1. Regular Projects
	27.11.1.2. Module Projects

	27.11.2. Context Menu
	27.11.3. Views
	27.11.4. File Locator

	27.12. GUI Editor
	27.13. Scripting
	27.14. Pylint Integration
	27.14.1. Installation
	27.14.2. Usage

	27.15. Black Integration
	27.16. Rope Integration
	27.16.1. Rename
	27.16.2. Extract Function


	Chapter 28. Tips and Tricks
	28.1. Command-Line Options
	28.2. MeVisLabPackageScanner.exe
	28.3. Connecting Inventor Engines to ML Modules
	28.4. Using SyncFloat to Reduce System Load
	28.4.1. Case 1: Two Inventor and One ML Module Connected in a Circle
	28.4.2. Case 2: A Macro Module (Including an Inventor Module) and Another Inventor Module Connected in a Circle

	28.5. Printing MeVisLab Networks
	28.6. Multi-threading in MeVisLab
	28.6.1. Multi-threading in the ML
	28.6.2. Background Tasks
	28.6.3. Modules for Multi-threading

	28.7. Set Open Inventor Override Flag (Inventor Modules)

	Chapter 29. Settings File and Environment Variables
	29.1. Possible Locations of mevislab.prefs
	29.2. Options in mevislab.prefs
	29.3. Environment variables


