
1

MeVisLab Reference Manual



MeVisLab Reference Manual

2

MeVisLab Reference Manual
Copyright © 2003-2025 MeVis Medical Solutions
Published 2025-06-26



3

Table of Contents
1. Introduction ..........................................................................................................................  13

1.1. About the MeVisLab Reference Manual ......................................................................  13
1.2. Associated Documents ..............................................................................................  13

2. MeVisLab User Interface ......................................................................................................  14
2.1. Overview ...................................................................................................................  14
2.2. Views ........................................................................................................................  15

3. Modules and Networks .........................................................................................................  18
3.1. Types of Modules ......................................................................................................  20
3.2. Module Network Panels .............................................................................................  21
3.3. Connector and Connection Types ............................................................................... 21
3.4. Connecting, Disconnecting, Moving, Copying, and Replacing Connections ....................  25

3.4.1. Connecting Modules .......................................................................................  25
3.4.2. Disconnecting Modules ...................................................................................  35
3.4.3. Moving Connections ........................................................................................ 38
3.4.4. Copying Connections ......................................................................................  40
3.4.5. Replacing Connections .................................................................................... 41

3.5. Mouse Pointers .........................................................................................................  42
3.6. Mouseover Information ..............................................................................................  43
3.7. Module Halo .............................................................................................................. 46
3.8. Module Highlighting ...................................................................................................  47
3.9. Module Handling .......................................................................................................  49

3.9.1. Module Context Menu .....................................................................................  49
3.9.2. Additional Inputs .............................................................................................  56
3.9.3. Show Internal Network (Macro Modules) ..........................................................  57

3.10. Network Handling ....................................................................................................  59
3.10.1. Network Context Menu ..................................................................................  59
3.10.2. Connections Context Menus ..........................................................................  59

3.11. Using Groups ..........................................................................................................  61
3.11.1. Creating Groups and Adding/Removing Modules ............................................  62
3.11.2. Editing, Converting, and Deleting Groups .......................................................  63
3.11.3. Copying Groups Including Modules ................................................................  64

3.12. Using Notes ............................................................................................................  64
3.12.1. Creating Notes .............................................................................................. 64
3.12.2. Handling Notes .............................................................................................  65
3.12.3. Editing and Deleting Notes ............................................................................  66
3.12.4. Copying Notes Including Text ........................................................................  67

3.13. Using the Mini Map .................................................................................................  67
3.14. Network Quick Search .............................................................................................  69
3.15. Network Selector .....................................................................................................  71
3.16. Network Preview ...................................................................................................... 71
3.17. Network Mouse Gestures .........................................................................................  71

3.17.1. Gesture for Closing the Current Network ........................................................  72
3.17.2. Gesture for Closing the Current Network Without Prompt .................................  72

4. Menu Bar ............................................................................................................................. 74
4.1. File Menu .................................................................................................................. 74

4.1.1. New ...............................................................................................................  74
4.1.2. Open ..............................................................................................................  74
4.1.3. Close .............................................................................................................  74
4.1.4. Close all .........................................................................................................  74
4.1.5. Save ..............................................................................................................  75
4.1.6. Save As .........................................................................................................  75
4.1.7. Save Copy As ................................................................................................  75
4.1.8. Revert To Saved ............................................................................................  75
4.1.9. Recent Files ...................................................................................................  75
4.1.10. Open Most Recent File .................................................................................  75



MeVisLab Reference Manual

4

4.1.11. Run Project Wizard .......................................................................................  75
4.1.12. Create Local Macro ....................................................................................... 75
4.1.13. Add Local Macro ........................................................................................... 77
4.1.14. Open File in MATE .......................................................................................  77
4.1.15. Show MATE .................................................................................................  77
4.1.16. Run ToolRunner ...........................................................................................  77
4.1.17. Run TestCaseManager .................................................................................. 77
4.1.18. Recent Test Cases .......................................................................................  77
4.1.19. Run Most Recent Test Case .......................................................................... 78
4.1.20. Restart with Current Networks .......................................................................  78
4.1.21. Quit ..............................................................................................................  78

4.2. Edit Menu .................................................................................................................  78
4.2.1. Undo ..............................................................................................................  78
4.2.2. Redo ..............................................................................................................  78
4.2.3. Clear Undo History .........................................................................................  78
4.2.4. Cut ................................................................................................................. 79
4.2.5. Copy ..............................................................................................................  79
4.2.6. Paste .............................................................................................................  79
4.2.7. Duplicate ........................................................................................................  79
4.2.8. Delete ............................................................................................................  79
4.2.9. Select All ........................................................................................................ 79
4.2.10. Deselect All ..................................................................................................  79
4.2.11. Invert Selection .............................................................................................  79
4.2.12. Align / Distribute ............................................................................................ 79
4.2.13. Auto Arrange Selection .................................................................................  80
4.2.14. Reload Selected Modules ..............................................................................  80

4.3. Preferences ...............................................................................................................  80
4.3.1. Preferences — General ................................................................................... 81
4.3.2. Preferences — Packages ................................................................................  83
4.3.3. Preferences — Module Groups ........................................................................ 84
4.3.4. Preferences — Supportive Programs ...............................................................  86
4.3.5. Preferences — Paths ......................................................................................  88
4.3.6. Preferences — Scripting .................................................................................  89
4.3.7. Preferences — Network Appearance ...............................................................  90
4.3.8. Preferences — Network Interaction ..................................................................  95
4.3.9. Preferences — Error / Debug Handling ............................................................  97
4.3.10. Preferences — Shortcuts ............................................................................... 99

4.4. Modules Menu .........................................................................................................  100
4.5. Applications Menu ...................................................................................................  100
4.6. Extras Menu ............................................................................................................  101

4.6.1. Reload Updated Shared Libraries ..................................................................  101
4.6.2. Reload Module Database (Keep Cache) .........................................................  101
4.6.3. Reload Module Database (Clear Cache) ......................................................... 101
4.6.4. Reload Imported Python Modules ..................................................................  101
4.6.5. Show Global MDL Definitions... ...................................................................... 101
4.6.6. Run Module Tests... ......................................................................................  103
4.6.7. Run Tests On Selection... .............................................................................. 103
4.6.8. Generate Module Reference for User Packages (HTML) .................................. 104
4.6.9. Show Widget Explorer ...................................................................................  104
4.6.10. Debug Widgets ...........................................................................................  107
4.6.11. Show Connector Details ..............................................................................  107
4.6.12. Show Image Connector Preview ..................................................................  107
4.6.13. Clear Image Cache .....................................................................................  107

4.7. Scripting Menu ........................................................................................................  107
4.7.1. Show Scripting Console ................................................................................  108
4.7.2. Scripting Context Menu .................................................................................  109
4.7.3. Edit Network Script .......................................................................................  110
4.7.4. Start Network Script ......................................................................................  110



MeVisLab Reference Manual

5

4.8. User Scripts ............................................................................................................  110
4.8.1. Example Scripts ............................................................................................  111
4.8.2. Run User Script... .........................................................................................  111
4.8.3. Run Last User Script: <NameOfUserScript> .................................................... 111
4.8.4. Run Recent User Script ................................................................................  111
4.8.5. Example Scripts ............................................................................................  111

4.9. View Menu ..............................................................................................................  111
4.9.1. View All ........................................................................................................  111
4.9.2. Zoom To Selection ........................................................................................ 111
4.9.3. Zoom In ........................................................................................................ 111
4.9.4. Zoom Out .....................................................................................................  112
4.9.5. Zoom 100% ..................................................................................................  112
4.9.6. Layout ..........................................................................................................  112
4.9.7. Toolbars .......................................................................................................  113
4.9.8. Views ...........................................................................................................  114

4.10. Networks Menu ...................................................................................................... 115
4.10.1. Close ..........................................................................................................  115
4.10.2. Close All .....................................................................................................  115

4.11. Panels Menu .........................................................................................................  116
4.11.1. Panels Stay In Front Of Main Window ..........................................................  116
4.11.2. Hide Panels Of Invisible Networks ................................................................ 116
4.11.3. Close All Panels .........................................................................................  116
4.11.4. Close Panels Of Current Network ................................................................. 116
4.11.5. Minimize All Open Panels ............................................................................  116
4.11.6. Show All Minimized Panels ..........................................................................  116
4.11.7. Working with the Panel List .........................................................................  117

4.12. Help Menu ............................................................................................................. 117
4.12.1. (Search in documentation and menu entries) ................................................  117
4.12.2. Full-text Search in Documentation... .............................................................  118
4.12.3. Show Context Help... ................................................................................... 118
4.12.4. Show Help Overview ...................................................................................  118
4.12.5. Browse Help Pages ..................................................................................... 118
4.12.6. Welcome ....................................................................................................  118
4.12.7. About .......................................................................................................... 118
4.12.8. Enter License .............................................................................................. 118

5. Toolbar ..............................................................................................................................  119
5.1. File Operations ........................................................................................................  119
5.2. Edit .........................................................................................................................  119
5.3. Zooming ..................................................................................................................  119
5.4. Script Debugging .....................................................................................................  119
5.5. Quick Search ........................................................................................................... 119
5.6. Align / Distribute ......................................................................................................  120

6. Bottom Bar ......................................................................................................................... 121
6.1. Loop! indicator .........................................................................................................  121
6.2. ML Cache ...............................................................................................................  121
6.3. Stop Button .............................................................................................................  121
6.4. Toggle Layout .........................................................................................................  121

7. Background Tasks ..............................................................................................................  122
8. Debug Output ..................................................................................................................... 125
9. ML Parallel Processing Profiler View ...................................................................................  126
10. Module Browser ...............................................................................................................  128
11. Module Inspector ..............................................................................................................  129

11.1. Fields ....................................................................................................................  129
11.1.1. Editing Field Values ....................................................................................  129
11.1.2. Module Inspector Fields Context Menu .........................................................  130

11.2. Files ......................................................................................................................  133
11.2.1. Module Inspector Files Context Menu ...........................................................  133

11.3. Tree ......................................................................................................................  133



MeVisLab Reference Manual

6

11.3.1. Tree Context Menu .....................................................................................  134
11.4. About ....................................................................................................................  134
11.5. Related .................................................................................................................. 135

11.5.1. Related Context Menu .................................................................................  135
11.6. Scripting ................................................................................................................  136

12. Module List ......................................................................................................................  137
13. Module Search .................................................................................................................  138

13.1. Module Search ......................................................................................................  138
13.2. Advanced Search ................................................................................................... 138
13.3. Module Search Result Context Menu ......................................................................  139

13.3.1. General Options ..........................................................................................  140
13.3.2. Additional Options for Macro Modules ..........................................................  140

13.4. Search in Network .................................................................................................  140
14. Network Field WatchList ...................................................................................................  142
15. Output Inspector ...............................................................................................................  143
16. Parameter Connections Inspector ......................................................................................  145

16.1. Parameter Connections Inspector View ...................................................................  145
16.2. Parameter Connections Inspector Context Menu ...................................................... 147

17. Profiling ............................................................................................................................ 148
17.1. Introduction to Profiling ........................................................................................... 148
17.2. Using Profiling .......................................................................................................  149

17.2.1. Modules ...................................................................................................... 150
17.2.2. Fields .........................................................................................................  152
17.2.3. Functions ....................................................................................................  152

18. Recent Outputs ................................................................................................................  156
19. Screenshot Gallery ...........................................................................................................  157

19.1. Screenshot Gallery ................................................................................................. 157
19.2. Screenshot Gallery Context Menu ........................................................................... 157
19.3. Movies in the Screenshot Gallery ...........................................................................  158

20. Scripting Console .............................................................................................................  159
21. Scripting Assistant ............................................................................................................  160
22. Search in Network ............................................................................................................  161
23. Search in Documentation ..................................................................................................  163
24. Full-text Search in Documentation .....................................................................................  165
25. Snippets List ....................................................................................................................  169
26. Project Wizard ..................................................................................................................  170

26.1. Project Wizard Introduction .....................................................................................  170
26.2. Modules (C++) Wizard ...........................................................................................  171

26.2.1. First C++ Module Wizard Dialog ..................................................................  171
26.2.2. Inventor Module ..........................................................................................  173
26.2.3. ML Module .................................................................................................  174

26.3. Modules (Scripting) Wizard .....................................................................................  180
26.4. Module Field Interface ............................................................................................ 181
26.5. Packages ..............................................................................................................  182
26.6. Example .Wiz File (Inventor Module), indented for a better readability ........................  183

27. MATE ..............................................................................................................................  184
27.1. What is MATE? .....................................................................................................  184
27.2. Text Editor User Interface ......................................................................................  185
27.3. Menu Bar ..............................................................................................................  186
27.4. Module Menu ......................................................................................................... 188
27.5. Outline Area ..........................................................................................................  190
27.6. Edit Area ...............................................................................................................  190
27.7. Preferences ...........................................................................................................  192
27.8. Python Debugger ...................................................................................................  194
27.9. Module Help Editor ................................................................................................  197

27.9.1. Context Menus ............................................................................................ 199
27.9.2. Formatting ..................................................................................................  200
27.9.3. How it Works ..............................................................................................  202



MeVisLab Reference Manual

7

27.9.4. Internal HTML Preview ................................................................................  203
27.10. Session Management ...........................................................................................  204
27.11. Project Workspaces .............................................................................................  205

27.11.1. Project Types ............................................................................................  205
27.11.2. Context Menu ...........................................................................................  206
27.11.3. Views ........................................................................................................ 207
27.11.4. File Locator ...............................................................................................  208

27.12. GUI Editor ...........................................................................................................  208
27.13. Scripting ..............................................................................................................  209
27.14. Pylint Integration ..................................................................................................  210

27.14.1. Installation ................................................................................................. 210
27.14.2. Usage .......................................................................................................  210

27.15. Black Integration ..................................................................................................  211
27.16. Rope Integration ..................................................................................................  212

27.16.1. Rename ....................................................................................................  212
27.16.2. Extract Function ........................................................................................  212

28. Tips and Tricks ................................................................................................................. 213
28.1. Command-Line Options ..........................................................................................  213
28.2. MeVisLabPackageScanner.exe ...............................................................................  215
28.3. Connecting Inventor Engines to ML Modules ...........................................................  215
28.4. Using SyncFloat to Reduce System Load ................................................................ 216

28.4.1. Case 1: Two Inventor and One ML Module Connected in a Circle ...................  216
28.4.2. Case 2: A Macro Module (Including an Inventor Module) and Another Inventor
Module Connected in a Circle .................................................................................  217

28.5. Printing MeVisLab Networks ...................................................................................  218
28.6. Multi-threading in MeVisLab ...................................................................................  218

28.6.1. Multi-threading in the ML .............................................................................  218
28.6.2. Background Tasks ....................................................................................... 218
28.6.3. Modules for Multi-threading .......................................................................... 219

28.7. Set Open Inventor Override Flag (Inventor Modules) ................................................  219
29. Settings File and Environment Variables ............................................................................  222

29.1. Possible Locations of mevislab.prefs .......................................................................  222
29.2. Options in mevislab.prefs .......................................................................................  222
29.3. Environment variables ............................................................................................  226



8

List of Figures
2.1. Typical MeVisLab User Interface ........................................................................................  14
2.2. View Docked in the Views Area .........................................................................................  15
2.3. Floating View ....................................................................................................................  16
2.4. Moving View to Another Position in Views Area ..................................................................  16
2.5. Stacked Views ................................................................................................................... 17
2.6. Resizing a View in the Views Area .....................................................................................  17
3.1. Example Network for SynchroView2D with Viewer (Panel), Automatic Panel, and Settings ......  19
3.2. Modules with Network Panels ............................................................................................  21
3.3. View2D with Connected "Invisible" Open Inventor Connector ...............................................  22
3.4. Compatible Connectors for CSOVisualizationSettings Type ..................................................  24
3.5. Compatible Connectors for CSOList Type ...........................................................................  24
3.6. Compatible Connectors for ML Image Type ........................................................................  24
3.7. Parameter Connection — Panel Mouseover ........................................................................  45
3.8. Connector Image Preview ..................................................................................................  46
3.9. Connector Detail Info and Image Preview ...........................................................................  46
3.10. Module Context Menu ......................................................................................................  50
3.11. Module Context Menu — Show Window ...........................................................................  50
3.12. Automatic Panel ..............................................................................................................  50
3.13. Panel Defined in MDL ...................................................................................................... 51
3.14. Module Context Menu — Edit Instance Name ...................................................................  52
3.15. Modules and Instance Names ..........................................................................................  52
3.16. Module Context Menu — Show Example Network .............................................................  52
3.17. Dependency Walker ......................................................................................................... 53
3.18. Module Context Menu — Tests ........................................................................................  55
3.19. Module Context Menu — Related Files .............................................................................  56
3.20. View3D With Visible Inventor Inputs (Default) ....................................................................  56
3.21. View3D With Hidden Open Inventor Inputs ........................................................................ 56
3.22. RegionGrowingMacro — Internal Network .........................................................................  58
3.23. Network Context Menu ..................................................................................................... 59
3.24. Parameter Connection Context Menu ...............................................................................  60
3.25. Module with Internal/Self-Connected Parameter Connection ...............................................  60
3.26. Data Connection Context Menu ........................................................................................  61
3.27. Network Context Menu — Adding Groups .........................................................................  62
3.28. Network Context Menu — Adding to a Specific Group .......................................................  63
3.29. Group Context Menu .......................................................................................................  63
3.30. Note (Expanded) .............................................................................................................  64
3.31. Creating a Note ...............................................................................................................  65
3.32. Dialog for Editing Notes ...................................................................................................  65
3.33. Note (Collapsed) .............................................................................................................. 66
3.34. Note Context Menu .......................................................................................................... 66
3.35. A Note Displayed as a Network Comment ........................................................................  66
3.36. Note in a Group ..............................................................................................................  67
3.37. Mini Map .........................................................................................................................  67
3.38. Navigating in the Mini Map ............................................................................................... 68
3.39. Parent Navigation Frame for Macro Modules ..................................................................... 68
3.40. Parent Navigation Frame Context Menu ............................................................................ 68
3.41. Network Quick Search .....................................................................................................  69
3.42. Network Quick Search — Options ....................................................................................  69
3.43. Network Quick Search — Show All Results ....................................................................... 70
3.44. Network Quick Search — Highlight Results .......................................................................  70
3.45. Network Selector in Action ...............................................................................................  71
3.46. Network Selector in Action ...............................................................................................  71
3.47. Trail of Unrecognized Mouse Gesture ...............................................................................  72
3.48. Mouse Gesture for Closing the Current Network ................................................................  72
3.49. Mouse Gesture for Closing the Current Network Without Prompt ........................................  73



MeVisLab Reference Manual

9

4.1. File Menu .......................................................................................................................... 74
4.2. Local Macro Creation ......................................................................................................... 76
4.3. Modules Connected to Outer Macros .................................................................................. 77
4.4. Edit Menu (Windows example) ...........................................................................................  78
4.5. Align / Distribute ................................................................................................................  79
4.6. Preferences — General .....................................................................................................  81
4.7. Preferences — Packages ..................................................................................................  83
4.8. Preferences — Module Groups ..........................................................................................  85
4.9. Preferences — Supportive Programs ..................................................................................  86
4.10. Preferences — Paths ....................................................................................................... 88
4.11. Preferences — Scripting ..................................................................................................  89
4.12. Preferences — Network Appearance ................................................................................  90
4.13. Preferences — Network Interaction ................................................................................... 95
4.14. Preferences — Error / Debug Handling .............................................................................  97
4.15. Preferences — Shortcuts .................................................................................................  99
4.16. Modules Menu ...............................................................................................................  100
4.17. Extras Menu ..................................................................................................................  101
4.18. MeVisLab Global MDL Definitions ...................................................................................  102
4.19. Module Selection ...........................................................................................................  103
4.20. MeVisLab Widget Explorer - Attributes Inspector .............................................................  105
4.21. MeVisLab Widget Explorer - Style Sheet Editor ...............................................................  106
4.22. Scripting Menu ............................................................................................................... 108
4.23. Scripting Editor ..............................................................................................................  108
4.24. Scripting Example ..........................................................................................................  109
4.25. Scripting Context Menu ..................................................................................................  110
4.26. View Menu ....................................................................................................................  111
4.27. View — Layout Submenu ...............................................................................................  112
4.28. Store Current Layout ...................................................................................................... 113
4.29. Edit User Layouts ..........................................................................................................  113
4.30. View — Toolbars Submenu ............................................................................................  114
4.31. View — Views Submenu ................................................................................................  114
4.32. Networks Menu .............................................................................................................. 115
4.33. Panels Menu .................................................................................................................  116
4.34. Panels Menu — Listing all Open Panels .........................................................................  117
4.35. Help Menu ..................................................................................................................... 117
5.1. Toolbar ............................................................................................................................ 119
5.2. Quick Search Options ......................................................................................................  119
5.3. Quick Search — Info Box ................................................................................................  120
5.4. Quick Search History .......................................................................................................  120
6.1. Bottom Bar ......................................................................................................................  121
7.1. ML Background Tasks .....................................................................................................  122
7.2. ML Background Tasks — Context Menu ...........................................................................  122
7.3. ML Background Tasks — Context Menu for Running Processes .........................................  123
7.4. Warning for Running Background Tasks ...........................................................................  123
7.5. Save in Background for GVRVolumeSave ...........................................................................  124
8.1. Debug Output ..................................................................................................................  125
8.2. Context Menu ..................................................................................................................  125
9.1. Parallel Processing View Overview ...................................................................................  126
9.2. Parallel Processing View Details ....................................................................................... 127
10.1. Module Browser ............................................................................................................. 128
11.1. Module Inspector — Fields .............................................................................................  129
11.2. Automatic Panel ............................................................................................................  129
11.3. Module Inspector — Edit Boolean ................................................................................... 129
11.4. Module Inspector — Edit Color .......................................................................................  130
11.5. Module Inspector — Edit Text ........................................................................................  130
11.6. Module Inspector — Edit Values ..................................................................................... 130
11.7. Module Inspector Fields Context Menu ...........................................................................  131
11.8. Module Inspector — Files ............................................................................................... 133



MeVisLab Reference Manual

10

11.9. Module Inspector Files Context Menu .............................................................................  133
11.10. Module Inspector — Tree .............................................................................................  133
11.11. Module Inspector Tree Context Menu ............................................................................ 134
11.12. Show Available MDL Tags ...........................................................................................  134
11.13. Module Inspector — About ...........................................................................................  135
11.14. Module Inspector — Related ........................................................................................  135
11.15. Module Inspector Related Context Menu .......................................................................  135
11.16. Module Inspector — Scripting .......................................................................................  136
12.1. Module List .................................................................................................................... 137
13.1. Module Search with Demo Entry ....................................................................................  138
13.2. Module Search — Advanced ..........................................................................................  138
13.3. Module Search — Searching In ......................................................................................  139
13.4. Module Search — Operators ..........................................................................................  139
13.5. Module Search Results — Context Menu ........................................................................  139
13.6. Search in Network .........................................................................................................  140
14.1. Network Field WatchList ................................................................................................. 142
15.1. ML Image Inspector .......................................................................................................  143
15.2. ML Image Inspector: 3D View ........................................................................................  144
15.3. ML Image Inspector: Detailed Information .......................................................................  144
16.1. Parameter Connections Inspector View ...........................................................................  145
16.2. Parameter Connection Example — View2D and View3D ...................................................  146
16.3. Parameter Connection Example — View2DExtensions ....................................................  146
16.4. Parameter Connection Example — Navigating Between Fields .........................................  147
16.5. Parameter Connections Inspector Context Menu .............................................................  147
17.1. Functions to be Profiled .................................................................................................  148
17.2. Profiling .........................................................................................................................  149
17.3. Profiling Report ..............................................................................................................  150
17.4. Profiling Modules ...........................................................................................................  151
17.5. Profiling — Heading Configuration ..................................................................................  151
17.6. Profiling Fields ...............................................................................................................  152
17.7. Profiling Functions as Flat Profile .................................................................................... 153
17.8. Profiling Functions as Call Graph .................................................................................... 153
17.9. Functions with Filters Visible ..........................................................................................  154
18.1. Recent Outputs .............................................................................................................. 156
19.1. Screenshot Gallery ........................................................................................................  157
19.2. Screenshot Gallery Context Menu ................................................................................... 158
21.1. Scripting Editor ..............................................................................................................  160
22.1. Scripting Editor ..............................................................................................................  161
22.2. Scripting Editor ..............................................................................................................  161
22.3. Scripting Editor ..............................................................................................................  162
23.1. Search in Documentation ...............................................................................................  163
23.2. Search in Documentation — ML Example .......................................................................  163
23.3. Search in Documentation — MDL Example .....................................................................  164
23.4. Search in Documentation — Python Example .................................................................. 164
24.1. Full-text Search in Documentation Window ...................................................................... 166
24.2. Full-text Search Settings ................................................................................................  167
24.3. Full-text Search Results Browser ....................................................................................  168
25.1. Snippets List .................................................................................................................. 169
25.2. Snippets List — Context Menu .......................................................................................  169
26.1. Project Wizard (no user packages available) ...................................................................  170
26.2. Project Wizard (with user packages available) .................................................................  170
26.3. First C++ Module Wizard Dialog — ML Module Example .................................................. 171
26.4. Create an ML Module in a Self-contained Folder .............................................................  172
26.5. Inventor Type ................................................................................................................  173
26.6. Imaging Module Properties (New Style) ........................................................................... 175
26.7. New Style ML Module ....................................................................................................  175
26.8. New Style ML Module — Uses Fixed Data type ............................................................... 176
26.9. New Style ML Module — Uses Data Type Of Input Image ................................................  176



MeVisLab Reference Manual

11

26.10. New Style ML Module — Entering The Supported Types ................................................ 176
26.11. New Style ML Module — Configuring The Input Handling ...............................................  176
26.12. New Style ML Module — Uses The Same Data Type As ................................................  177
26.13. Imaging Module Properties (Classic Style) .....................................................................  178
26.14. Additional ML Module Properties ................................................................................... 179
26.15. Project Wizard .............................................................................................................  180
26.16. Module Field Interfaces ................................................................................................  181
26.17. Package Wizard ........................................................................................................... 182
27.1. User Interface ................................................................................................................  185
27.2. MATE File Menu ............................................................................................................ 186
27.3. MATE Edit Menu ...........................................................................................................  187
27.4. MATE View Menu ..........................................................................................................  187
27.5. MATE Window Menu .....................................................................................................  188
27.6. MATE Extras Menu ........................................................................................................ 188
27.7. MATE Module Menu — Without Attached Module ............................................................ 189
27.8. MATE Module Menu - With Attached Module ..................................................................  189
27.9. MATE Module Menu — Windows Submenu ....................................................................  189
27.10. MATE Module Menu — Files Submenu ......................................................................... 189
27.11. Outline Area ................................................................................................................  190
27.12. MATE Edit Area ........................................................................................................... 191
27.13. MATE Edit Area — Code Completion for Keywords .......................................................  191
27.14. MATE Edit Area — Code Completion for Commands Defined in MDL .............................. 191
27.15. MATE Edit Area — Context Menu ................................................................................  191
27.16. MATE Preferences .......................................................................................................  192
27.17. MATE with Python Debugger ........................................................................................ 195
27.18. MATE Debug Menu .....................................................................................................  196
27.19. MATE for Module Help .................................................................................................  198
27.20. Outline Context Menu ..................................................................................................  200
27.21. Text Context Menu ....................................................................................................... 200
27.22. Automatically Documented Elements ............................................................................. 202
27.23. HTML View .................................................................................................................. 203
27.24. HTML View Decoupling ................................................................................................  204
27.25. Decoupled HTML View ................................................................................................. 204
28.1. MeVisLabPackageScanner Help .....................................................................................  215
28.2. Field Bridge Example .....................................................................................................  216
28.3. SyncFloat Example — ML and Inventor Modules .............................................................  217
28.4. SyncFloat Example — Macro and Inventor Modules ........................................................  218
28.5. Open Inventor Scene Without Override ...........................................................................  219
28.6. Open Inventor Scene With Override ................................................................................ 220
28.7. Open Inventor Scene With Ignore Flag (Red) ..................................................................  220
28.8. Open Inventor Scene With Ignore Flag (Blue) .................................................................. 221



12

List of Tables
1.1. List of MeVisLab Documents .............................................................................................. 13
3.1. Module Types ...................................................................................................................  20
3.2. Invalid Modules .................................................................................................................  20
3.3. Connectors ........................................................................................................................ 21
3.4. Connecting to an Invisible Connector .................................................................................. 23
3.5. Connections ......................................................................................................................  23
3.6. Connecting Modules by Dragging .......................................................................................  25
3.7. Dragging a New Connection Generates New Input Connectors to the Sides of Regular
Connectors ..............................................................................................................................  26
3.8. Even More New Connectors are Available ..........................................................................  27
3.9. New Input Connectors are Generated by Positioning the Mouse ...........................................  28
3.10. Connecting by Moving the Source Module into Proximity .................................................... 28
3.11. Connecting by Moving the Destination Module into Proximity .............................................. 29
3.12. Connecting an Open Inventor Group by Proximity .............................................................  29
3.13. Connecting to an Open Inventor Group by Proximity .......................................................... 30
3.14. Appending vs. Prepending to an Open Inventor Group by Proximity ....................................  30
3.15. Connecting a Module by Inserting ....................................................................................  31
3.16. Connecting a Module with Two Inputs by Inserting ............................................................  32
3.17. The Second Input is Connected by Dragging ....................................................................  33
3.18. Variation: First Input is Connected by Proximity .................................................................  34
3.19. Variation: Second Input is Connected by Inserting into an Existing Connection .....................  35
3.20. Disconnecting by Dragging to Background: Input ...............................................................  36
3.21. Disconnecting by Dragging to Background: Output ............................................................  37
3.22. Disconnecting by Selection and Pressing DEL ..................................................................  37
3.23. Disconnecting by Context Menu .......................................................................................  38
3.24. Move Input Connection ....................................................................................................  39
3.25. Move Multiple Output Connections ...................................................................................  39
3.26. Move Connection Within an Open Inventor Group .............................................................  40
3.27. Copy Connection .............................................................................................................  41
3.28. Replace Connection ......................................................................................................... 42
3.29. Mouse Pointers ...............................................................................................................  43
3.30. Mouseover Information ..................................................................................................... 44
3.31. Module Halos — Classic and Alternative ........................................................................... 47
3.32. Module Halos Input Output — Classic and Alternative ........................................................ 47
3.33. Highlighting of Selections — Classic Halo .........................................................................  48
3.34. Highlighting of Selections — Alternative Halo ....................................................................  48
3.35. Module Group with Alternative Halo — Selected and Highlighted ........................................  48
3.36. Preview of Internal Networks of Macro Modules ................................................................  49
3.37. Run In Separate Process .................................................................................................  54
3.38. Modules in Groups ..........................................................................................................  61
16.1. Connections Symbols ..................................................................................................... 146
17.1. Function Type Icons ....................................................................................................... 154
27.1. Buttons for Debugging ...................................................................................................  197
27.2. Icons for Debugging ....................................................................................................... 197
27.3. Help Toolbar Buttons .....................................................................................................  199
27.4. Inline markup ................................................................................................................. 201
27.5. Directives ......................................................................................................................  201
27.6. Roles ............................................................................................................................  202
28.1. Command-Line Options ..................................................................................................  214



13

Chapter 1. Introduction
1.1. About the MeVisLab Reference Manual
The MeVisLab (Reference) Manual describes the user interface elements of MeVisLab: the main work
area, the menus, the modules and networks, and the different Views and their options.

1.2. Associated Documents
Besides the document at hand, the following documents are available:

Table 1.1. List of MeVisLab Documents

Title Contents

Getting Started Introduction to working with MeVisLab

ML Guide MeVis Image Processing Library — Programming
Guide

ML Reference (HTML only) MeVis Image Processing Library — API
description

MDL Reference MeVisLab Definition Language (MDL) Panel/GUI
Reference

Open Inventor Help Help for Open Inventor Modules

Open Inventor Reference Reference for all implemented Open Inventor
classes (converted from the original manpages)

Scripting Reference Scripting Reference for Python in MeVisLab

Toolbox Reference MeVisLab Toolbox Class Reference for various
API libraries

TestCenter Reference Class Reference for the TestCenter

Package Structure Information about the package structure in
MeVisLab

ToolRunner Manual for ToolRunner, a stand-alone program for
building projects and help files

CMake Use of CMake in the MeVisLab context

To search in the online documentation, use Help → Search in Documentation; see Chapter 23, Search
in Documentation.

To perform a full-text search in the documentation, use Help → Full-text Search in Documentation;
see Chapter 24, Full-text Search in Documentation.

The full list of available documents and resources is available on the Welcome Screen (which can also

be opened via Help → Welcome).



14

Chapter 2. MeVisLab User Interface
The layout of the MeVisLab graphical user interface (GUI) heavily depends on the arrangement preferred
by the user. Custom arrangements can be saved as the “User Default Layout”. In addition, predefined

GUI layouts can be selected via View → Layout or in the bottom bar, see Chapter 6, Bottom Bar.

2.1. Overview

Figure 2.1. Typical MeVisLab User Interface

The user interface offers the following areas:

• The menu bar with typical entries. See Chapter 4, Menu Bar.

• The toolbar with buttons for Edit and Zoom functions. See Chapter 5, Toolbar.

• The workspace with the network display, with tabs for all open networks. See Chapter 3, Modules
and Networks.

• The Views area, configurable in the View → Views submenu. See Section 4.9.8, “Views”.

• The Debug Output (effectively a View), configurable in the View → Views submenu. See Chapter 8,
Debug Output.

• The bottom bar with information about the used memory space and quick access to layouts. See
Chapter 6, Bottom Bar.



MeVisLab User Interface

15

2.2. Views
Views can be added and removed via the View → Views submenu.

Views (and the toolbar elements) can be moved to another position in the GUI (“docks”) by dragging
them around. Either click the “Arrange Windows” icon  or grab the title bar of the View and drag it out
or around in the Views area.

Figure 2.2. View Docked in the Views Area



MeVisLab User Interface

16

Figure 2.3. Floating View

Floating views can be freely moved across the screen, including to a different monitor. This allows for
a larger scaling of Views without affecting the network display.

Before docking, the target area is indicated when hovering the View over areas of the main window.

Figure 2.4. Moving View to Another Position in Views Area

Views can also be stacked on top of each other by dragging one View onto another. For each View,
a tab will be displayed.



MeVisLab User Interface

17

Figure 2.5. Stacked Views

Views can be resized by dragging their borders, though resizing is constrained by the content size and
the relative size of neighboring windows.

Figure 2.6. Resizing a View in the Views Area



18

Chapter 3. Modules and Networks
In MeVisLab, programming image processing algorithms or interactive image/3D scene manipulation is
primarily done by establishing networks consisting of modules and connections between them. Modules
encapsulate specific algorithms written in C++ and provide an interface in MeVisLab through fields.
These fields can represent simple data, such as numbers or strings, but can also handle more complex
data, such as six-dimensional voxel images. Fields of modules of the same type can be connected to
form networks that represent algorithms on a higher abstraction layer.

In the following figure, a typical assembly of connected modules in a network, their panels, and viewers
can be seen.



Modules and Networks

19

Figure 3.1. Example Network for SynchroView2D with Viewer (Panel), Automatic
Panel, and Settings

The following information can be found in this chapter:

• Section 3.1, “Types of Modules”



Modules and Networks

20

• Section 3.2, “Module Network Panels”

• Section 3.3, “Connector and Connection Types”

• Section 3.4, “Connecting, Disconnecting, Moving, Copying, and Replacing Connections”

• Section 3.5, “Mouse Pointers”

• Section 3.6, “Mouseover Information”

• Section 3.9, “Module Handling”

• Section 3.10, “Network Handling”

• Section 3.11, “Using Groups”

• Section 3.12, “Using Notes”

• Section 3.13, “Using the Mini Map”

For module and network shortcuts, see Section 4.3.10, “Preferences — Shortcuts”.

3.1. Types of Modules
There are three types of modules:

Table 3.1. Module Types

Type Color Look Characteristics

ML module Blue Page-based and
demand-driven
processing of voxels

Open Inventor module Green Visual scene graphs
(3D)

Macro module Brown Combination of other
module types, allowing
implementing
hierarchies and scripted
interaction

If a module is invalid, it is displayed in bright red.

The number of warning and error messages printed to the debug console is displayed in the upper right
corner of the module. Once the debug console is cleared, the warning and error indicators at the module
are also cleared. If the module produces information messages, their number is printed in gray at this
position. This enables a network or module developer to find the modules in a network that produce
messages quickly.

Table 3.2. Invalid Modules

Module Appearance Explanation

Invalid module

Macro containing at least one invalid module within
its internal network, which could be either a regular
module or another macro module



Modules and Networks

21

For information and examples on how to construct networks from modules, please refer to the Getting
Started in which image processing pipelines, scene graphs, and macro module creation are discussed
in detail.

3.2. Module Network Panels
A module can have a simple panel that is rendered in the network and can show a dynamically updated
information string and/or a button or checkbox.

This is useful for quickly accessing the state of a module or triggering its functionality without needing
to open the module's panel.

See Section 2.10, “NetworkPanel” for more information.

In the figure below, the Info module shows the image's data type and extent, the Threshold module
shows the comparison operator and the threshold value, the LocalImage module offers a button to
reload the image, and the CSOListContainer shows the number of CSOs and CSOGroups, and offers
a button to remove all those objects.

Figure 3.2. Modules with Network Panels

3.3. Connector and Connection Types
In MeVisLab, three types of connectors are defined.

Note

In principle, every module type can have any kind of connector.

Table 3.3. Connectors

Look Shape Definition

Triangle ML images

Half-circle Open Inventor scene

Square Base objects: pointers to data
structures



Modules and Networks

22

ML image connectors can be set to display their state, see Section 4.3.7, “Preferences — Network
Appearance”.

Connectors can exist in a semi-transparent design. This is the case if a connector is hidden but
connected. An example for a module with Open Inventor inputs that can be hidden is the View2D module
(see Section 3.9.2, “Additional Inputs”).

Figure 3.3. View2D with Connected "Invisible" Open Inventor Connector

Note

Modules with hidden input / output fields can be made to show those fields in different ways.

Some modules provide the option to toggle the visibility of hidden fields in the module's
context menu (e.g., View2D, View3D).

Other modules might offer a field on their panel to adjust the number of shown connectors
(e.g., Switch).

All modules reveal their hidden input and output connectors when starting to draw a
connection in the network. If a module has hidden connectors, an icon appears at the top
right hand corner of such a module. When hovering with the mouse cursor over that icon
while still drawing the connection, the module shows all its connectors that are interactively
connectable now if the connection is compatible. On establishing the connection, all other
hidden connector disappear again.

On pressing SPACE, the network is rendered in a special information mode where also
all invisible connectors are revealed. Pressing CTRL+SPACE shows invisible connectors
only. To toggle back to the normal view press SPACE again.

To connect to an otherwise invisible connector, start dragging from a source connector. Once the drag
has started, modules with invisible connectors will display a plus sign in their upper right corner. Move the
dragged connection over this plus sign to reveal the hidden connectors of that module. The connection
can then be established by dropping it on the desired destination connector.



Modules and Networks

23

Table 3.4. Connecting to an Invisible Connector

In a MeVisLab network, we distinguish between a data connection and a parameter connection.

A data connection connects modules by their input/output connectors. Those connections carry ML
mages, Open Inventor scene objects, or general Base objects.

A parameter connection connects fields of modules. Such a connection can also connect fields of the
same module with each other.

Table 3.5. Connections

Type Look Characteristics

Data connections (connector
connections)

The direct connection between
connectors. Depending on which
connectors are involved, the
connection is rendered in a
different color: blue for ML, green
for Open Inventor, brown for Base.

Parameter connections (field
connections)

Connections created by
connecting parameter fields within
or between modules. For more
information, see Section 3.10.2,
“Connections Context Menus”.

Data connections are established, for example, by clicking on a connector and drawing the connection
to another connector. Only connectors of the same type can be connected.

Note

Refer to Section 3.4, “Connecting, Disconnecting, Moving, Copying, and Replacing
Connections” for more detailed information on different methods to connect and to
disconnect modules.

When interactively connecting Base fields, an internal type system checks whether the particular Base
connection is possible.

MeVisLab checks the data types of all available connectors while drawing a connection. Incompatible
connectors are rendered in a faded-out style, while compatible connectors remain clearly visible.



Modules and Networks

24

Figure 3.4. Compatible Connectors for CSOVisualizationSettings Type

Figure 3.5. Compatible Connectors for CSOList Type

Figure 3.6. Compatible Connectors for ML Image Type

Note

Base connectors can have different data types; connecting these incompatible connectors
is possible only via scripting and results in the connection being drawn in red. For more
information on Base connectors, see the Getting Started, chapter “A Note on Base Types
Checks”.

Parameter connections are established similarly by clicking on a field on a panel and drawing the
connection to another field (on the same panel or another one). For details on parameter connections,
see the Getting Started, chapter “Parameter Connection for Synchronization”.

Parameter connections can be moved between fields by clicking on the connected connector/field and
pressing SHIFT while dragging it to another field. The other connected fields will be updated accordingly.

Parameter connections can be copied, similar to moving them, by holding CTRL+SHIFT. Ensure that
the option Debug Widgets is disabled (see Section 4.6.10, “Debug Widgets”).

Tip

To abort the interactive establishing and removing of connections between modules (and
the horizontal moving of connections), press ESC. Alternatively, abort the process by either
drawing the connection to a connector of the wrong type (displayed in red) or by returning it



Modules and Networks

25

to the output connector. The new connection will not be drawn, and no existing connections
will be removed.

3.4. Connecting, Disconnecting, Moving,
Copying, and Replacing Connections
MeVisLab offers multiple ways of connecting or disconnecting modules in a network. Modules can be
connected to each other by connecting their parameter fields or their data fields. Data fields are also
called input/output connectors and are located at the bottom/top of the modules in a network. Parameter
fields are available on the panel or GUI of a module.

In the following, different methods of handling data connections are shown. Parameter connection
handling is not discussed in detail here; for more information about parameter connections, see
“Parameter Connection for Synchronization”.

3.4.1. Connecting Modules
Data connections can be established by dragging/drawing, by proximity, i.e., moving modules close to
each other, or by inserting a module into an already existing connection.

3.4.1.1. Connecting by Dragging

Move the mouse to one of the connectors, click and hold the left mouse button, then drag the mouse
to the destination connector. While dragging, an intermediate white connection line is drawn. If the
connection is possible, the line turns green. Upon releasing the mouse button, the connection is
established.

Table 3.6. Connecting Modules by Dragging



Modules and Networks

26

3.4.1.1.1. Connecting to Open Inventor Groups by Dragging

Connecting to an Open Inventor group module (e.g., SoSeparator, SoRenderArea, SoGroup) works the
same as described in Section 3.4.1.1, “Connecting by Dragging”.

However, Open Inventor group modules have a dynamic and unlimited number of input connectors, and
when not dragging to establish a connection, only the connected connectors are visible. On starting to
establish a new connection, all Open Inventor group modules in a network show their otherwise hidden
additional input connectors. Those additional input connectors are smaller than the regular connectors
and placed to the left and to the right of the regular connectors. On connecting to an additional connector,
the connection is established and the additional connector becomes a regular connector, so that for the
next connection, even more additional connectors are available.

Table 3.7. Dragging a New Connection Generates New Input Connectors to the
Sides of Regular Connectors



Modules and Networks

27

Table 3.8. Even More New Connectors are Available

3.4.1.1.2. Connecting from Open Inventor Groups by Dragging

Connecting from an Open Inventor group module is basically the same as connecting to such a module.

However, new dynamic input connectors appear only if the mouse cursor is placed to the left or to the
right of existing regular input connectors. Once an additional connector has appeared under the mouse
cursor, it can be used for establishing a connection by clicking on it, holding the left mouse button, and
dragging to an output connector.



Modules and Networks

28

Table 3.9. New Input Connectors are Generated by Positioning the Mouse

3.4.1.2. Connecting by Proximity

Modules can be connected by moving their input and output connectors close to each other.

Grab a module by clicking and holding the left mouse button, then move it close to the module with
which the connection should be established. If the first free, compatible connectors are close enough,
a stippled preview of the module and its connection is rendered. Release the mouse button to establish
the connection, and the dropped module is automatically positioned at the preview location.

Table 3.10. Connecting by Moving the Source Module into Proximity

The same procedure works for connecting a destination module.

Note

The stippled preview connection is always rendered in the middle of the preview module's
silhouette and not at the actual position of the connector on the module.



Modules and Networks

29

Table 3.11. Connecting by Moving the Destination Module into Proximity

3.4.1.2.1. Connecting to Open Inventor Groups by Proximity

When connecting to an Open Inventor group by proximity and the group already has at least one input
connection, all subsequent connections are generated at the first or the last dynamic connector. A new
connection cannot be established by proximity between already existing connections. Use the method
described in Section 3.4.1.1.1, “Connecting to Open Inventor Groups by Dragging” or Section 3.4.1.1.2,
“Connecting from Open Inventor Groups by Dragging” for connecting modules in between existing
connections.

Table 3.12. Connecting an Open Inventor Group by Proximity



Modules and Networks

30

Table 3.13. Connecting to an Open Inventor Group by Proximity

Table 3.14. Appending vs. Prepending to an Open Inventor Group by Proximity

3.4.1.3. Connecting by Inserting into an Existing Connection

To insert a module into an existing connection, start by grabbing the module. This is done by left-clicking
it and holding the mouse button while moving the mouse. Move the module over an existing connection.



Modules and Networks

31

If the module can be inserted into the connection, the connection is highlighted, and the mouse cursor
changes to a plus sign. On releasing the mouse button, the module is inserted into the connection.

Table 3.15. Connecting a Module by Inserting

3.4.1.4. Inserting a Module with More than One Input Connector

If a module has more than one input connector and is dropped onto an existing connection, the leftmost
free input connector is used to establish the connection.

Note

In the following two examples, all described methods of establishing connections are mixed.



Modules and Networks

32

Table 3.16. Connecting a Module with Two Inputs by Inserting



Modules and Networks

33

Table 3.17. The Second Input is Connected by Dragging

3.4.1.5. Variation of Inserting a Module with More than One Input
Connector

If the leftmost input connector is already connected, the first leftmost free input connector might just be
the second input connector.



Modules and Networks

34

Table 3.18. Variation: First Input is Connected by Proximity



Modules and Networks

35

Table 3.19. Variation: Second Input is Connected by Inserting into an Existing
Connection

3.4.2. Disconnecting Modules
There are also multiple ways of disconnecting modules.

An input connection or a number of output connections can be removed by dragging a new connection to
the network's background. Connections are selectable and any selected network item can be removed
by pressing DEL. Connections have a context menu that offers to disconnect the selected connection,
or in the case of a bundled module group connection, all connections.

3.4.2.1. Disconnecting by Dragging to the Background

A single input connection can be removed by starting to drag a new connection from an already
connected input connector and then releasing the drag over an empty region of the network.

If the drag is started on an output connector with multiple connections, and is released over the network's
background, all output connections are removed.



Modules and Networks

36

Table 3.20. Disconnecting by Dragging to Background: Input



Modules and Networks

37

Table 3.21. Disconnecting by Dragging to Background: Output

3.4.2.2. Disconnecting by Selection

Connections can be selected by clicking on them with the mouse.

A selected connection has its own highlighting and is removable by pressing DEL.

Table 3.22. Disconnecting by Selection and Pressing DEL



Modules and Networks

38

3.4.2.3. Disconnecting by Context Menu

Connections not only have a tooltip showing the source and destination connector, but also a context
menu where single connections or all connections, if they are bundled, can be disconnected.

The next example features a module group (see Section 3.11, “Using Groups”) to show that
disconnecting by context menu also works for connection bundles.

Table 3.23. Disconnecting by Context Menu

3.4.3. Moving Connections
Connections can be moved from input connector to input connector, or from output connector to output
connector.

The connector can be on different modules or on the same module.

To move a connection, drag it and move it to the destination connector. If the connection is possible,
the intermediate connection is rendered in green. On dropping the connection, the connection to the
new connector is established.



Modules and Networks

39

Table 3.24. Move Input Connection

If the moving of connections takes place at an output connector, multiple connections can be moved
in a single interaction.

Table 3.25. Move Multiple Output Connections

3.4.3.1. Moving Connections Within Open Inventor Groups

A connection can also be moved within an Open Inventor group. On starting the drag, additional
connectors are shown to which the connection can be moved.



Modules and Networks

40

Table 3.26. Move Connection Within an Open Inventor Group

3.4.4. Copying Connections

Input connections can be copied by holding CTRL+SHIFT and dragging an existing input connection
to another input connector in the network.



Modules and Networks

41

Table 3.27. Copy Connection

3.4.5. Replacing Connections

An input connector can only be connected with a single output connector.

When connecting another output connector to an already connected input connector, the previous
connection of that input connector is replaced.

Similarly, if a new connection is dragged from an already connected input connector, the previous
connection is replaced by the new connection.



Modules and Networks

42

Table 3.28. Replace Connection

3.5. Mouse Pointers
Depending on the action, mouse pointers may look differently.



Modules and Networks

43

Table 3.29. Mouse Pointers

Action Pointer

Standard look or when dragging Views or Panels

When drawing a data connection

When attempting to draw a forbidden connection

When drawing a selection rectangle

When dragging a module or network

When drawing a parameter connection

When inserting a module into an existing
connection or into a module group

3.6. Mouseover Information
When moving the mouse over elements such as modules, connectors, or connections, the elements
are first highlighted, and then context-sensitive information is displayed.



Modules and Networks

44

Table 3.30. Mouseover Information

Mouseover Displayed Information

Module

Image connector

Open Inventor connector

Base connector

Data connection

Parameter connection

Parameter connections also offer the following features when the panels are visible:

• Hovering over the parameter connection(s) in the network highlights all connected input/output fields
of the parameter connection(s).

• Hovering over an input/output field of a parameter connection on a panel highlights the other
connected field and the parameter connection in the network (thicker line), see Figure 3.7, “Parameter
Connection — Panel Mouseover”.



Modules and Networks

45

• When moving a parameter connection from one field to another by pressing SHIFT while dragging
the parameter connection, all connected connections are updated accordingly.

Figure 3.7. Parameter Connection — Panel Mouseover

Additional detailed information on image connectors is available if enabled in Preferences → Network,
see Section 4.3.7, “Preferences — Network Appearance”.



Modules and Networks

46

Figure 3.8. Connector Image Preview

Tip

In the case of an ML image, the image preview is also sliceable. For this, click the image
preview and keep the mouse button pressed while moving the mouse up and down.

Figure 3.9. Connector Detail Info and Image Preview

Note

The amount/depth of visible information depends on the zoom level. An example for this is
in the Getting Started, figure “Connector Details Depending on Zoom”.

3.7. Module Halo
Selected modules feature what is called a halo effect. Two types are available: classic and alternative.
The halo type is set in the Preferences, see Section 4.3.7, “Preferences — Network Appearance”.



Modules and Networks

47

Table 3.31. Module Halos — Classic and Alternative

The classic halo shows a weaker halo for attached modules; the alternative halo shows the same
strength for all modules. For the selected and the attached input and output modules, different colors
can be set in the Preferences to make their roles more distinguishable.

If an attached module is the input and output module of the selected modules at the same time, the halo
color will mix. With classic halos, those modules have a white halo. Alternative halos are rendered in
both colors, as shown in the figure on the right.

Table 3.32. Module Halos Input Output — Classic and Alternative

3.8. Module Highlighting
To improve the visibility of connections between modules in a more complex network, a special
highlighting mechanism is available: When selecting modules in a network and then pressing SPACE,



Modules and Networks

48

the workspace is darkened and only the selection and its directly connected modules are highlighted.
Pressing SPACE again toggles back to the normal view. In the following example screenshot, the “lut”
module is connected via four parameter connections and two data connections, which cannot be easily
seen in the non-highlighted display.

Table 3.33. Highlighting of Selections — Classic Halo

Table 3.34. Highlighting of Selections — Alternative Halo

The alternative halo is also a good way to make notes and groups more visible.

Table 3.35. Module Group with Alternative Halo — Selected and Highlighted



Modules and Networks

49

Tip

For shortcuts for modules and networks, see Section 4.3.10, “Preferences — Shortcuts”.

When nothing is selected, pressing SPACE will display previews for all internal networks of macros.
Clicking on a preview opens the internal network (same functionality as “Show Internal Network” in
the context menu or SHIFT + double-clicking the module). Pressing CTRL+SPACE shows invisible
connectors only. To toggle back to normal view press SPACE again.

Table 3.36. Preview of Internal Networks of Macro Modules

Normal View Previews for internal
networks (SPACE)

Show invisible connectors
(CTRL+SPACE)

Tip

To remove all selections, press ESC (the network needs to have the focus for this).

No previews are available for script-only macro modules. This might help to identify macro modules that
have an internal network but should be implemented as script-only.

3.9. Module Handling

3.9.1. Module Context Menu
Right-click modules to open the module context menu. Its contents slightly depend on the module type.
Available groups of entries:

• Section 3.9.1.1, “Show Window”

• Section 3.9.1.2, “Instance Name”

• Section 3.9.1.3, “Help”

• Section 3.9.1.4, “Extras”

• Section 3.9.1.5, “Reload Definition”

• Section 3.9.1.6, “Related Files”

• Section 3.9.1.7, “Show Enclosing Folder”

• Section 3.11, “Using Groups”



Modules and Networks

50

• Open Inventor only: Section 28.7, “Set Open Inventor Override Flag (Inventor Modules)”

Figure 3.10. Module Context Menu

3.9.1.1. Show Window

Figure 3.11. Module Context Menu — Show Window

Each module has at least one panel: the automatic panel, which lists all fields and parameters of the
module. Use it for an overview or for editing the parameters (see also Section 11.1, “Fields”).

Tip

Refer to chapter Section 4.3.10, “Preferences — Shortcuts” for a shortcut for opening a
module's automatic panel.

Figure 3.12. Automatic Panel



Modules and Networks

51

The automatic panel lists all fields of the module in order of their initialization in the C++ code or of their
definition in the Macro definition. It also shows the data type of the field, whether it is an input or output
field, and its current value. The value can be edited directly on the automatic panel.

If a field has a value different from the default value of the field for that module, the Flags column will
have a ! entry. You can sort by the Flags column to see all fields with a changed value more easily.

Tip

The header of the list of fields of the automatic panel has a context menu where you can
toggle how to sort the fields or to turn off the sorting at all. In the later case, the fields are
ordered as they are implemented in C++ or in the script.

Typically, another type of panel is also available, which displays the parameter fields in a structured
layout and is written in MDL.

Important points:

• It is possible to add fields that are not in the C++ code.

• It is possible to add field listeners that can trigger script code.

• It is possible to exclude rarely used fields from the structured panel. This way, the panel's usability
might be enhanced. (Fields can always be edited in the automatic panel.)

Figure 3.13. Panel Defined in MDL

Other windows may be available. For example, for the View2D module, a Viewer and a Settings window
are available. For information on defining windows, see the MDL Reference, chapter “1.3.2.1. Window”.
For an example, see the Getting Started, chapter “Adding the Macro Parameters and Panel”.

Show Scripting Console

Opens the Scripting Console with the context of the current module, allowing, for example,
ctx.field("fieldName") calls to reference and access fields belonging to that module, see
Section 4.7.1, “Show Scripting Console”.

3.9.1.2. Instance Name

Edit Instance Name



Modules and Networks

52

Figure 3.14. Module Context Menu — Edit Instance Name

This option allows distinguishing between several instances of the same module. Within a network,
each module instance must have a unique name. If no specific instance name is provided, copies of the
modules are automatically numbered (1, 2, 3, etc.). Alternatively, the instance can be renamed manually.

Note

Instances of modules have to be unique because modules are addressed by their instance
names in scripting.

Select the option or use the respective shortcut (see Section 4.3.10, “Preferences — Shortcuts”) to open
a dialog for entering a new instance name.

The instance name is displayed above the module name. If the instance name is the module name plus
a number, only the instance name is displayed, as it already includes the module name.

Figure 3.15. Modules and Instance Names

Copy Instance Name

This option copies the module's instance name to the system's clipboard. This can, for example, be
used to copy the module's name into scripting code.

3.9.1.3. Help

Figure 3.16. Module Context Menu — Show Example Network

Show Example Network



Modules and Networks

53

Opens the example network in a new network tab. This option is only active if an example network exists
(otherwise, the entry is grayed out).

If a module has multiple example networks, this entry is a menu item, displaying the number of example
networks. Upon selection, a submenu offers all available example networks by their names.

Show Help

Displays the HTML help file for the module in the default browser. This option is only active if a help
file exists.

Edit Help

Edits the mhelp file in MATE. Use this option if fields have changed (renamed, new, or removed) or if
the module is new. This creates the initial mhelp file if it does not exist or refreshes an existing mhelp
file with updated field information.

3.9.1.4. Extras

Show DLL Dependency (not on macro modules)

This option uses (on Windows) the Dependency Walker for checking and displaying all dependencies
for the module. For more information, please refer to the help of the Dependency Walker. Linux has its
own solution for displaying similar information.

Figure 3.17. Dependency Walker

Run In Separate Process (not on Open Inventor modules)



Modules and Networks

54

Table 3.37. Run In Separate Process

MeVisLab allows for running ML and macro modules in background processes, so-called worker
processes. We call the underlying concept Remote Modules. “Run In Separate Process” will replace the
selected module in the network by a remote module and start a MeVisLab worker process that loads
the replaced module. Field and image changes are transmitted asynchronously between MeVisLab and
the worker process.

Remote Modules offer an alternative approach to multithreading for utilizing multiple CPUs and
enabling asynchronous processing. For example, a remote module can be used to move long-running
calculations into the background to keep the GUI responsive.

Note

Restrictions:

• You can only move a single module.

• Open Inventor modules cannot be moved to a worker process.

• Image inputs are not supported. It is not worth loading an image in the main process
and then transferring the image data to the worker process. Instead, load it directly in the
worker process; you may need to create a macro module for this.

• Image outputs do not support image extension information, but this is typically
unnecessary.

• Base fields are only supported through special handlers. Currently, there are
only handlers for XMarkerList(Container) and some specialized remote Base
types like RemoteRendering, RemoteFileTransfer, RemoteCallInterface, and
AbstractItemModel. Other Base types will result in an empty Base field.

• Scripting does not work if it accesses the GUI or is called from the GUI (since the GUI
lives in another process than the scripting context). Controls may also not use fields of
submodules.

• Use an ItemModelView instead of a ListView if you need to display lists or tables in your
GUI.

• Module fields will not update immediately after some other field was changed, since
updates are transmitted asynchronously.

Restore Default Values



Modules and Networks

55

Resets all fields whose values differ from their default value back to the default value. (These are the
fields with an ! entry in the Flags column in the automatic panel.)

Set Open Inventor Override Flag (only on Open Inventor modules)

See Section 28.7, “Set Open Inventor Override Flag (Inventor Modules)”.

Tests

Figure 3.18. Module Context Menu — Tests

In the Tests submenu, testing options are available.

Run All

Starts all available tests for the module. In the case of Threshold, the generic test case “Formal” and
the “Functional” test case are executed. When the tests are finished, a test report window is opened.
(See also Section 4.6.6, “Run Module Tests...”, the TestCenter Reference, and the Getting Started,
chapter 16, “Using the TestCenter”.)

Edit <AssociatedTest>

Opens the files of a test associated with the selected module.

Create Tests

Opens the TestCaseManager on the tab to create a new functional test.

3.9.1.5. Reload Definition

Reloads the module's definition (.script and optional .py file). This is necessary when laying out
panels and windows, or when working on the scripting.

Tip

A single selected module can also be reloaded by pressing the according shortcut key for
the OS. Refer to Section 4.3.10, “Preferences — Shortcuts”.

If modules are being reloaded, an animation (modules turn white and slowing gain their color back)
indicates that the modules' definitions have indeed been reloaded.



Modules and Networks

56

3.9.1.6. Related Files

Figure 3.19. Module Context Menu — Related Files

Related Files: Lists all files belonging to the module. Possible file types are .def/.script (MDL
definition files), and .py (Python scripting files). Select a file to open it in the default editor (as set in
Section 4.3.4, “Preferences — Supportive Programs”).

Show Definition Folder: Opens the definition folder of the module that contains the .def and .script
files. If the module is augmented by scripting, the .py files can also be found there.

Show Sources Folder: Opens the folder containing the source code files of the module.

3.9.1.7. Show Enclosing Folder

Shows the directory where the definition file of the module is located.

3.9.1.8. Groups

For the Groups functions, see Section 3.11, “Using Groups”.

3.9.2. Additional Inputs
Modules may have more inputs and outputs than are initially visible, to keep the module display as
uncluttered as possible. An example for a module with possibly hidden inputs is the View3D module. It

offers the additional context menu entry View3D Options → Show Inventor Inputs. If enabled (which
is the default), three Open Inventor input fields are displayed. The option can also be toggled in the
module's Settings panel.

Figure 3.20. View3D With Visible Inventor Inputs (Default)

Figure 3.21. View3D With Hidden Open Inventor Inputs



Modules and Networks

57

Tip

The three Open Inventor inputs of View3D have certain positions in the scene rendering,
i.e., the first input is before LUT and volume renderer, the second between LUT and volume
renderer, and the third after LUT and volume renderer. This can be seen if the Open Inventor
inputs are displayed and the internal network is opened, see next paragraph.

Depending on the programming, the number of inputs may be dynamically set. For example, this is the
case for the Switch module.

For a supporting visualization while interactively drawing connections, see Section 3.3, “Connector and
Connection Types”

3.9.3. Show Internal Network (Macro Modules)

In the context menu of macro modules, the option Show Internal Network is available. If selected, the
network of the macro is opened in a separate network tab.

Tip

Refer to chapter Section 4.3.10, “Preferences — Shortcuts” for a shortcut to open a macro's
internal network.

Note

Showing the internal network of a macro this way shows the live network; this means that all
fields of all modules will have the value at the moment of opening the network, and changing
field values in this network will change the state of the macro. If you change the network
and save it, all the changed fields will be saved for that macro as well.

If you want to work on an internal network of a macro, open its network with the option
“Related Files” from the macro's context menu and select the corresponding .mlab file.



Modules and Networks

58

Figure 3.22. RegionGrowingMacro — Internal Network

The pseudo-connectors shaded in gray are placeholders and indicate the input (bottom) and output (top)
parameters of the macro, which constitute the connectors of the macro module. They are automatically
drawn at the edges of the bounding box of the network. Important points about them:

• They cannot be moved or removed interactively but can only be changed in the script.

• They cannot be selected in a rectangle but each of them can be clicked, in which case the input/
output square, the connection(s), and the connected module(s) are highlighted.

Note

Modules in an internal network of a macro that are connected to the macro's input /
output fields (visualized by being connected to the pseudo-connectors) cannot be removed
interactively from the network.

On an attempt to remove such a module, a window with a warning pops up. If such a module
needs to be removed, the corresponding connection must first be removed in the scripting,
and then the macro needs to be reloaded.

Note

The tab of the internal network remains connected to the module from which it was opened.
When the module is deleted or its containing network is closed, the tab with the internal
network is also closed.



Modules and Networks

59

3.10. Network Handling
Parts of a network can be selected by pressing the mouse button and dragging the mouse over the
network (also called “rubber-band selection”). A selection rectangle appears that selects all modules
that currently touch this rectangle.

While selecting modules with that rubber-band rectangle, the number of so-far selected modules is
shown at the mouse cursor.

To select multiple non-adjacent modules, press SHIFT and click the modules.

To deselect all modules, press ESC or select an empty area of the network tab.

More than one network can be opened, and they are displayed in a tabbed view. To close a tab, and
thereby its network, click the respective Close (x) button. Alternatively, a network can be closed by
clicking its tab with the middle mouse button.

A network quick search is available, see Section 3.14, “Network Quick Search”.

3.10.1. Network Context Menu

Right-click the workspace to open the network's context menu.

Figure 3.23. Network Context Menu

• For the Edit functions, see Section 4.2, “Edit Menu”.

• For the View functions, see Section 4.9, “View Menu”.

• For creating Notes, see Section 3.12, “Using Notes”.

• For creating Groups, see Section 3.11, “Using Groups”.

3.10.2. Connections Context Menus

3.10.2.1. Context Menu of Parameter Connections

Parameter connections are connections between the fields of modules. They may be created within the
same module or between modules. For details on parameter connections, see Getting Started, chapter
“Parameter Connection for Synchronization”.

The context menu of parameter connections in the network offers the following options:



Modules and Networks

60

Figure 3.24. Parameter Connection Context Menu

Parameter connections are always bundled between two connected modules. Therefore, several
connections may be listed in the context menu of one parameter connection.

Outgoing parameter connections are positioned at the upper third of the module's left or right border,
and incoming parameter connections are positioned at the lower third of the module's border.

If a module has parameter connections within its own fields, the parameter connection visualization
forms a small loop at the border of that module.

For each connection, the following options are available:

• Value: Shows the current value of the field.

• Disconnect: Disconnects the field connection.

• Select in Parameter Connections Inspector: Selects the field connection in the Parameter
Connections Inspector (see Chapter 16, Parameter Connections Inspector).

• Add to Network Fields WatchList: Adds the connected fields to the Network Fields WatchList
(see Chapter 14, Network Field WatchList).

Additional options are:

• Disconnect All: Disconnects all listed parameter connections (can be undone/redone)

• Copy Connection Info: Copies the connection info string to the paste buffer

To disconnect internal parameter connections, click the small loop on the left side of the module and
open the context menu to disconnect them. Alternatively, internal parameter connections are also listed
in the Parameter Connections Inspector and can be disconnected there.

Figure 3.25. Module with Internal/Self-Connected Parameter Connection

3.10.2.2. Context Menu of Data Connections

The context menu of data connections in the network only contains the Disconnect option for each item.

Additional options are:

• Disconnect All: Disconnects all listed data connections (can be undone/redone)

• Copy Connection Info: Copies the connection info string to the paste buffer



Modules and Networks

61

In the case of grouped modules, data connections are bundled and more than one connector is listed
in the context menu.

Figure 3.26. Data Connection Context Menu

3.11. Using Groups
Modules can be grouped. A group is helpful for organizing the network in the workspace, as the group
can be moved as one unit. The default color of groups can be set in the Preferences, see Section 4.3.7,
“Preferences — Network Appearance”.

Table 3.38. Modules in Groups

Data connections are bundled optically as square, color-coded connectors at the bottom (input) or top
(output) of the group. The colors correspond to the connection types: blue for ML, green for Open
Inventor, brown for Base. Parameter connections are not bundled for groups.

The size of the group is set automatically by the bounding box of the modules and cannot be changed
explicitly. To adjust it, move the modules within the group.



Modules and Networks

62

Note

Besides the optical appearance as “group”, the modules are not connected to each other
in any special way. Groups are only a visual tool for improving the network handling.
Consequently, the group feature should not be used excessively to organize complex
networks; instead, groups should be converted to macros, which is the recommended way
to reduce complexity in the MeVisLab context, see Section 3.11.2, “Editing, Converting,
and Deleting Groups”.

The name and the color of a group can be scripted, see the Scripting Reference,
MLABNetworkModelItemGroup.

3.11.1. Creating Groups and Adding/Removing
Modules

Creating groups and adding/removing modules from groups is done via the context menu of the selected
module(s).

Figure 3.27. Network Context Menu — Adding Groups

Tip

If a single module is dropped over an existing module group, it is automatically added to
that group.

Note

The color of modules positioned over a group, but not part of any group, is rendered slightly
more saturated and bright.



Modules and Networks

63

Figure 3.28. Network Context Menu — Adding to a Specific Group

Add To New Group

Creates a new group for the selected modules and also allows adding the modules to an existing group
by entering an existing group name.

The additional option Add to Group: <TargetGroup> is available if the module is already positioned
within the target group's bounding box.

Add To Group

Adds the selected modules to one of the existing groups, which can be selected in the submenu.

Remove From Group

Removes the selected modules from the group.

Tip

To move modules from one group to another, simply select them and add them to another
or a new group. Since modules can only be part of one group, this action will effectively
move the modules.

3.11.2. Editing, Converting, and Deleting Groups
A group can be edited, converted to a macro, or deleted via the context menu of its title.

Figure 3.29. Group Context Menu

Edit Title

Allows editing a new group title/name. The title must be unique within the current network.

Tip

Refer to chapter Section 4.3.10, “Preferences — Shortcuts” for a shortcut for editing a
group's title.



Modules and Networks

64

Edit Color

Allows editing the color of the group. This has no effect on the default color, which is set in the
Preferences, see Section 4.3.7, “Preferences — Network Appearance”.

Note

When changing the color setting, the alpha value is 255 by default, meaning the group is
opaque. To give the group the appearance of standard groups, enter the original alpha
value of 38.

Convert To Macro

Creates a (local) macro from the group, see Section 4.1.12, “Create Local Macro”. The network must
be saved before the macro creation can proceed.

Delete Group

Deletes the group. Can be undone/redone. Does not remove the modules in that group.

Tip

To remove a group and all its modules, double-click the group's title bar; this selects the
group and all its modules. The group and its modules can then be removed by pressing DEL.

3.11.3. Copying Groups Including Modules

For copying a complete group:

1. Double-click the group title bar to select all modules of the group.

2. Duplicate the group via the Edit menu or the respective keyboard shortcuts see Section 4.3.10,
“Preferences — Shortcuts”.

A number is added automatically to the title of the group copy, for example, “title2”, “title3”.

3.12. Using Notes
Notes allow for adding annotations and additional information to a network or group. In contrast to the
Comment module, notes are immediately visible and readable. The default color of notes can be set in
the Preferences, see Section 4.3.7, “Preferences — Network Appearance”.

Figure 3.30. Note (Expanded)

3.12.1. Creating Notes

Notes can be created via the network context menu.



Modules and Networks

65

Figure 3.31. Creating a Note

Click Create Note and create a new note item by entering a title and a comment. The width of the note's
title defines the minimum width of the note in the display. Note titles do not have to be unique; there
can be more than one note with the same title. Note comments are not limited in size. If the full note
text cannot be displayed, three dots (“…”) are displayed to indicate that more text is available. Text with
more complex formatting (bold, lists, etc.) may be pasted into the note editor but the formatting will be
lost. Instead, one can use the formatting options that are also available for the help editor, as described
in Section 27.9.2, “Formatting”.

Figure 3.32. Dialog for Editing Notes

Tip

Since notes do not offer scrolling, it is recommended to adjust the note size and/or the
amount of information so that the entire text is visible at once. Otherwise, it may be
necessary to resize the note or use Edit Text to read the entire text.

The formatting of the text also changes slightly while zooming in the network due to dynamic
font alignment. Therefore, as a rule of thumb, you should make the note slightly larger than
needed for the current zoom level.

Notes can be scripted, see the Scripting Reference, MLABNoteItem.

3.12.2. Handling Notes
Notes can be collapsed/expanded by clicking the minus/plus buttons ( / ) or by double-clicking the
note title.



Modules and Networks

66

Figure 3.33. Note (Collapsed)

Notes can be resized by dragging the resize icon at the lower right ( ).

3.12.3. Editing and Deleting Notes

A note can be edited or deleted via the context menu of its title bar.

Figure 3.34. Note Context Menu

Tip

Double-click the text area to edit the note. For further note-related shortcuts, see
Section 4.3.10, “Preferences — Shortcuts”.

Edit Note

Allows the editing of the note title and text.

Edit Color

Allows the editing of the note's color. This has no effect on the default color, which is set in the
Preferences, see Section 4.3.7, “Preferences — Network Appearance”.

Draw As Comment (toggle)

If this option is active, the note is displayed without a title and without a surrounding box directly on the
network's background.

Figure 3.35. A Note Displayed as a Network Comment

Delete Note



Modules and Networks

67

Deletes the note. Can be undone/redone.

Grouping

Notes can also be assigned or removed from groups just like modules (see above, Section 3.11, “Using
Groups”). The bounding box of the group is adjusted accordingly. Notes in a group will be moved with
the group; notes in general can be moved anywhere in the workspace.

Figure 3.36. Note in a Group

3.12.4. Copying Notes Including Text

Note

Notes can be copied or cloned, just like modules.

3.13. Using the Mini Map
When zooming into a network such that it is not fully visible in the workspace, a mini map is displayed
(default setting), allowing navigation within the network. The settings and appearance of the mini map
can be edited in the Preferences, see Section 4.3.7, “Preferences — Network Appearance”.

Figure 3.37. Mini Map



Modules and Networks

68

The highlighted area of the map can be dragged with the mouse, and the network rendering is adjusted
accordingly.

Figure 3.38. Navigating in the Mini Map

In the case of macro modules, the network(s) from which the internal network is opened can be displayed
in a hierarchy if the option Show parent navigation frames is enabled. See Section 4.3.7, “Preferences
— Network Appearance” for details.

Figure 3.39. Parent Navigation Frame for Macro Modules

Parent navigation frames (PNF) can be used to navigate to networks higher in the hierarchy or to open
internal macro networks of a parent frame.

• Click a PNF to display its network.

• Right-click a PNF to open a context menu that lists the names of all macros in that network. Select
a macro name to open and activate its network. The currently displayed macro network is marked
as “[Current]:”.

Figure 3.40. Parent Navigation Frame Context Menu

If a parent network is not open, the PNF is rendered as a plain, dark gray square. Upon clicking it, the
network is opened and the PNF is updated to show the small mini map rendering.

Tip

The PNF shows not only the modules and their connections but also the highlight state of
the modules. Make sure to select a macro before opening its internal network so that the
PNF displays that macro as highlighted.



Modules and Networks

69

3.14. Network Quick Search
A quick search for networks is available with the keyboard shortcut “Find” found in Section 4.3.10,
“Preferences — Shortcuts”. It opens in the top right corner of the network view.

Figure 3.41. Network Quick Search

The search results are sorted by categories: Modules, Fields, and Files.

Search options are available by clicking on the magnifier icon:

Figure 3.42. Network Quick Search — Options

• Substring: If selected, the search is extended to substrings of module, field, or file names, effectively
working as if adding wildcards, such as *image*.

• Match Case: If selected, the search differentiates between lower- and uppercase letters.

• Search In Internal Networks: If selected, the search is performed recursively within the internal
networks of macro modules.

Clicking Show All opens the results in a new, persistent window. This way, you can have several search
result lists open.



Modules and Networks

70

Figure 3.43. Network Quick Search — Show All Results

Double-clicking a search result has different effects depending on the result type:

Figure 3.44. Network Quick Search — Highlight Results

• Double-clicking a field highlights and zooms in to the module that contains the field.

• Double-clicking a module highlights and zooms in to the module.

• Double-clicking a file opens it in the integrated text editor MATE.



Modules and Networks

71

3.15. Network Selector
MeVisLab offers a network selector with a network preview similar to the “Task Switcher” or “Flip” on
Windows systems.

The use of the network selector can be toggled in the Preferences on the General tab: Section 4.3.1,
“Preferences — General”.

To open the network selector, hold down the right mouse button and turn the mouse wheel. With an
open network selector, turning the mouse wheel selects a next or a previous network, depending on the
direction in which the mouse wheel is being turned. On releasing the right mouse button, the currently
selected network in the selector is set as the current network in MeVisLab. Also, the selected network
is maximized in the IDE.

The network selector also opens on pressing CTRL+Tab or CTRL+SHIFT+Tab. Consecutive presses
of those shortcuts navigate the available networks in the preview. On releasing the key combination,
the last selected network is made active in MeVisLab.

Note

The mentioned shortcuts are the defaults, refer to Section 4.3.10, “Preferences —
Shortcuts” for the current shortcuts.

Figure 3.45. Network Selector in Action

3.16. Network Preview
When hovering the mouse cursor over a network tab, a network preview is rendered as a tooltip.

Figure 3.46. Network Selector in Action

3.17. Network Mouse Gestures
The Windows version of MeVisLab supports mouse gestures for network interaction.



Modules and Networks

72

The use of network gestures can be toggled in the Preferences on the Network Interaction tab: see
Section 4.3.8, “Preferences — Network Interaction”.

A mouse gesture is performed by holding the right mouse button down while the cursor is over the
network background and moving the mouse. The trail of the mouse during the gesture is rendered on
the network for better orientation.

The trail of the mouse gesture is color-coded. If the gesture is not yet recognized, the trail is rendered
in yellow; once the gesture is recognized, the color changes.

The trail is cleared on releasing the right mouse button. No context menu is shown in case of having
performed a gesture, not even if the gesture has not been recognized.

A gesture can be reset by pressing ESC while still holding the right mouse button down; the trail so far
is then cleared as well.

Figure 3.47. Trail of Unrecognized Mouse Gesture

3.17.1. Gesture for Closing the Current Network

The current network can be closed by a gesture that consists of a stroke down and then a stroke to
the right, like drawing the letter “L”. Once the gesture has been recognized by the system, the trail is
rendered in green. To complete the command, simply release the right mouse button.

Figure 3.48. Mouse Gesture for Closing the Current Network

3.17.2. Gesture for Closing the Current Network
Without Prompt

The current network, which has been changed but not yet saved, can be closed without showing the
prompt asking whether the network should be saved by using a gesture that starts like the previous
gesture (drawing an “L”) but includes an additional downward stroke at the end. Once the gesture has
been recognized by the system, the trail is rendered in blue. To complete the command, simply release
the right mouse button.



Modules and Networks

73

Figure 3.49. Mouse Gesture for Closing the Current Network Without Prompt



74

Chapter 4. Menu Bar
4.1. File Menu
Figure 4.1. File Menu

4.1.1. New
Creates a new MeVisLab network document.

4.1.2. Open
Opens an existing MeVisLab network from file (extension .mlab). Alternatively, the .mlab file can be
dragged onto the workspace to open it in a new network window.

Some other file types may also be opened directly by dragging them onto the workspace (no network
needs to be open for that):

• A dragged image file (.dcm, .tif, .png, etc.) creates an ImageLoad module that automatically loads
the file.

• A dragged file readable by WEM modules (.wem, .off, .obj, .ply, etc.) creates a WEMLoad module
that automatically loads the file. See the HTML help for the WEMLoad module for more information.

• A dragged file readable by CSO modules (.cso) creates a CSOLoad module that automatically loads
the file.

4.1.3. Close
Closes the current network.

4.1.4. Close all
Closes all open networks.



Menu Bar

75

4.1.5. Save

Saves the current network.

For saved networks, the AutoSave files are discarded. See Section 4.3.1, “Preferences — General” .

4.1.6. Save As

Writes the current network to file with a new name.

For saved networks, the AutoSave files are discarded. See Section 4.3.1, “Preferences — General” .

4.1.7. Save Copy As

Writes a copy of the current network to file with a new name.

4.1.8. Revert To Saved

Reverts to the last saved version of the current network. (This option is only available if the network
was changed.)

4.1.9. Recent Files

Allows the selecting of a recently opened network from file. The maximum number of recent files is 20.
The list of recent files is not deleted upon installing a new version of MeVisLab. For more information
about storing preferences, see Section 4.3, “Preferences”.

4.1.10. Open Most Recent File

Opens the most recent network file. This function can be triggered with a keyboard shortcut, see
Section 4.3.10, “Preferences — Shortcuts”.

4.1.11. Run Project Wizard

Starts a wizard for creating new modules, packages, and installers (an ADK license is required for the
latter). See Chapter 26, Project Wizard.

4.1.12. Create Local Macro

Creates a new local macro module relative to the current network path, based on the currently selected
modules or a module group. See Section 3.11.2, “Editing, Converting, and Deleting Groups”. The
necessary inputs and outputs are added automatically. The display names of interface fields can be
changed, but their internal names cannot.



Menu Bar

76

Figure 4.2. Local Macro Creation

Locally defined macro modules can be used in complex networks to encapsulate subnetworks as
independent functional units with a defined interface to other network components. In this way, they
perform an application-specific function that would not be useful for other applications. Therefore, they
are not added to the common MeVisLab module database, meaning they are not declared in a .def file.

The following items are created:

• The files <ModuleName>.script and <ModuleName>.mlab in the current network path directory.
• The new local macro module on the current network workspace.

Note

A local macro module is not available in the MeVisLab module database, as no .def
file is created. The module cannot be accessed via the Modules menu or the Modules
Search. Local macro modules can only be added to networks in the same network path,
see Section 4.1.13, “Add Local Macro”.

To differentiate local macros from global macros, "./" is prepended to the module name/
type in the network view to indicate that this module only exists relative to the location of
the network file.

Note

During the conversion to a local macro, modules must be disconnected and reconnected.
Connections set by script, i.e., forwarded from an outer macro, cannot be disconnected,
resulting in an alert: “Unable to remove the module [module name] with connections set by
script.” A similar alert is issued when attempting to remove a module connected in this way.
In the next figure, modules within a red rectangle cannot be deleted, disconnected from
inputs/outputs, or added to a local macro.



Menu Bar

77

Figure 4.3. Modules Connected to Outer Macros

For an introduction to macros, read Getting Started, chapter “Introduction to Macro Modules”.

4.1.13. Add Local Macro
Adds a locally defined macro module to the current network, see Section 4.1.12, “Create Local Macro”.
Choose the <ModuleName>.script file in the file dialog to add the local macro module. The local macro
must be defined in the same folder as the network to which it will be added, or in a subfolder of that folder.

4.1.14. Open File in MATE
Opens MATE with a file dialog where one or more files can be opened, see Chapter 27, MATE.

4.1.15. Show MATE
Opens MATE without files, see Chapter 27, MATE.

4.1.16. Run ToolRunner
Starts the ToolRunner, see the ToolRunner documentation.

4.1.17. Run TestCaseManager
Starts the TestCaseManager of the TestCenter, see the TestCenter Reference and the Getting Started,
chapter 16, “Using the TestCenter”.

4.1.18. Recent Test Cases
Lists the most recently run test cases from the TestCaseManager. Selecting an entry from this list will
open the TestCaseManager and run the selected test case.



Menu Bar

78

4.1.19. Run Most Recent Test Case
This will open the TestCaseManager and run the top-most entry of the recent test cases list.

4.1.20. Restart with Current Networks
Restarts MeVisLab with all currently opened networks. This is necessary for a complete DLL update
and is useful when developing new ML and Inventor modules. Alternatively, you can press a shortcut
to restart MeVisLab with the current network. Refer to Section 4.3.10, “Preferences — Shortcuts”.

Note

MeVisLab restarts in the same mode in which it was originally started, particularly
concerning the -quick option.

4.1.21. Quit
Quits MeVisLab. If unsaved changes in networks are present, a message will appear.

4.2. Edit Menu
For editing modules, module groups, and connections, the typical text edit shortcuts for each platform
can be used. See Section 4.3.10, “Preferences — Shortcuts”.

Figure 4.4. Edit Menu (Windows example)

4.2.1. Undo
Undoes the last edit action.

4.2.2. Redo
Redoes the last undo action.

4.2.3. Clear Undo History
Clears the undo cache.



Menu Bar

79

4.2.4. Cut
Cuts the selected subnetwork from the current network. The subnetwork is cached with all connections
and field values of the contained modules.

4.2.5. Copy
Copies the selected subnetwork in the current network. The subnetwork is cached with all connections
and field values of the contained modules.

4.2.6. Paste
Pastes the copied or cut subnetwork into the current network.

4.2.7. Duplicate
Duplicates (copies and pastes) a subnetwork within the current network.

4.2.8. Delete
Deletes the selected subnetwork from the current network.

4.2.9. Select All
Selects all modules and their connections in the current network.

4.2.10. Deselect All
Deselects all modules in the current network.

4.2.11. Invert Selection
Inverts the selection by selecting all currently unselected modules and deselecting all selected modules
in the current network.

4.2.12. Align / Distribute
Aligns along centers and edges of modules, or distributes selected modules evenly within the bounding
box of the selection. See the icons for the effect each option has.

Figure 4.5. Align / Distribute

A toolbar with these buttons is available via View → Toolbars.



Menu Bar

80

4.2.13. Auto Arrange Selection

Automatically arranges the selected modules of the current network with an animation. This is
particularly useful for automatically generated networks, where all modules would otherwise be placed
in a single location.

If no modules are selected, the entire network is automatically arranged.

Modules with only inputs are arranged at the top of the network and modules with only outputs are
arranged at the bottom of the network. Other modules are arranged in layers in between. Groups are
arranged internally as if they were networks and the groups themselves are arranged in their context
as if they were just large modules. Parameter connections do not influence the arrangement.

The horizontal and vertical spacings between modules can be set with the Module Arrangement
Spacing settings described in Section 4.3.8, “Preferences — Network Interaction”.

The automatic arranging of a network (selection) can be triggered with a keyboard shortcut, see
Section 4.3.10, “Preferences — Shortcuts”.

4.2.14. Reload Selected Modules

Reloads the module database of the selected modules in the current network document. Changes in
the .def, .script, and .py files are updated and applied to the selected modules.

The successful reloading of modules is indicated by a short color-flashing animation of the module(s).

Note

If a macro is reloaded, its internal network is not reloaded, just the macro's GUI definition
and scripting files.

4.3. Preferences

Note

Settings in the Preferences panel overwrite the corresponding settings in the
mevislab.prefs file.

The Preferences (along with other information, such as the list of recent files or stored user layouts)
are saved in a manner that prevents them from being overwritten during updates or reinstallations of
MeVisLab:

• On Windows: in the Registry in Workstation/HKEY_CURRENT_USER/Software/Mevis/MeVisLab.

• On Mac OS X: in $HOME/Library/Preferences/de.mevis.MeVislab.plist.

• On Linux: in $HOME/.config/MeVis/MeVisLab.conf.

Tip

For many options in the Preferences, a mouse-over tooltip is available.



Menu Bar

81

4.3.1. Preferences — General

Figure 4.6. Preferences — General

User Name

The user currently signed in to this computer.

Resources

The optimal Resources settings depend on the system and platform. Use the default settings if uncertain.

Image Processing

Image Processing Cache Size (MB)

Defines the memory available for caching (intermediate) ML image tiles/pages within a network of image
processing modules. Reducing the cache size will slow down the image processing pipelines because
images will be recalculated more frequently in individual modules. Cache sizes too large might cause
a collapse of your system because of reduced memory for other programs. For 2 GB RAM, a value of
512 MB is well-tested. For details, see the ML Programming Guide, “Optimizing Data Flow in Module
Networks”.

Maximum Threads Used for Image Processing



Menu Bar

82

Sets the number of parallel threads for image processing. For more details on multi-threading, see
Section 28.6, “Multi-threading in MeVisLab”.

Use classic ML host

If checked, the classic ML host is used. Otherwise, an ML host is used that implements an optimized
multi-threading for the ML.

Visualization

Total Texture Memory on Graphics Card (MB)

Sets the amount of texture memory (texture RAM, TRAM) on the graphics card to be used for MeVisLab
texture processing, for example, in the View2D module.

Volume Renderer Texture Cache Usage (%)

Defines the percentage of texture memory that the GVR volume renderer may use.

IDE Options

Auto reload files when changed

If selected, the .def, .script, and .py files of a module are reloaded when reloading the module panel

(by double-clicking the module or selecting Show Window → Panel from the module context menu).

Note

Networks .mlab files (for macro modules) are not reloaded.

Auto save network documents

If selected, MeVisLab networks are auto-saved as <NetworkName>.mlab.auto upon major changes.
This allows restoration in case of system crashes. Auto-saved copies are deleted when the
corresponding networks are saved.

Show network selector when switching documents via CTRL-Tab

If selected, pressing CTRL+TAB (or SHIFT+CTRL+TAB) does not switch directly to the next or previous
network document, but shows a network selector preview. For more details, see Section 3.15, “Network
Selector”.

Restore module panels

If selected, opening a network restores all module panels (including window size and position) to their
state (opened, minimized, positioning, etc.) when the network was last saved.

Enable debugging of widgets

Enables/disables debugging module panels. When enabled, CTRL+left-clicking a GUI control in a
module panel opens the .script file in the default text editor at the line in which the GUI control is
defined.

Auto Load Network Documents

Sets the number of recent networks to be loaded automatically upon MeVisLab startup. This may
considerably slow down the startup process.

Note

If loading a network causes a crash, this option can be problematic, as the network will
automatically load upon the next start of MeVisLab, potentially leading to another crash.
Use this option with caution!



Menu Bar

83

Display System Info...

Displays system information regarding the Open GL vendor, the available GL extensions, and more in
an extra window.

Check External Tools...

Starts the Tools Check tool that checks for software necessary for certain build tasks. This tool is also
part of the ToolRunner. See the ToolRunner Documentation for details.

4.3.2. Preferences — Packages
MeVisLab modules are organized in packages. These are defined as certain folder structures (see
the Package Structure documentation for details). The Packages category gives an overview over the
available and active packages.

Figure 4.7. Preferences — Packages

The packages are separated into:

• User Packages: Packages found in the user path (packages in other paths can be added manually).
These are the default packages for user-defined modules.



Menu Bar

84

• mevislab.prefs: Packages resulting from the paths given in the prefs file.

• Installed Packages: Packages resulting from an installation of, e.g., the MeVisLab SDK.

If a package with the same PackageIdentifier is found more than once, the last package found will
overwrite the previously loaded packages (in the order given above, see the Package Structure
documentation for details). Overwritten packages will be grayed out and labeled “(Overwritten)”.

Create New Package

Opens the Package Wizard, see Section 26.5, “Packages”.

Add Existing User Packages

Opens the default file browser to add a user package. Folders are read recursively and all packages
below them are automatically included.

Remove

Removes the selected user package from MeVisLab's search path. (Installed packages cannot be
removed.) Removed user packages can always be re-added later.

4.3.3. Preferences — Module Groups

The Module Groups category lists optional groups of modules that are not loaded by default. Check the
corresponding group to get access to modules of the group.



Menu Bar

85

Figure 4.8. Preferences — Module Groups

Scroll to the right to see additional comments and the number of modules for each group.

After confirming the selection with OK, the package groups of the selected modules and the user
packages are scanned and loaded.

Show modules by the current user

If checked, the module written by the current user are always available and shown. The current user's
name is displayed on the General tab, see Figure 4.6, “Preferences — General”. If this username
appears as a value in the “author” or “maintainer” tag, the module will be available, except the module
is in the “deprecated” group.



Menu Bar

86

4.3.4. Preferences — Supportive Programs

Figure 4.9. Preferences — Supportive Programs

Internal Text Editor

Use internal text editor (MATE)

If selected, the internal text editor MATE is used, offering many useful features for MeVisLab files.
Recommended! See Chapter 27, MATE for details.

Handled Extensions

Allows the definition of a list of file extensions for which MATE is automatically opened.

External Programs

Allows the definition of external applications and program arguments for file types used in MeVisLab.
Click Browse to select the applications manually, or Detect to autodetect applications that work
especially well with MeVisLab.



Menu Bar

87

Note

On Linux, it can happen that an external program depends on a third party library that
MeVisLab provides. If problems occur, e.g., because a KDE program loads an incompatible
Qt library from MeVisLab, then use a shell script that clears LD_LIBRARY_PATH before
it calls the external program.

For example, to safely run konqueror from MeVisLab, place the following script in ~/bin
and make sure ~/bin is the first entry in PATH before running MeVisLab.

#!/bin/sh
LD_LIBRARY_PATH= konqueror
      

Arguments are options added when starting the program. They can be entered manually or are added
by the Detect feature.

Extensions lists the extensions for which the assigned program will be used. This overrides system
settings, but only within the MeVisLab context.

• TextEditor: Although it is recommended to use the internal text editor MATE, other text editors can
be used in conjunction with MeVisLab. With the argument %f(%l), a file and a line number in it will
be passed to the text editor. The Detect feature will check for TextPad on Windows (see the web link
for installing) and set the options accordingly.

• ImageViewer: Graphic applications may be used in conjunction with MeVisLab. If none is set, the
system default will be used. The Detect feature will check for IrfanView on Windows (see the web link
for installing) and set the options accordingly.

• MoviePlayer, HTMLBrowser: May primarily be needed to be set on Linux.

Network Proxy

Allows the configuration of a proxy server for HTTP connections to access the Internet.

• Enable proxy: If selected, a proxy will be used to access the Internet.
• Type: Sets the type of the used protocol.
• Host name: Sets the host name of the proxy server.
• Port: Sets the port of the proxy server.



Menu Bar

88

4.3.5. Preferences — Paths

Figure 4.10. Preferences — Paths

Default File Dialog Path

Sets the default path in the file dialog. If none is specified, the path last used will be offered.

Screenshot Path

Sets the path for files of the View Screenshot Gallery, see Chapter 19, Screenshot Gallery.

Snippets Path

Sets the path for network snippets, see Chapter 25, Snippets List

Applications Settings Path

Sets the path in which MeVisLab applications save their settings.

Logfile

Sets the path to the logfile written by MeVisLab.



Menu Bar

89

Note

You can also set the path to the logfile in the .prefs file with logfile = <absolutePath/
file.log>.

4.3.6. Preferences — Scripting

Figure 4.11. Preferences — Scripting

Scripting

Default Python Code

Sets a default Python code snippet to be used in the scripting console.

Additional Python Path

Adds the path to an additional Python package so that it can be found in the import statement.

Python Debugger Code

Sets Python debugger code as described in the Scripting Reference.



Menu Bar

90

Note

The 'Additional Python Path' and the 'Python Debugger Code' are for attaching an external
debugger to Python.

Using an external Python debugger is obsolete since MATE has a built-in debugger for
Python (see Section 27.8, “Python Debugger”).

4.3.7. Preferences — Network Appearance

Figure 4.12. Preferences — Network Appearance

Mini Map

Show Mini Map

The Mini Map provides an overview of the entire network. See also Section 3.13, “Using the Mini Map”.

The following settings for the Mini Map are available:

Show Mini Map



Menu Bar

91

• Automatic: Is displayed when parts of the network are outside the workspace.

• Never: Is never displayed.

• Always: Is always displayed.

Position

Defines the position of the Mini Map: Upper Right (default), Lower Right, Upper Left, Lower Left.

Show parent navigation frames

(For macro modules only) Shows the hierarchy of the opened networks. For example, when adding a
View2D module, opening its internal network and there the internal network of View2DExtensions, the
hierarchy of involved macro modules will be displayed in small frames next to the usual mini map (which
might not be shown, depending on its mode).

Network Rendering Style

Style

Offers four options for styling the network rendering:

• Full (Default): Network is rendered in color with 3D and highlighting effects.

• Print (Black & White): Network is rendered as simple black-and-white drawing.



Menu Bar

92

• Print (Color): Network is rendered as a simple color drawing without effects and a white background.

• Comic: Network is rendered as a simple color drawing without effects but with a gray background.

All four styles are fully functional in terms of editing, connecting modules, displaying a Mini Map, etc.
However, it is recommended to use the print styles only when screen-capturing and printing the network.

Halo

Offers two options for styling the halo of highlighted modules:

• Classic (Default): The halo is rendered as classic halo effect.

• Alternative: The halo is rendered as rectangle around the module.

To change the halo colors of the selected modules and the modules attached to them, edit the settings
of Selected, Source, and Destination by clicking on the respective color field.

Global Zoom

Factor

Sets a global zoom factor. Only applicable to modules and networks that do not fill the network space
automatically. Other modules/networks will be displayed with the given global zoom factor upon double-

clicking the networks space or using the button  (Show the entire network) in the toolbar.



Menu Bar

93

Default Colors

Groups

Sets the background color for module groups, see Section 3.11, “Using Groups”. The default is green.

Notes

Sets the background color for notes, see Section 3.12, “Using Notes”. The default is yellow.

Modules

Font Size

Sets the font size of the module name in the display (number referring to a zoom of 100%).

Snap to grid

Sets the grid size in the workspace to which the modules snap when moved.

Show ML image state

Shows the image states by coloring the connectors.

• Green: Valid and updated ML image.

• Yellow: Valid but not updated ML image.

• Red: Invalid ML image.

Badge Script

Selects a script that provides a badge icon for modules. Badge icons are intended to make users aware
of certain properties of a module. See Section 4.3.7.1, “How to define your own badge scripts” for how
to define your own badge scripts.

Connector Details

Show connector detail info

Enables detailed information for ML image, Inventor, or Base objects currently available on the
connectors when a single module is selected.

Detail Font Size

Sets the font size for the connector detail info.

Details On Zoom

Sets the threshold zoom factor below which the details are not displayed.

Verbose Details On Zoom

Sets the threshold zoom factor below which the verbose details are not displayed.

Connector Image Preview

Show Connector Image Preview

Shows an image preview at an image connector when a single module is selected.



Menu Bar

94

Image Preview Thumbnail Size

Sets the size of the image preview thumbnails in pixels.

Note

All sizes and fonts relate to a zoom factor of 100%.

4.3.7.1. How to define your own badge scripts

A badge script consists of a single .py Python file and a .def file (which just points to the Python file
and declares a title for display in a combo box).

The script is treated like an invisible macro module. For each module type, the run() function of the
script is called with the module's type as string argument. The run() function may return a dictionary with
the entries iconicon which should be the path to an icon (preferably .png), description, a text displayed
in the tooltip of the module; and optionally icon_size, if the icon must be scaled down for network display
(e.g., "20x20"). If no icon should be displayed for a module, None can be returned.

Example MyBadgeScript.def file:

BadgeScript {
  title  = "Some example badge script"
  source = "$(LOCAL)/MyBadgeScript.py"
}      

Example MyBadgeScript.py file:

from mevis import MLAB

def run(moduleName):
    author = MLAB.moduleInfo(moduleName).get("author")
    if author and "John" in author:
        return {
            "icon": "$(LOCAL)/johns.png",
            "description": "Module written by a John"
        }
      



Menu Bar

95

4.3.8. Preferences — Network Interaction

Figure 4.13. Preferences — Network Interaction

Module Placement

Placement of newly created or pasted modules

Defines where newly created or pasted modules are placed in the network:

• Into the middle of a network: Modules are inserted in the middle of the network; multiple modules
are inserted with a slight offset in position.

• At current mouse position (Default): Modules are inserted at mouse position; multiple modules are
inserted in a cascading manner. If the mouse cursor is outside the network's window, the modules
are placed into the middle of the network.

Module Arrangement Spacing

Horizontal / Vertical



Menu Bar

96

Enter arbitrary values to adjust the distances between modules for the autoArrange scripting command.
(These settings do not directly correspond to pixels but depend on zoom level and other factors.)

Network Zoom Style

Zoom to

Defines the position around which the zoom should be centered. Available options include zooming to
the center of the network or to the current cursor location.

Network Mouse Gestures

Use mouse gestures to close current network document

Enables or disables the use of mouse gestures (see Section 3.17, “Network Mouse Gestures” for
details).

This option only affects Windows systems, as on Linux and macOS, context menus are opened on right-
click rather than on right-button release.

Interaction Device

Device Selection

Allows the selection of special interaction devices (mice, touchpads, especially Apple devices). For each
selected option, the available features are listed below.

• Three-button mouse with scroll wheel: (Default)

• Two-button mouse with scrolling in multiple directions: For example, Apple Magic Mouse

• Multi-touch pad: For example, Apple MacBook Touchpad



Menu Bar

97

4.3.9. Preferences — Error / Debug Handling

Figure 4.14. Preferences — Error / Debug Handling

cout (standard output stream) and cerr (standard error output stream) are standard outputs in C++.
The difference is that std::cout is a buffered stream, making it especially useful for general output,
while std::cerr is unbuffered, making it ideal for error messages. The outputs are independent of each
other, allowing both to be directed to different targets.

Redirect cout

Enables the redirection of the cout stream.

Send to MeVisLab debug output

Redirects cout to the Debug Output (default).

Send to Visual C++ debug console (Windows only)

(Only if MeVisLab is started from within Visual C++) Redirects cout to the Visual C++ Debug Console
(on Windows).



Menu Bar

98

Use default cout

Redirects cout to the default output (for example a console). Must be activated explicitly; otherwise,
only the redirection will be output.

Redirect cerr

Enables the redirection of the cerr stream.

Send to MeVisLab debug output

Redirects cerr to the Debug Output. (default).

Send to Visual C++ debug console (Windows only)

(Only if MeVisLab is started from within Visual C++) Redirects cerr to the Visual C++ debug console.

Use default cerr

Redirects cerr to the default output (for example, a console). Must be activated explicitly; otherwise,
only the redirection will be output.

Exception Handling

Catch Inventor exceptions and Catches core exceptions

Exceptions are handled as selected for each type of exception:

On Warnings, On Errors, etc.

Defines the actions to be taken upon warnings, errors, etc. This is especially helpful if no source code
is available for detailed tracing. Possible settings: Continue, Abort, Exit(0), Exit(ErrCode).

Symbol Controlled Debugging

Print all debug output

Prints out all debug outputs from the code (for example, everything tagged with ML_DEBUG).

Use symbol controlled debugging

Debugging is based on symbols, which are special classes. Enter the debug symbols to filter in the text
field, for example, ML_ERRORTEST.

Note

Refer to the ML Guide for detailed information on symbol-controlled debugging.



Menu Bar

99

4.3.10. Preferences — Shortcuts

Figure 4.15. Preferences — Shortcuts

The shortcut editor allows to set and/or change shortcuts for various actions. It also shows which
shortcuts are active at the moment.

To remove a shortcut for an action, select the action, select its shortcut key (if there are multiple), and
press Remove Key.

To set a keyboard shortcut, select the action and click the field labeled Click to add key. Then, press
the key or key combination you want to assign to this action. This can be done multiple times, adding
a shortcut for the action with each repetition.

Note

The same shortcut editor is available in MATE.

Reset To Default

Resets the keyboard shortcut for the selected action to its default setting.



Menu Bar

100

Remove Key

Removes the currently shown shortcut key for the selected action.

Reset All To Default

Resets all keyboard shortcuts to their default settings.

4.4. Modules Menu
Displays a tree of all modules currently available in the MeVisLab module database, sorted both by
genres and by DLLs (projects). Includes all MeVisLab SDK modules and all user-defined modules.

In the genre section, the listing of a module is based on its genre and the predefined genre structure
given in the Genre.def file, see the MDL Reference, chapter “Module Genre Definition”. This way, new
modules are automatically displayed in the correct submenu.

Figure 4.16. Modules Menu

4.5. Applications Menu
Lists available applications. Applications are macro modules that have the genre tag “ApplicationsMenu”
in their definition file.

A typical example is DicomViewer. Start it as application from the menu or insert the corresponding
macro module “DicomViewer” via the module search.

Note

Stand-alone applications can only be created with a special ADK license.



Menu Bar

101

4.6. Extras Menu
Figure 4.17. Extras Menu

4.6.1. Reload Updated Shared Libraries
Reloads all updated shared libraries or prints an information message to the debug console if there are
no libraries to update.

4.6.2. Reload Module Database (Keep Cache)
Reloads the .def, .script, and .py files of modules that have been changed after the last reload.
Use this to

• Add newly defined modules to the module database.
• Update changes of module interfaces and scripting.

4.6.3. Reload Module Database (Clear Cache)
Reloads all modules in the database like Section 4.6.2, “Reload Module Database (Keep Cache)” but
clears the cache.

Note

This may be slow, especially if many module panels are currently open in the network(s).
To update current changes on module interfaces and scripting faster, use Section 4.6.2,
“Reload Module Database (Keep Cache)”.

4.6.4. Reload Imported Python Modules
This feature is only relevant if using the Python import functionality and working on the imported modules.

Reloads imported Python modules (not MeVisLab modules that use Python). This was previously only
possible via a manual reload() call or a MeVisLab restart.

Note

After the Python modules have been reloaded, reload the MeVisLab modules that make
use of the Python module(s). Otherwise, the MeVisLab modules will still see the previously
imported Python modules.

4.6.5. Show Global MDL Definitions...
This entry displays a list of special objects defined in the MDL, sorted by object category. This is useful
to, e.g., find special control types that might not be listed in the MDL Reference.



Menu Bar

102

Figure 4.18. MeVisLab Global MDL Definitions



Menu Bar

103

By default, the list only contains the most useful object categories. Checking the “Show All” option shows
(almost) all object categories, but most of them are not immediately useful since they contain MeVisLab
internals.

4.6.6. Run Module Tests...
Starts the TestCenter for a module selection, by default for the modules selected in the Module Search
browser window (see Chapter 13, Module Search). By changing the filter settings in the extra window,
other modules can be selected for testing. For all modules, the test cases associated with the module(s)
are listed here. In case of TestWebView, only the generic test case “Formal” that is associated with all
modules are available. When Finish is clicked, the test cases are run and test reports are available.

Figure 4.19. Module Selection

Tip

To run tests on several modules in a network, select them, open the network context menu
and select Run Tests On Selection...; or use the menu entry of the same name in the
Extras menu. For single modules, start the tests via the module context menu.

For further information, see the TestCenter Reference and the Getting Started, chapter 16, “Using the
TestCenter”.

4.6.7. Run Tests On Selection...
Selects the tests associated with the currently selected modules and shows a dialog from which these
tests can be started.



Menu Bar

104

4.6.8. Generate Module Reference for User Packages
(HTML)

Creates an HTML index for the help files of modules in the user packages (one index for each
PackageGroup).

4.6.9. Show Widget Explorer

The Widget Explorer is useful for developing Qt style sheets. It can also be used for debugging module
panels.

On the left side are

• The Widget view displays all existing windows and widgets of the MeVisLab process hierarchically
(see Figure 4.20, “MeVisLab Widget Explorer - Attributes Inspector”).

• The Update button can be clicked to refresh the view when the GUI changes and new windows are
shown.

• The CSS Selector area shows the class hierarchy of the currently selected widget (this can be useful
for writing CSS rules).

• The Highlight Selected Widget checkbox toggles if the background color of the currently selected
widget is temporarily changed to yellow to ease locating the widget in the GUI (note that this does not
work for all widgets, because not all draw their background themselves).

On the right side are

• The Attributes inspector that shows the widget attributes.
• The StyleSheet editor that allows for viewing and testing style sheet rules (see Figure 4.21,

“MeVisLab Widget Explorer - Style Sheet Editor”).



Menu Bar

105

Figure 4.20. MeVisLab Widget Explorer - Attributes Inspector



Menu Bar

106

Figure 4.21. MeVisLab Widget Explorer - Style Sheet Editor



Menu Bar

107

4.6.10. Debug Widgets
Enables/disables debugging module panels. CTRL+left-clicking a user interface control in a module
panel opens the .script file (MDL source code of the GUI) in MATE at the line where this GUI control
is defined.

Note

To be able to jump to the definition line of the user interface control with any other text editor
than MATE, the parameter %f(%l) has to be set in the Preferences, see Section 4.3.4,
“Preferences — Supportive Programs”.

4.6.11. Show Connector Details
Shows detailed information about image, Inventor, or Base object properties currently pending on
module's connectors. Activated when selecting a single module in the network. This is the same option
as Connector Detail Info in the Preferences, see Section 4.3.7, “Preferences — Network Appearance”

4.6.12. Show Image Connector Preview
Shows an image preview at the module's image connectors when a single module is selected in the
network. This is the same option as Connector Image Preview in the Preferences, see Section 4.3.7,
“Preferences — Network Appearance”.

4.6.13. Clear Image Cache
Frees cached image pages of all ML modules in currently opened networks. All image pages currently
not in request in any module pipeline are cleared and must be recalculated the next time they are
requested. See the ML Guide for details.

4.7. Scripting Menu
Offers features for script editing and for running user scripts.

For details on user scripts, see Section 4.8, “User Scripts”

Scripting is used to implement the dynamic functionality of module user interfaces and applications
(which are defined as macro modules) in MeVisLab.

Scripting is done in the context of a module. Via the script context variable of the module (ctx), access
is given to the module instance itself as well as to all members of the module like fields, input/outputs,
and GUI controls. This way, getting/setting field values (module parameters), connecting/disconnecting
fields, implementing dynamic user interfaces, and much more can be done dynamically.

In the context of an MLABMacroModule, access to the contexts of all modules contained in the modules
macro network is available (recursive descent).

For scripting in MeVisLab, one can use the Python language, via an object-binding with PythonQt, an
in-house-development by MeVis.

This object-binding uses the Qt Meta Object System to find out about the MLAB object features.

For the doxygen documentation of the scripting interface, see the MeVisLab Scripting Reference.

Tip

It is possible (but not recommended) to include single line script statements in MDL script
files.



Menu Bar

108

Figure 4.22. Scripting Menu

4.7.1. Show Scripting Console

Opens a command line console for typing Python code. Useful for debugging when programming user
interfaces dynamically. The console opens in the context of the current network. Access is possible to

• The contexts of all modules contained in the current network.

• All objects of included modules in a recursive descent (for macro modules).

Note

If the current network is a macro network, the script console is opened in the context of
the macro module. The same context is reached when opening the script console via the

macro module's context menu, Debugging → Show Script Console.

Figure 4.23. Scripting Editor

Example listing in Python. The code has to be entered one line at a time, and without any indents. Make
sure that the modules LocalImage and View2D exist in the current network, and that the modules have
those specific instance names:

# get module context
module = ctx.module("LocalImage")

# set/get module field value
filename = module.field("trueName").value
module.field("name").value = "$(DemoDataPath)/bone.tiff"

# connect fields
ctx.connectField("View2D.inImage","LocalImage.outImage")

# open GUI window control
window = ctx.module("View2D").createWindow("Viewer")
window.setTitle("HelloWorld")
ctx.module("View2D").showWindow("Viewer")



Menu Bar

109

Figure 4.24. Scripting Example

4.7.2. Scripting Context Menu

The context menu of the Scripting View contains the usual commands for text editing, see also
Section 4.2, “Edit Menu”.



Menu Bar

110

Figure 4.25. Scripting Context Menu

In addition, two options are available:

Show MeVisLab Scripting Help

Opens the Scripting Reference documentation (HTML) in the default web browser.

Clear

Clears the scripting console.

4.7.3. Edit Network Script
(Macro modules only) Opens the interface definition file (.script or .def) in the default text editor.

4.7.4. Start Network Script
(Macro modules only) Parses the interface definition file (.script or .def). This has the same effect
as adding the macro module to a network and opening the module panel.

4.8. User Scripts
A user script is either a single .py Python file or an MDL .script file (with a .py and .mlab file, like
any local MacroModule).

When a user script is started, MeVisLab creates a local macro module from the script and calls the
run() function, which must be declared in the Python script. The run function takes a single argument,
which is the context (macro module) that encloses the currently active MeVisLab network.

Using this argument, the script can work on the active network, get the selected modules, etc.

For instance, the following script just prints the selected modules to the console:

  def run(macro):
      print(macro.network().selectedModules())
    

A user script can also open MDL windows from the run() function, which are declared in the .script
file of the user script. The user script is destroyed after the last window it creates is closed.

User scripts are added to the Scripting menu by defining Action and SubMenu entries in a
UserIDEMenus section in a user script's definition file. The user script's definition file can have any name,
but it must have the extension def and it needs to be placed below the Modules directory of any package,



Menu Bar

111

because MeVisLab scans only the Modules directories recursively for the *.def files. It is recommended
to place the user scripts into a folder named UserScripts below the Modules directory of your package.

Please have a look at the user script definition file MeVisLab/IDE/Modules/IDE/UserScripts.def and
the example user scripts in MeVisLab/IDE/Modules/IDE/UserScripts/.

4.8.1. Example Scripts
• Replace Inventor Group

Replaces a single selected Inventor group node (e.g., SoSeparator, SoGroup) by a specifiable
Inventor group. All connections of the original Inventor group node are restored to the new Inventor
group node.

4.8.2. Run User Script...
Opens a browse dialog to load and run a user script. By default, the folder MeVisLab/IDE/Modules/
IDE/UserScripts is opened, where a number of commonly used scripts are located.

4.8.3. Run Last User Script: <NameOfUserScript>
Runs the last chosen user script. This menu entry is only active if a user script has been executed before.

4.8.4. Run Recent User Script
Offers a list of recently executed user scripts to choose from.

4.8.5. Example Scripts
Offers a list of pre-installed example user scripts.

4.9. View Menu
Figure 4.26. View Menu

4.9.1. View All
Displays the entire network.

4.9.2. Zoom To Selection
Zooms the selection to 100%.

4.9.3. Zoom In
Zooms in to display more network details.



Menu Bar

112

4.9.4. Zoom Out
Zooms out to display fewer details and more of the overall network.

4.9.5. Zoom 100%
Zooms the network to 100% (size based on the standard module design).

4.9.6. Layout

Figure 4.27. View — Layout Submenu

In this menu, the MeVisLab interface layout concerning the visible Views and their arrangement is
defined, see Section 4.9.8, “Views”.

Tip

The Layout menu is also available from the bottom bar, see Chapter 6, Bottom Bar.

The following predefined settings are available:

Developer

Opens Output Inspector, Module Inspector, Module List, and Debug Output.

Module Search

Opens Module Inspector, Module List, and Module Search.

No Dock Windows

Hides all docking windows, that is all Views. This leaves only the network workspace visible.

Screenshot Gallery

Opens the Screenshot Gallery, see Chapter 19, Screenshot Gallery.

User Default Layout

Opens the layout saved as “User Default Layout”. If none was saved, it opens the last used layout.

The following options for layout handling are available:

Store and Set Current Layout as "User Default Layout"



Menu Bar

113

Saves the current configuration of Views as the user default and activates this user default layout.

Note

The default user layout is a persistent setting. If it is the currently active layout, the
configuration of Views last modified by the user is saved as “Default User Layout”. As a
result, changes made to the layout will "overwrite" the default user layout.

Store Current Layout

Opens a window to save the current configuration of the Views under a different name. Stored user
layouts are not overwritten when updating/reinstalling MeVisLab but are saved to the places listed in
the Preferences chapter per operating system, see Section 4.3, “Preferences”.

Figure 4.28. Store Current Layout

Edit User Layouts

Opens a window to copy, rename, or delete saved user layouts.

Figure 4.29. Edit User Layouts

User layouts cannot be edited via the menu. For editing, open the user layout in MeVisLab, edit its Views
configuration and save it under its old name.

4.9.7. Toolbars
In the Toolbars menu, toolbar elements can be enabled and disabled.



Menu Bar

114

Figure 4.30. View — Toolbars Submenu

• Align / Distribute: See Section 4.2.12, “Align / Distribute”.

• Edit: See Section 5.2, “Edit”.

• File Operations: See Section 5.1, “File Operations”.

• Quick Module Search: See Section 5.5, “Quick Search”.

• Script Debugging: See Section 27.8, “Python Debugger”.

• Zooming: see Section 5.3, “Zooming”.

4.9.8. Views
In the Views menu, Views elements can be enabled and disabled.

Figure 4.31. View — Views Submenu

Available Views:



Menu Bar

115

• Background Tasks: See Chapter 7, Background Tasks .

• Debug Output: See Chapter 8, Debug Output .

• ML Parallel Processing Profiler View: See Chapter 9, ML Parallel Processing Profiler View .

• Module Browser: See Chapter 10, Module Browser .

• Module Inspector: See Chapter 11, Module Inspector .

• Module List: See Chapter 12, Module List .

• Module Search: See Chapter 13, Module Search .

• Network Field WatchList: See Chapter 14, Network Field WatchList .

• Output Inspector: see Chapter 15, Output Inspector .

• Parameter Connections Inspector: See Chapter 16, Parameter Connections Inspector .

• Profiling: See Chapter 17, Profiling .

• Recent Outputs: See Chapter 18, Recent Outputs .

• Screenshot Gallery: See Chapter 19, Screenshot Gallery .

• Scripting Console: see Chapter 20, Scripting Console .

• Scripting Assistant: See Chapter 21, Scripting Assistant .

• Search in Documentation: See Chapter 23, Search in Documentation .

• Search in Network: See Chapter 22, Search in Network .

• Snippets List: See Chapter 25, Snippets List .

4.10. Networks Menu
In the Networks menu, functions for closing the current or all networks are available, as well as a list
of all open networks and their status.

Figure 4.32. Networks Menu

At the bottom of the menu, a list of all currently open networks is displayed. Networks with unsaved
changes are marked with * (asterisk).

4.10.1. Close
Closes the current network. In the case of closing a network with unsaved changes, a message appears.

4.10.2. Close All
Closes all networks. In the case of closing a network with unsaved changes, a message appears.



Menu Bar

116

4.11. Panels Menu
Manages all module panels currently opened in any of the open networks.

Figure 4.33. Panels Menu

If networks with open panels are available in the workspace, the panels are listed at the bottom of the
Panels menu. The panels are named in the pattern [NetworkName] PanelName. For unsaved networks
(“untitled”), [-] is displayed as network name without distinction between different unsaved networks.

For the behavior of the panel list, see Section 4.11.7, “Working with the Panel List”.

4.11.1. Panels Stay In Front Of Main Window
If selected, panel windows are tied to the MeVisLab application window and always stay in front of it.
Otherwise, panels are independent windows that may be used even if the MeVisLab application window
is hidden or minimized.

Note

Independent panels may accidentally get hidden behind MeVisLab or other applications.

4.11.2. Hide Panels Of Invisible Networks
If selected, panels of networks currently not visible are hidden (which is not the same as minimized).
Otherwise, open panels of all networks are visible.

4.11.3. Close All Panels
Closes all panels of all networks.

4.11.4. Close Panels Of Current Network
Closes all panels of modules of the current network only.

4.11.5. Minimize All Open Panels
Minimizes all open panels at once. This option can be combined with the option Section 4.11.2, “Hide
Panels Of Invisible Networks”.

4.11.6. Show All Minimized Panels
Restores all open panels to the state they have been before minimizing. This option can be combined
with the option Section 4.11.2, “Hide Panels Of Invisible Networks”.



Menu Bar

117

4.11.7. Working with the Panel List
If networks with open panels are available in the workspace (and none are hidden), all open panels are
displayed and listed at the bottom of the Panels menu.

Figure 4.34. Panels Menu — Listing all Open Panels

Usually, having all panels open will clutter the workspace. By combining the hiding and minimizing
options, currently unnecessary panels can be “removed” temporarily from the workspace.

If Hide Panels Of Invisible Networks is selected, panels of networks that are currently not displayed
are hidden and grayed out in the panel list. These cannot be selected directly. Once their network
becomes visible again, the hidden panels are displayed at their original size and position and can be
selected in the list.

Panels can be minimized by selecting the Minimize All Open Panels option or by clicking the minimize
button at the top right of a single panel window.

Note

If Hide Panels Of Invisible Networks is selected, Minimize All Open Panels has no effect
on any hidden panels of invisible networks. This way, you can selectively minimize the
panels of only the currently visible network.

Minimized panels are tagged with “(minimized)” in the panel list. When selecting a minimized panel in
the list, it is restored to its original size and position. Alternatively, select Show All Minimized Panels
to restore all panels.

4.12. Help Menu
Provides important information and links related to MeVisLab.

Figure 4.35. Help Menu

4.12.1. (Search in documentation and menu entries)
The input field in the help menu performs an immediate search in all menu entries and the documentation
of MeVisLab; see Chapter 23, Search in Documentation.



Menu Bar

118

4.12.2. Full-text Search in Documentation...
On selecting this entry, a window opens that provides a full-text search in MeVisLab's documentation
and module help files; see Chapter 24, Full-text Search in Documentation

4.12.3. Show Context Help...
On pressing the shortcut (F1 by default), help is shown depending on the current context. For example,
if a module is selected and the network has the focus, that module's help page is shown; if the scripting
console has the focus, general or specific Python help is shown.

MATE also supports showing context-sensitive help for .script or for .py files.

4.12.4. Show Help Overview
Opens an HTML file with an overview of all MeVisLab help resources in the default browser.

4.12.5. Browse Help Pages
Allows browsing and opening a specific help page directly in the default browser.

4.12.6. Welcome
Opens the Welcome screen that is displayed when first starting MeVisLab. It provides a number of links
to tutorials, documentation, demos, user forums, recently opened networks, the latest information about
MeVisLab, and a “Tips + Tricks” section.

Toggle the option Don't show this at MeVisLab launch to choose whether this window is displayed
at start-up.

4.12.7. About
Displays a window with information about the installed version and license, the developers involved,
and license information for all built-in technologies.

4.12.8. Enter License
Opens a file browser to select a license file (.dat). Depends on your MeVisLab distribution (free, basic,
SDK, etc.), see installation guide.



119

Chapter 5. Toolbar
The toolbar below the menu bar in the GUI offers some editing and zooming features, a quick search,
and the align/distribute feature.

Figure 5.1. Toolbar

All offered toolbar groups can be enabled and disabled via View → Toolbars.

5.1. File Operations
See Section 4.1, “File Menu”.

5.2. Edit
See Section 4.2, “Edit Menu”.

5.3. Zooming
See Section 4.9, “View Menu”.

5.4. Script Debugging
This toolbar only contains one button showing a stylized bug. Clicking this button starts the MATE editor
if it is not already open and activates or deactivates the integrated Python debugger.

5.5. Quick Search
Searches modules by name. Click the magnifier button to select search criteria.

Figure 5.2. Quick Search Options

• Substring: If selected, extends the search to module name substrings. Effectively works as if adding
wildcards, for example *image*.

• Keywords: If selected, extends the search to module keywords (defined in the <ModuleName>.def
file).

• Match Case: If selected, the search differentiates between lower- and uppercase letters.

Clicking on a quick search result opens an info box for the module. More buttons are available on the
bottom, offering the functions “Create module”, “Show HTML help”, and “More options”. The options are
the same as for modules in the search results, see Section 13.3, “Module Search Result Context Menu”.



Toolbar

120

Figure 5.3. Quick Search — Info Box

When opening the drop-down list without a search entry, it displays the search history with the most
recently searched modules.

Figure 5.4. Quick Search History

Tip

For more extended search possibilities, see Chapter 13, Module Search.

5.6. Align / Distribute
Allows the alignment and distribution of selected modules within a network. See Section 4.2.12, “Align /
Distribute”.



121

Chapter 6. Bottom Bar
The bottom bar can be found at the lower right of the MeVisLab GUI. It offers two unique options and
a quick way to the Layout menu.

Figure 6.1. Bottom Bar

6.1. Loop! indicator
This flashing indicator is only visible if a network containing Inventor modules is causing constant field
updates. This can occur due to certain viewer interactions that necessitate continuous updates, or it may
happen when Inventor field connections form a loop involving at least one ML or macro module field,
as this disrupts Inventor's loop detection. If this indicator is visible without any interaction, you should
investigate your network, for instance, by using profiling (see Section 17.2.2, “Fields”).

For a possible way to break notification loops see Section 28.4, “Using SyncFloat to Reduce System
Load”.

6.2. ML Cache
The ML Cache field displays the <used size / max. size> of the Image Processing Cache, and the
percent of memory in use.

The Image Processing Cache Size in MB can be set in Preferences → General → Resources, see
Section 4.3.1, “Preferences — General”.

To clear the image cache of all ML modules in the currently opened networks, select Extras → Clear
Image Cache, see Section 4.6.13, “Clear Image Cache”.

These options can also be accessed from a context menu on this area.

6.3. Stop Button
The Stop button is used to terminate algorithms, but it only functions if the module's programmer has
implemented the stop-logic in the C++ code, especially within long-computing loops.

An explanation and example code for the implementation of the Stop button can be found in the
MLGuide, chapter “Testing For Interruptions During Calculations”.

6.4. Toggle Layout
Opens the layout menu, see Section 4.9.6, “Layout”.



122

Chapter 7. Background Tasks
The Background Tasks View displays running background tasks.

ML Background Tasks is a framework for executing long-computing tasks in worker threads. The basic
framework is independent of the ML; however, convenience classes add access to ML images. For
more information on background tasks, see the ToolBox Reference, chapter “Background Tasks”.

Figure 7.1. ML Background Tasks

Four states are possible:

• Running

• Finished

• Canceled

• Suspended

Figure 7.2. ML Background Tasks — Context Menu

The following options are available in the context menu:

• <ModuleName> Module Context Menu : Opens the standard module context menu.

• Show <ModuleName> Module In Network : Selects the module and zooms in on it.

• Clear Finished Tasks: Deletes all finished tasks from the list.



Background Tasks

123

Figure 7.3. ML Background Tasks — Context Menu for Running Processes

The following additional options are available for running processes:

• Cancel Running Task: Cancels the selected background task.

• Suspend Running Task: Pauses the selected background task (could be resumed).

The following additional options are available for suspended processes:

• Cancel Suspended Task: Cancels the suspended background task.

• Resume Suspended Task: Resumes the processing of the suspended background task.

If a network is closed while a background task is running, a warning is displayed:

Figure 7.4. Warning for Running Background Tasks

Background tasks are implemented for some modules, for example, GVRVolumeSave,
GVRImageToVolume and ImageSave. For other modules, check whether their panels provide features
such as “Save in Background”.



Background Tasks

124

Figure 7.5. Save in Background for GVRVolumeSave



125

Chapter 8. Debug Output
The Debug Output View shows all events in the same way as they are written to the log file (see
Section 4.3.5, “Preferences — Paths”).

Figure 8.1. Debug Output

Paths and files with defined standard programs are marked as links (in blue and underlined). Click them
to open the folder or file.

To clear the Debug Output, click it and press L. This has no effect on the log file, and clear actions
are not being logged.

A context menu with editing options is available when right-clicking the Debug Output. The context
menu includes a submenu for managing message filters for info messages, errors, and warnings.
These filters do not prevent messages from being printed, but only from being shown. This means that
previously hidden messages will be shown when the message type is re-enabled, unless the Debug
Output has been cleared.

Figure 8.2. Context Menu



126

Chapter 9. ML Parallel Processing
Profiler View
The ML Parallel Processing Profiler View shows the workload of all threads and how much time they
needed.

The view shows a zoomable graph and provides the following options:

• Enable: If checked, the view tracks the time consumption of each used thread. Press Update to
refresh the view.

• Load: Loads a previously saved *.timeline file.

• Save: Saves a profiling result as a *.timeline file.

• Update: Updates the view with the latest results.

• Clear: Clears all profiling data and clears the view.

Figure 9.1. Parallel Processing View Overview

The graph shown in the view provides an overview of how many threads have been used and the
duration of their work on individual requests. The graph can be zoomed using the mouse wheel or by
interacting with the scrollbar.

On mouse-over, individual work packages show the module's name and its instance name that produced
the work, and the time taken to process the work package.



ML Parallel Processing
Profiler View

127

Figure 9.2. Parallel Processing View Details



128

Chapter 10. Module Browser
Similar to the Section 4.4, “Modules Menu”, the Module Browser displays a tree of all modules currently
available in the MeVisLab module database, sorted both by genres and DLLs (projects). However, it
also allows browsing the modules, viewing the basic information for each module (author, package,
etc.), and opening a context menu with various features (editing the definition file, opening the example
network, etc.).

Figure 10.1. Module Browser

Double-click a module to create it in the current network.

The context menu is the same as for modules in the search results, see Section 13.3, “Module Search
Result Context Menu”.



129

Chapter 11. Module Inspector
The Module Inspector gathers and displays extensive module information. This information can also
be found in other parts of the software.

11.1. Fields
The Fields tab lists all fields available in the module.

Figure 11.1. Module Inspector — Fields

The Fields tab contains the same information as the automatic panel's Parameters tab.

Figure 11.2. Automatic Panel

As they can be edited in the same way, they shall be discussed together here.

11.1.1. Editing Field Values
The values of fields can be edited. The options depend on the parameter type. Click the entry to edit.
To finish the edit, press RETURN (to save the field value) or TAB (to save the field value and open
the next field value for editing).

Figure 11.3. Module Inspector — Edit Boolean



Module Inspector

130

Figure 11.4. Module Inspector — Edit Color

Figure 11.5. Module Inspector — Edit Text

Figure 11.6. Module Inspector — Edit Values

Just like with automatic panels, parameter connections can be created by dragging the parameter of
another module onto the Fields tab.

11.1.2. Module Inspector Fields Context Menu

For the fields of the Module Inspector, a context menu is available. The options depend on the type
of the field and if it is part of a parameter connection.



Module Inspector

131

Figure 11.7. Module Inspector Fields Context Menu

<ModuleName>.<FieldName> [FieldType]: <Value>

Displays the module name, the name of the field, its type, and its current value.

Tip

If the title is selected, the <ModuleName>.<FieldName> is copied to the paste buffer. This
string can be pasted into any text editor, for example, into MATE.

Copy Name

Copies the name of the field to the paste buffer.

Copy Value

Copies the value of the field to the paste buffer.

Paste

Pastes the field's value. The field's value cannot only be pasted into an editor but can also be pasted
directly into another field.

Edit Field Value...

Opens an editor to edit the field's value.

Restore Default Value

Restores the default value of the field. This is only available if the current value is not the default value
and the field is editable. (The field's value is displayed in a bold font in this case.)



Module Inspector

132

Show Defined Enum Items...

Opens a window with four different representations of the enumeration's items:

• String list: the names of the items as strings

• MDL code: a snippet of MDL code that defines a field with the enumeration items

• Python code: a snippet of Python code that defines directives to react to each selected item

• Detailed list: a list of the enumeration items with the item's name, the item's title, and the item's integer
representation

This option is only available if the field is an enumeration field.

Set Open Inventor Ignore Flag

Toggles the field to be ignored. Only available for Open Inventor fields.

Select Field for Connection

Selects the field so that it can be connected to another field in a next step.

Connect From

Connects the selected field as source. Shows the field to connect from in the submenu.

Connect To

Connects the selected field as destination. Shows the field to connect to in the submenu.

Disconnect

Disconnects a parameter connection (to be selected from the submenu).

Touch

Touches the field value without changing it. This might trigger a recalculation of values or outputs.

Select Field In Module Inspector

Selects the field of a parameter connection to jump to in the display.

Add To Network Field WatchList

Adds the parameter to the Network Field WatchList, see Chapter 14, Network Field WatchList.

Show Scripting Help

Opens the scripting reference for the field's type in the default web browser.

Show Field Help

Opens the field's mhelp documentation in the default web browser.

Module Context Menu

Opens the module's context menu in a submenu.

Show Module In Network

Selects the module and zooms in on it in the network.



Module Inspector

133

11.2. Files
The Files tab contains a list of related files. This is the same information as in the module context menu,
Related Files.

Figure 11.8. Module Inspector — Files

Double-click a file to edit it in the default text editor.

11.2.1. Module Inspector Files Context Menu
For files, only two options are available in the context menu:

Figure 11.9. Module Inspector Files Context Menu

Edit File

Opens the file in the default text editor (same effect as double-click).

Open Directory

Opens the directory of the file in the standard file browser.

11.3. Tree
The Tree tab displays the module source file as an MDL tree structure.

Figure 11.10. Module Inspector — Tree



Module Inspector

134

11.3.1. Tree Context Menu

Figure 11.11. Module Inspector Tree Context Menu

Edit Source File

Opens the .def file in the default text editor.

Show MDL Help

Opens the MDL help (HTML) in the default web browser and jumps to the corresponding entry.

Show Scripting Help

Opens the Scripting help (HTML) in the default web browser and jumps to the corresponding entry.

Show Available MDL Tags

Opens a new window displaying a list of available tags and group tags, which depend on the module
type.

The listed types of the MDL tags do not always correspond to the types listed in the MDL help. The MDL
help lists simplified versions of the tag types.

Figure 11.12. Show Available MDL Tags

11.4. About
The About tab displays the header tags and their contents from the module definition, identical to the
information presented at the top of the module's HTML help file.



Module Inspector

135

Figure 11.13. Module Inspector — About

11.5. Related
The Related tab lists all modules related to the currently selected module.

The relatedness is shown as a blue bar in the right-most column. The related modules are sorted by
default by their relatedness.

The relatedness score is computed using the seeAlso and keyword tags, as well as the modules' names.
For the seeAlso tag, the relatedness is bidirectional: if module A refers to module B via the seeAlso
tag, the relatedness score of module B to module A also increases. This ensures that only one of the
modules needs to have its seeAlso tag updated.

Figure 11.14. Module Inspector — Related

Scroll to the right for more information.

Double-click a related module to add it to the workspace.

11.5.1. Related Context Menu

Figure 11.15. Module Inspector Related Context Menu

Show Example Network

Opens the example network in the workspace.

Show Example Network Folder

Opens the folder of the example networks in the default file browser.



Module Inspector

136

Show Help

Opens the module help (HTML) in the default web browser.

Edit Module Definition File

Opens the .def file in the default text editor.

11.6. Scripting
The Scripting tab displays details regarding any scripts used within the module. The Script Context is
for information purposes only.

The module's FieldListeners are listed and can be edited by double-clicking an entry.

Figure 11.16. Module Inspector — Scripting

Click  to refresh the scripting information. This step is necessary if the script has been modified in
MATE or an external editor.

For the context menu of ModuleFieldListeners, see Section 11.1.2, “Module Inspector Fields Context
Menu”.



137

Chapter 12. Module List
The Module List lists all modules in the currently active network.

Figure 12.1. Module List

Select a module in the list to highlight it in the network, and vice versa.

The context menu is the same as for the module in the workspace, see Section 3.9.1, “Module Context
Menu”.



138

Chapter 13. Module Search

13.1. Module Search
With the Module Search View, complex search filters can be constructed. When opened for the first
time, it looks similar to the quick search in the toolbar, see Chapter 5, Toolbar.

Figure 13.1. Module Search with Demo Entry

Click the magnifier button to select search criteria.

The search starts immediately with each entered key (incremental search). The result list can be scrolled
to the right for more information. Click a column header to sort the list by the contents of this column.

Double-click a module to add it to the network. If other Views are open, for example, the Module
Inspector, the module is also opened in this View.

Tip

A module can also be instantiated from the Module Search by dragging its name onto the
network window.

13.2. Advanced Search
The advanced search allows for more complex search statements, which can be combined. Click 
to show advanced search entry fields.

Figure 13.2. Module Search — Advanced

In the first list, the area to be searched in has to be selected.



Module Search

139

Figure 13.3. Module Search — Searching In

In the second list, the operator has to be selected.

Figure 13.4. Module Search — Operators

Only visible search statements are executed. By clicking , less search entries are visible (and active).

Search statements can be turned on or off with the checkbox in front of the entry.

Search statements provide two additional options at the end of the line:

: Negates the statement. For example, the search is performed for “does not contain” instead of
“contains” .

: Applies case-sensitive search.

Note

Selections in the Module Search View are persistent and set as default the next time the
View is used.

13.3. Module Search Result Context Menu
For the results of the module search, a context menu is available. The options depend on the module.
For example, if no example network is available, this option is grayed out in the context menu.

Figure 13.5. Module Search Results — Context Menu



Module Search

140

13.3.1. General Options
Show Example Network

Opens the example network in the workspace.

If a module has no example network, this option is grayed out.

If a module has multiple example networks, this entry becomes a menu with a submenu that displays
a list of all available example networks by name.

Show Help

Opens the module help (HTML) in the default web browser.

Edit Help

Opens the .mhelp file in the default text editor.

13.3.2. Additional Options for Macro Modules
Related Files

Lists all files associated with the module. Possible file types are .def/.script (MDL definition files),
.mhelp/.html (uncompiled/compiled help files), and .py (scripting files). Select a file to open it in the
default editor (as set in Section 4.3.4, “Preferences — Supportive Programs”).

Show Enclosing Folder

Opens the module's main folder, which contains the .def file.

Run As Application

Runs the macro as an application in a stand-alone window.

13.4. Search in Network
Figure 13.6. Search in Network

The Search in Network View works similarly to the module search but also searches within network
parameters and properties. For details, see Chapter 13, Module Search.

Search recursively

If selected, the search will also include the lower levels of embedded macro modules.



Module Search

141

Note

Selections in the Search in Network View are persistent and set as default the next time
the View is used.



142

Chapter 14. Network Field WatchList
In the Network Field WatchList, parameters of all modules in the network can be tracked.

Figure 14.1. Network Field WatchList

As the parameter values can be edited just like in the single module's Module Inspector, this enables
editing parameter values of multiple modules in one place, instead of toggling between modules.

For the options in the context menu, see Section 11.1.2, “Module Inspector Fields Context Menu”.

In addition to these options, the following two are available:

Remove From Network Field WatchList

Removes the field from the WatchList.

Clear Network Field WatchList

Clears the entire WatchList (confirmation is required).



143

Chapter 15. Output Inspector
The Output Inspector displays the output of module connectors. Compared to defined view modules
(e.g., View2D, View3D), the Output Inspector allows for a quick check of any inputs/outputs in the
network by simply clicking on them.

Output inspectors are based on inspector modules. They can be found with Quick Search. The following
inspectors are available:

• MLImageInspector: for ML modules

• MLBaseInspector: for MLBase objects

• MarkerListInspector: for XMarker lists

• SceneInspector: for Open Inventor scenes

• CSOInspector: for CSOList objects

• MLLUTInspector: for LUT functions

• CurveInspector: for curve data and curve lists

• WEMInspector: for all WEM modules

• GVRVolumeInspector: for GVR volumes

• StylePaletteInspector: for style palettes

• ItemModelInspector: for hierarchical item models

Figure 15.1. ML Image Inspector

Many, but not all inspectors have different views on the data:



Output Inspector

144

Figure 15.2. ML Image Inspector: 3D View

Some inspectors provide more detailed information by clicking on the triangle symbol in the upper right-
hand corner:

Figure 15.3. ML Image Inspector: Detailed Information

Which Output Inspector is used for each object type is defined in the OutputInspectors.def file in
the MeVisLab IDE package. It is possible to develop new inspectors and add them to this definition file.



145

Chapter 16. Parameter Connections
Inspector
The Parameter Connections Inspector works only on parameter connections, not on data
connections.

As explained in Section 3.3, “Connector and Connection Types”, data connections may be of the types
Base (square/brown), Inventor (half circle/green), and ML image (triangle/blue). Only connectors of
matching types may be connected by clicking the connector and drawing a line to the other connector.

In the case of parameter connections, field values are connected. This can essentially be used for
any type of fields. Modules without input/output connectors can only be connected through parameter
connections, such as calculation modules like ComposeRotation. For more examples on using
parameter connections, see the Getting Started, chapter “Parameter Connection for Synchronization”.

16.1. Parameter Connections Inspector View

Figure 16.1. Parameter Connections Inspector View

Parameter connections require a source and a destination field. If the source field changes, for example,
if a value increases from 1 to 20, the destination field value increases correspondingly. Source and
destination fields can be connected bidirectionally; in that case, increasing the value in the destination
field would also increase the value in the source field (see Figure 16.2, “Parameter Connection Example
— View2D and View3D”). A destination field can also be the source for another connection, effectively
forwarding the parameter value. There is no limit to the number of parameter connections; it is only
determined by the available fields per module.

A parameter connection can be created in three ways:

• by using the drop-down lists on top of the Parameter Connections Inspector. Select the modules
and fields to connect and click the respective arrow for creating the connection. By clicking the circle
button, source and destination can be swapped.

• by dragging fields (parameter labels) from one automatic panel to the other. This works also for
buttons.

• by dragging fields from one panel or settings window to the other.

A minimalist bidirectional parameter connection might connect a View2D and a View3D module so that
the time points are synchronized:



Parameter Connections Inspector

146

Figure 16.2. Parameter Connection Example — View2D and View3D

Note

Fields cannot be connected if they are encapsulated in macros or in already defined panels.
(Such fields would only be reachable by scripting.) In this case, this means that the cine
settings of View2D cannot be connected to the movie settings of View3D.

Each source/destination field pair in the list shows an existing connection. If the fields are also the
destination or source of another connection, additional arrow symbols are displayed:

Table 16.1. Connections Symbols

Symbol Direction

Source field

Destination field

Source and destination field

A more realistic example from the internal network of View2DExtensions shows a complex picture with
many forwarded parameters.

Figure 16.3. Parameter Connection Example — View2DExtensions

To navigate from destination and source and vice versa, double-click on the respective arrows.

Example: In Figure 16.4, “Parameter Connection Example — Navigating Between
Fields”,lut.grayWidth is the source of a parameter connection to the destination lut.alphaWidth.
lut.alphaWidth itself is the source for another connection. Double-clicking the arrow symbol will
highlight the list entry where lut.alphaWidth is the source field.



Parameter Connections Inspector

147

Figure 16.4. Parameter Connection Example — Navigating Between Fields

16.2. Parameter Connections Inspector
Context Menu
In the Parameter Connections Inspector, a context menu is available:

Figure 16.5. Parameter Connections Inspector Context Menu

Options:

• Disconnect: Disconnects the parameter connection.

• Go Back (depending on connection): Selects the parameter connection in which the current source
field is the destination field.

• Go Forward (depending on connection): Selects the parameter connection in which the current
destination field is the source field.

• Show <field>: Highlights the associated module in the network. If other Views are open, like the
Module Inspector or the Module List, it also highlights the corresponding field or module there.

For more information about the context menu of parameter connections in the network, see
Section 3.10.2.1, “Context Menu of Parameter Connections”.



148

Chapter 17. Profiling
The Profiling view generally measures time and memory consumption of modules in a network.

17.1. Introduction to Profiling
Profiling is a dynamic program analysis (as opposed to static code analysis) and is used to identify
slow functions, frequently called functions, and memory usage during runtime. Outside of MeVisLab, a
number of profilers exist: gprof, GlowCode, Valgrind, DevPartner/BoundsChecker.

The advantages of profiling in MeVisLab are:

• Network performance can be analyzed by profiling at the C++ and Python levels, with an inherent
awareness of MeVisLab entities like modules, PagedImages, etc.

• No code recompilation is required.

• No additional programs are required, which may make profiling faster.

What can be profiled?

Figure 17.1. Functions to be Profiled

• All ML modules offer profiling as it is implemented in the base class ml::Module.

• WEM and CSO modules also support profiling of time consumption. However, in general, profiling of
memory consumption is not supported, as this requires the memory to be managed by the internal
memory manager of the ML. Thus, the memory managed by these modules is either not profiled at
all, or only the portions of the module that use ML methods are profiled.

• Python functions, scripts definitions, and Python Qt wrappers



Profiling

149

• Open Inventor bindings

• MDL commands and field notifications

Note

The Profiling view marks processes that use multi-threading and shows only their
accumulated time in this view. If you need detailed profiling information about each thread,
use the view described in Chapter 9, ML Parallel Processing Profiler View.

17.2. Using Profiling
In the Profiling View, the modules of networks to be profiled are listed.

• Entries have the same color as corresponding modules (brown for macros, blue for ML modules, and
green for Inventor modules).

• Entries are italicized if the module has been deleted (not just removed).

Figure 17.2. Profiling

The consumption is also displayed in the network: Two vertical bars to the left of a module indicate the
percentage of memory (m) consumption and time (t) consumption of that module in the current network.

• The memory bar's color ranges from green over teal to magenta (for 0%..50%..100%).

• The CPU time bar's color ranges from green over yellow to red (for 0%..50%..100%).

That means that small green dots indicate low memory/time consumption while full magenta or red bars
indicate high memory or time consumption. The colors are chosen to make memory and time easy to
distinguish from each other.



Profiling

150

The Profiling View and the network are linked as follows:

• Clicking an entry on the Modules tab selects the module in the network (and vice versa).

• Double-clicking an entry on the Modules tab navigates to the module or, in the case of a scripting
function being counted, to the line of the scripting in MATE (this also works for modules inside macros).

Options:

• Enable: Enables the profiling and toggles the visualization of the relative time/memory consumption
of the modules.

• Auto update: Enables the automatic display of profiling results every second.

• Filters visible (Functions only): Enables the display of the filter section for function filtering, see
Figure 17.9, “Functions with Filters Visible”.

Buttons:

• Update: (Only if no auto-update is set) Updates the displayed results manually.

• Reset: Resets the list of modules and the profiling results. Memory/cache that is still in use will remain
listed in the Current Memory column.

• Save report: Generates an HTML page with reports for Modules, Call Graph, Flat Profile (for
functions), and Fields.

Figure 17.3. Profiling Report

17.2.1. Modules

On the Modules tab, the modules and their profiling information are listed. When hovering over the
headings, a context-sensitive tooltip is displayed for each.

Options:

• Show macros: If enabled, it shows information about macros in the network and modules inside the
macro as a tree. If disabled, the information is presented flat, without the macros.

• Show: Defines which networks and depths should be profiled:



Profiling

151

Figure 17.4. Profiling Modules

Right-clicking the headings opens a context menu where the columns to be displayed can be configured.

Figure 17.5. Profiling — Heading Configuration

• Type: Shows the type of the module.

• Elapsed Time: Shows the total time spent in the profiled routines (the sum of self-time and time in
children).

• Self Time: Shows the time spent only in routines of the module.

• Time In Children: Shows the time spent in routines called by the module.

• Min. Time: Shows the minimum measured total time.

• Max. Time: Shows the maximum measured total time.

• Cur. Memory: Shows the memory currently allocated by the module.

• Memory: Shows the total accumulated memory allocated by the module to ML pages during profiling.

• Count: Shows a counter of method calls. Expand a module's node to see the details; for example, the
calls to calculateOutputImageProperties and to calculateOutputSubImage are counted, Page



Profiling

152

Cache hits and misses are counted, and calls to scripting methods are counted. On mouse-over,
details are displayed.

17.2.2. Fields
On the Fields tab, all fields that have been touched at least once are listed here.

• Name Shows the field name.

• Type : Shows the field type.

• #: Shows the number of field triggers (notifications).

Figure 17.6. Profiling Fields

17.2.3. Functions
On the Functions tab, all functions that have been called at least once are listed here.

Right-clicking the headings opens a context menu where the displayed columns can be configured.

• Type: Shows the function type. The possible types are listed under the Function filters button.

• Elapsed Time: Shows the total time spent in the profiled functions (the sum of self-time and time
in children).

• Elapsed Time Per Call: Shows the time spent per call.

• Self Time: Shows the total time spent only in functions of the module.

• Self Time Per Call: Shows the time spent in functions of the module per call.

• Time In Children: Shows the time spent in routines called by the module.

• Calls: Shows the total number of calls for this function (only in Flat Profile view).

Two display options are available under Select view:

• Flat Profile: Shows the functions in a flat list. No hierarchy/dependency is visible. Calls of the same
function are automatically bundled and summed up.



Profiling

153

Figure 17.7. Profiling Functions as Flat Profile

• Call Graph: Shows the functions in the hierarchy they were called in. In the case of types that should
be not be displayed due to filtering, these types may still appear if the functions to be displayed are
below them in the hierarchy.

Figure 17.8. Profiling Functions as Call Graph

Double-clicking a function navigates to the module the function is called in, even if it is in the network
of a macro module.

The option Reduce call graph (resets profiling) combines all calls of the same function to one entry
in the call graph list.



Profiling

154

Figure 17.9. Functions with Filters Visible

When Filters visible is selected, the functions filter options are displayed.

Options:

• Filter: A text field where the filter text can be entered.

• Time Threshold: Sets a value below which the row is filtered, making more time-consuming functions
more visible.

Buttons:

• Function Filters: Opens a list of all function types to filter which types should be displayed. Checked
types are shown.

• Reset: Deletes entries in Filter and Time threshold, and resets the Function filters so that all types
are listed again.

The function types have different icons in the list:

Table 17.1. Function Type Icons

Type Icon

ML call (typically ML image)

ML WEM call

Field call (Field notification)

Python call

Python Qt call

Open GL call

Some special functions:



Profiling

155

• main: Pseudo function that is active when profiling is enabled.

• __tmpScriptHandler: Generated Python functions for MDL inline code (“py:some python code”).

• ScriptFile <inline script definition>: Definition of inline script functions.

• PyModuleName <module>: Code executed at the Python module level, which is not contained within
any function; typically invoked when importing Python modules.

• <python qt wrapper>: PythonQt wrappers of Qt functions.



156

Chapter 18. Recent Outputs
The Recent Outputs view displays a list of the recently selected input or output connectors. If the
module with the listed connector is removed from the network, its connector is also removed from the
list. The most recently clicked connector is sorted to the top.

Each list entry features the context menu of the connector. A list entry in the view can be selected; the
content of the selected item is shown in the Chapter 15, Output Inspector if that view is open. Selecting
an item does not make it the most recent, so that the list is not re-sorted on selecting an entry.

Figure 18.1. Recent Outputs



157

Chapter 19. Screenshot Gallery

19.1. Screenshot Gallery
The Screenshot Gallery maintains the screenshots and movies made with MeVisLab's viewers. The
screenshot gallery offers a preview of all screenshots and movies, as well as options to show an enlarged
version, and to copy, rename, or delete a screenshot or movie.

For showing movies, additional video software may be necessary.

Figure 19.1. Screenshot Gallery

To capture a screenshot, select any viewer and press F11. A thumbnail of the screenshot is added to
the gallery.

For each screenshot, two files are saved locally in .png format:

• an image file in

$USERPATH\screenshots\screenshot_<ModuleName>_<number>.png

• a thumbnail file in

$USERPATH\screenshots\screenshot_<ModuleName>_<number>.png.thumb.png.

The path for screenshots can be changed in the Preferences; see Section 4.3.5, “Preferences — Paths”.

To view a larger version of the screenshot, click on it. The screenshot is displayed below the gallery,
and its displayed size depends on the available space.

19.2. Screenshot Gallery Context Menu
In the Screenshot Gallery, a context menu is available. To open it, right-click the thumbnail.



Screenshot Gallery

158

Figure 19.2. Screenshot Gallery Context Menu

Open In External Viewer: Opens the selected screenshot in the default viewer for .png format or the
selected movie in the default player for the video format (the viewer can be set in the Preferences, see
Section 4.3.4, “Preferences — Supportive Programs”). Alternatively, double-click the thumbnail.

Copy To Clipboard: Copies the screenshot or movie to the clipboard.

Save As: Saves the screenshot or movie under another name and path.

Delete Selected Screenshots: Deletes the selected screenshots and movies from the hard drive. To
select more than one screenshot, use the platform's standard features. (For example, on Windows use
SHIFT+click for selecting continuous and CTRL+click for selecting multiple screenshots.)

Show All Screenshots: Shows all screenshots and movies that are saved in the mevislabscreenshots
folder.

Show Recent Screenshots: Shows all screenshots and movies of the current day.

19.3. Movies in the Screenshot Gallery
To add movies, a module that supports a movie output must be available. For 2D, movies can be
recorded by moving through slices (for example in the CineMode of the View2D module) in combination
with a Viewer.

For a 3D example, open the SyncroView2DExample network, add the View3D module and connect it
with an OrthoReformat3 connector. Open the panel of the View3D module and click the Advanced tab
to find the movie recording settings. Record a movie and then click Create Movie so that the output
is generated.

Movies are saved in the same folder as screenshots, as movie_<name>_<number>.<videoformat> and
screenshot_<name>_<number>.<videoformat>.thumb.png.

The final result will be displayed as a thumbnail in the Screenshot Gallery with a video symbol in the
top left corner. Click on it once for a small preview in the gallery or double-click on it to open it in a video
viewer (for example, Windows Media or Quicktime player).



159

Chapter 20. Scripting Console
General scripting console for testing Python without any meaningful network or module context.

If you want to test scripting in the context of a certain module, either use the Section 4.7.1, “Show
Scripting Console” or open a scripting console from the module's context menu (Section 3.9.1, “Module
Context Menu”).



160

Chapter 21. Scripting Assistant
The Scripting Assistant is a useful tool that translates actions (like (dis-)connecting modules or
parameter fields, setting parameter values) into the corresponding scripting commands.

Figure 21.1. Scripting Editor

Auto-paste to clipboard: If selected, the Python code generated from an interaction in the network is
automatically pasted to the clipboard, ready to be used in other editors.



161

Chapter 22. Search in Network
Searches for a specified named item in the current network. Optionally, the search is applied recursively
so that it also searches in macro modules.

Figure 22.1. Scripting Editor

A listed item has a context menu. Its first entry is an option to show the item in the network. If chosen,
the network is opened, the module is highlighted, and the highlighted module is centered. Alternatively,
a listed item can just be double-clicked to highlight and show it.

Figure 22.2. Scripting Editor

This search can look for different kinds of items. For some options, additional choices are available.

• Module Type: searches in the modules' type strings

• Module Tag: searches in the modules' meta tags

• Module Instance Name: searches in the modules' instance name

• Module Definition Tree: searches in the modules' definition tree for a tag with the given value



Search in Network

162

• Field Name: searches in the fields' names

• Field Value: searches in the fields' values

• Script Function: searches in the (Python) scripting functions

• Script File Content: searches in the modules' GUI definition files

Figure 22.3. Scripting Editor



163

Chapter 23. Search in Documentation
With the Search in Documentation View, the documentation of MeVisLab can be searched (including
all Doxygen references, all DocBook books, the OpenInventor reference, Python, and NumPy). The
search starts immediately with each entered key (incremental search).

Note

As the index is read upon calling the search for the first time, the first search might take
longer than expected. Further searches are fast.

Figure 23.1. Search in Documentation

Click the entry to open the linked documentation in a browser window.

The search works case-insensitive. However, correct spelling is preferred, as different best match results
will be obtained for “field” and “Field”.

The search is index-based. When using a local repository, the documentation needs to be built locally
to generate the index databases.

Note

Selections in the Search in Documentation View are persistent and set as the default the
next time the View is used.

See the following example screenshots for some possible search terms:

Figure 23.2. Search in Documentation — ML Example



Search in Documentation

164

Figure 23.3. Search in Documentation — MDL Example

Figure 23.4. Search in Documentation — Python Example



165

Chapter 24. Full-text Search in
Documentation
The installer of MeVisLab is shipped with index files of all available HTML pages, so that users can
perform a full-text search in the documentation.

Index files for user-editable packages can be generated with the module
IndexUserPackagesHTMLFiles. These files can be regenerated with that module as often as necessary,
for example, after each update of the user's documentation.

Selecting Full-text Search In Documentation... or pressing CTRL+SHIFT+F opens a panel that
provides a full-text search in MeVisLab's documentation and module help pages.



Full-text Search
in Documentation

166

Figure 24.1. Full-text Search in Documentation Window

The full-text search supports boolean and compound search queries. If single words separated by
SPACE  are given, the search concatenates the words implicitly with AND. If multiple words are given
enclosed in quotes, the search will look for the exact phrase. Boolean operators AND, OR, and NOT
can be used, as well as brackets.

Compound and boolean operators can be mixed:

• "region growing" AND value

• compute AND NOT (time OR space)

Clicking the cog icon opens a modal dialog where the suggestions feature and the maximum number
of results can be adjusted.

The settings are saved per user when changed.



Full-text Search
in Documentation

167

Figure 24.2. Full-text Search Settings

• Enable suggestions: On typing a minimum number of characters, a list of suggestions is shown.

• Min. length query to start suggestions: Sets the minimum number of characters that must be typed
in before the search suggests a query.

• Max. number of results: Sets the maximum number of displayed search results.

Tip

When using a compound phrase, it is recommended to turn off suggestions.

If the query term is found, a number of results are displayed. Each result includes a score, a package
group, a package, and a title. Click on any header to sort the list of results by that criterion.

Hovering over a result displays a tooltip with context.

Double-clicking a result opens a simple HTML browser with the corresponding HTML page. The search
term is highlighted where possible on that page, and all previously folded sections are expanded.



Full-text Search
in Documentation

168

Figure 24.3. Full-text Search Results Browser



169

Chapter 25. Snippets List
The Snippets List View allows reusing often used modules and network snippets. Unlike the normal
copy and paste of selections, the snippets are saved and available in future sessions.

Figure 25.1. Snippets List

To add modules or networks from the workspace to the snippet list, select them, right-click, and choose
Add Selection To Snippets List from the context menu. Enter a snippet name and click OK to save
the snippet.

To add snippets to a network, either double-click the thumbnail to insert the snippet in the middle of the
workspace, or drag the thumbnail from the snippets list to the designated position.

The context menu offers the following options:

• Rename: Opens a dialog to rename the snippet.

• Delete: Deletes the snippet (with confirmation).

• Open Enclosing Folder: Opens the folder where the snippets are stored.

• Delete All: Deletes all snippets (with confirmation).

• Size: Sets the thumbnail size for all snippet thumbnails (small, medium, or large).

Figure 25.2. Snippets List — Context Menu

Multiple snippets can be de-/selected by selecting snippets while holding SHIFT

All selected snippets can be deselected by pressing ESC.

The snippets can be re-arranged by dragging them. Note that a dropped snippet will either be inserted
as the first or as the last element; snippets cannot be inserted by dropping between other snippets.



170

Chapter 26. Project Wizard

26.1. Project Wizard Introduction
With the project wizard, packages, and modules can be created and added to the MeVisLab packages
and module database.

Note

As user packages are necessary to save new modules, all options except for New Package
are disabled when first using the Project Wizard.

Figure 26.1. Project Wizard (no user packages available)

Figure 26.2. Project Wizard (with user packages available)



Project Wizard

171

The following can be created:

• Programmed Modules: Inventor, ML modules, and Algorithm module
• Modules (Scripting): macro modules and algorithm macro modules for bundling modules and script

files
• Packages: for organizing modules in a package structure

26.2. Modules (C++) Wizard
Tip

For details on using the C++ module creation wizard, see the Getting Started, chapter
“Developing ML Modules”.

The Wizards for programmed modules of the type Inventor, ML, and WEM module start rather similar,
with a first dialog on which the name, package and other descriptors are added.

The Wizard leads through the creation process. Move between the dialogs with Back and Next. The
settings can be saved at any point as .wiz file via Save Setting.

Please refer to the Getting Started document for a complete list of the files that are generated by the
wizard.

Note

After module creation, the module database has to be reloaded before the new module can
be used in a network.

26.2.1. First C++ Module Wizard Dialog

Figure 26.3. First C++ Module Wizard Dialog — ML Module Example



Project Wizard

172

Name

Enter the <ModuleName> here. It must be a unique name within the MeVisLab module database
(including the SDK module database).

Author, Comment, Keywords, See Also, Genre:

Enter descriptors to classify the module within the MeVisLab module database. Author, comment, and
genre are mandatory entries. See the descriptions of existing modules for inspiration of what to enter
here. Errors in the descriptions will be displayed in the Debug Output upon loading the module database.

Add reference to example network

If selected, an empty example network <ModuleName>Example.mlab is created, which may be edited
later (optional). It is recommended that each module should be completed by an example network to
explain its function and usage in an exemplary application.

Select Target Package

Sets the Package for the module project. Select one from the list. For more information on Packages,
see Section 26.5, “Packages”.

Project Properties

Directory Structure

• Classic: the project files are separated into Sources and Modules folders

• Self-contained: all project files are located in one self-contained folder that makes it easy to move
and exchange the entire folder

Figure 26.4. Create an ML Module in a Self-contained Folder



Project Wizard

173

Select

Allows adding the project to an already existing ML project within the selected Target Package. The
selected project name is inserted in the field Project.
If working without a license file, the project prefix receives a leading underscore, for example, “_ML”.

Include project files

If selected, the following C++ files are also created (in addition to the files listed above):
CMakeLists.txt, <ModuleName>System.h, <ModuleName>Init.h, <ModuleName>Init.cpp.

Click Next for the next screen, which is specific for each module type available in the Wizard.

26.2.2. Inventor Module
For the first dialog, see Section 26.2.1, “First C++ Module Wizard Dialog”.

Figure 26.5. Inventor Type

The Open Inventor module has to be assigned a module type. Select a type to see additional comments
in the Info area.

• SoShape: Creates an Inventor shape, representing a geometric object, for example, cones, spheres,
cubes and alike. Functions for GLRender, handleEvent, etc., are provided.

• SoGroup: Creates an Inventor group, which provides a dynamic number of inputs.

• SoSeparator: Creates an Inventor separator. In addition to a SoGroup, the OpenGL state is pushed
and popped.

• SoNode: Creates a basic Inventor node.

• SoView2DExtension: Creates a View2D extension, which renders in Open GL on a 2D viewer and
processes user interaction (mouse, keyboard).



Project Wizard

174

• Add Node Sensor: Adds a SoNodeSensor that will trigger on any field changes and thus allows for
user interaction. The necessary code is provided to fill in the gaps.

• Verbose comments: Adds verbose comments that you might want to add when first trying out this
Wizard.

• Example code: Adds additional example source code.

• Has group inputs: (not for all Open Inventor module variants): Sets whether the MeVisLab GUI
allows multiple SoNode inputs.

Click Next for the next screen, see Section 26.4, “Module Field Interface”,

26.2.3. ML Module

ML modules generate compilable C++ code and platform-dependent project files to implement a new
image processing template module in MeVisLab. Define the number of image inputs and outputs of the
module as well as module parameters (fields). After compilation and reloading of the module database

via Extras → Reload Module Database (Clear Cache), you can create the new module on your network
document. If you created the module in an existing Project (DLL) you may have to restart MeVisLab

(use File → Restart With Current Networks).

Note

The properties available in this dialog are also described in the ML Guide, chapter “Deriving
Your Own Module From Module”. The Project Wizard simply makes it easier to implement
these methods.

Two implementation styles of ML modules are available, new and classic. The difference is that
in the classic ML style, the standard assumption was that input and output image were of the
same data type, and changes to the data type had to be programmed manually. In the code, this
was done via Template that had the data type as parameter, and during compilation, the function
ML_CalculateOutputSubImage was compiled as a routine for all data types.

In contrast to this, the new style ML module does not use the Template mechanism but uses handler
classes for the input/output routine. The wizard supports the handling configuration already in the GUI.

For the first dialog, see Section 26.2.1, “First C++ Module Wizard Dialog”.



Project Wizard

175

26.2.3.1. ML Module (New Style)

Figure 26.6. Imaging Module Properties (New Style)

Number of Input/Output Images

Inputs, Outputs: Sets the number of image processing inputs and outputs.

The handling of the datatypes of output and input image is done in via the drop-down lists in the window.

In the following figures, the number of Inputs is set to two so that the extended Handling and Reference
options are better visible.

Figure 26.7. New Style ML Module

Two options are available for the handling of the output image:

• uses fixed data type: Sets the output data type to a fixed format that has to be entered in the column
Type Support, see Figure 26.8, “New Style ML Module — Uses Fixed Data type ”.



Project Wizard

176

Figure 26.8. New Style ML Module — Uses Fixed Data type

• uses data type of: Sets the output datatype to the same format as the selected input image. In
addition, the supported types can be limited to certain types in the column Type Support.

Figure 26.9. New Style ML Module — Uses Data Type Of Input Image

Figure 26.10. New Style ML Module — Entering The Supported Types

Three options are available for the handling of the input image:

Figure 26.11. New Style ML Module — Configuring The Input Handling

• uses fixed data type: Sets the input image data type to a fixed format that has to be entered in the
column Type Support, identical to the selection for the output image, see Figure 26.8, “New Style
ML Module — Uses Fixed Data type ”.

• uses input image data type: Keeps the input image data type. In addition, the supported types can
be limited to certain types in the column Type Support.

• uses same data type as: Sets the input image data type to the same format as the selected image,
see Figure 26.9, “New Style ML Module — Uses Data Type Of Input Image ”.



Project Wizard

177

Figure 26.12. New Style ML Module — Uses The Same Data Type As

Below the configuration of the input/output types, two image processing options are available:

Image Processing Methods

Add calculateInputSubImageBox(): If enabled, the method calculateInputSubImageBox() is
added. It is required if the calculation of an output page requires another (smaller or larger) image region
from the input than the one of the output page.

Add voxel loop to calculateOutputSubImage(): If enabled, an example loop is implemented that
reads all voxels from input 0 (if available) and copies them to the output page. It simplifies loop-based
implementations of calculateOutputSubImage().

Click Next.

26.2.3.2. ML Module (Classic Style)

Note

For new modules, it is recommended to use the new style. The classic style implementation
is offered as legacy option. For an explanation of new style versus classic style, see
Section 26.2.3, “ML Module”.



Project Wizard

178

Figure 26.13. Imaging Module Properties (Classic Style)

Number of Input/Output Images

Inputs, Outputs: Sets the number of image processing inputs and outputs.

Image Processing Methods

Add calculateInputSubImageBox(): If enabled, the method calculateInputSubImageBox() is
added. It is required if the calculation of an output page requires another (smaller or larger) image region
from the input than the one of the output page.

Modify input/output data types: If enabled, adds demo code for the modification of input/output image
data types in classic style. (For new style ML module, the modification of data types is supported in the
methods and the GUI, see Section 26.2.3.1, “ML Module (New Style)”.)

Add calculateOutputSubImage() template: If enabled, a template function is added for the
implementation of the virtual method calculateOutputSubImage(). This is the typical way to implement
the algorithm independent of the voxel type.

Add voxel loop to calculateOutputSubImage(): If enabled, an example loop is implemented that
reads all voxels from input 0 (if available) and copies them to the output page. It simplifies loop based
implementations of calculateOutputSubImage().

Use type free loop: (Only active for certain selections) If enabled, an example loop is implemented that
reads all voxels from input 0 (if available) and copies them to the output page. It is implemented without
using any voxel types, but only copying the image memory voxel by voxel. Useful if the algorithm is
type-independent or specific for a known voxel type.

Click Next.

26.2.3.3. Additional ML Module Properties

For both new and classic style ML modules, the same additional options are available:



Project Wizard

179

Figure 26.14. Additional ML Module Properties

Parameter Handling

Auto-update output images on field changes: If enabled, code is added to the
handleNotification() method that causes a touching of the output image field(s) on changes of any
input or parameter field.

Add handleInput(): If enabled, the method handleInput() is added. It is required if the module shall
be able to operate with optionally disconnected or invalid image inputs.

Add activateAttachments(): If enabled, the method void activateAttachments() is added. It is
called after module clones or reloads and is needed to update the internal module state/members after
reload or clone operations if it depends on field values.

Documentation / GUI

Add more detailed comments: If enabled, more comments to the generated code, for example,
possible parameters, their effect, or details about the methods or functions to be implemented are added
to the code.

Add configuration hints: If enabled, hints for inplace, bypass, voxel type, and multi-threading support
are added to the code.

Add MDL window with fields: If enabled, a window section with all fields is added to the MDL definition
file of the module.

Click Next for the next screen, if you want to add fields, see Section 26.4, “Module Field Interface”;
otherwise, click Create to create the new ML module.

26.2.3.4. ML Module — Created Files

When creating the new ML module, a number of files are generated, some of which have the same
purpose in another surrounding/operating system:



Project Wizard

180

In the path: <Package>/Modules/<ModuleType>/<ModuleName>

• <ModuleName>.def: MeVisLab definition file

In the path: Modules/<ModuleType>/<ModuleName>/networks

• testExample.mlab: Example network (template)

In the path: <Package>/Sources/<ModuleName>

• <ModuleName>System.h:

• <ModuleName>Init.h: C++ header file

• <ModuleName>Init.cpp: C++ file

• CMakeLists.txt: MeVisLab project file, see CMake documentation.

26.3. Modules (Scripting) Wizard
This wizard creates functioning macro modules by generating the template files <ModuleName>.def and
<ModuleName>.script (optional: <ModuleName>.mlab and <ModuleName>.py).

For the first dialog, see Section 26.2.1, “First C++ Module Wizard Dialog”.

In the second dialog, the module properties can be set and a local macro can be chosen as a starter
for the macro module.

Figure 26.15. Project Wizard

Add Macro Network File

Enables if the macro module shall encapsulate a module network. Either generates an empty
<ModuleName>.mlab document or uses an existing one.

Add Python



Project Wizard

181

Creates an empty file (<ModuleName>.py ), which is included in the module's definition file
<ModuleName>.script. Used to define script commands embedded in the MDL script code to implement
dynamic user interfaces.

Click Next for the next screen, if you want to add fields, see Section 26.4, “Module Field Interface”;
otherwise, click Create to create the new macro module.

After module creation, the module database has to be reloaded before the new module can be used
in a network.

26.4. Module Field Interface
Add fields to the interface of the module.

Figure 26.16. Module Field Interfaces

New

Adds a new field. Click the entry first and then edit the field parameters.

Import All Fields

Imports all fields of all modules of the internal network.

Remove

Removes the selected field.

Remove all

Removes all fields.

For each field, the following may be entered, depending on the field type:

Field Name



Project Wizard

182

Provides the field name. Has to be unique in the module.

Field Type

Provides the field type. Available types are String, Enum, Bool, Int, Float, Double, Progress, Notify,
Base, and SoNode.

Field Comment

Adds a comment to the field, useful for the generated code.

Field Value

Sets the field value.

Enum Values (for enum field only)

Sets the enumerator values. Separate the values by commas.

This is the last screen of the Wizards. Click Create to create the module.

26.5. Packages
Packages are the way MeVisLab organizes projects. A package can contain any number of C++/Macro
Modules, Installers, Documentation, etc. The creation of an own package is mandatory for SDK users,
all other wizards require a valid target package.

With the Package Wizard, new packages can be created. For detailed information on the package
structure, see the Package Structure documentation.

Figure 26.17. Package Wizard

Package Group

Sets the package group in which the package is saved. Enter a name, for example your company or
site name.



Project Wizard

183

Package Name

Sets the package name. Select a typical user package name from the list or enter a new package name.

Package Owner

Sets the package owner. Meta description.

Package Description

Sets the package description.

Target Directory

Sets a target directory.

The information entered in the dialog is saved in the Packages.def file. The new package is added to the
User Package Path, including all subdirectories and files (see the Package Structure documentation).
After this, a reload of the MeVisLab module database is necessary to use the new package.

26.6. Example .Wiz File (Inventor Module),
indented for a better readability
// MDL v1 utf8
wizard = InventorModuleWizard
fields  {
  instanceName        = wizard
  moduleName          = SoTest

  author              = JDoe
  genre               = SoGenre
  comment             = ""
  keywords            = SoGroup
  seeAlso             = ""
  exampleNetwork      = TRUE

  project             = SoTest
  projectPrefix       = So
  includeProjectFiles = FALSE
  stepTitle           = "Module Field Interface"
  stepInfo            = "Add fields to the interface of the module."
  packageIdentifier   = MyPackageGroup/Internal
  storedFieldList     = "fieldName@fieldType@fieldComment@ [...]
  fieldSelected       = TRUE
  nodeSensor          = FALSE
  verboseComments     = FALSE
  exampleCode         = FALSE
  hasGroupInputs      = FALSE
  type                = SoShape
  typeExtra           = Shape
  fields              = Test
}



184

Chapter 27. MATE
27.1. What is MATE?
MATE is the internal text editor for MeVisLab. MATE is an acronym that stands for MeVisLab Advanced
Text Editor.

MATE supports the programming languages MDL, Python, and JavaScript, offering auto-completion
(with a list of suggestions), context-sensitive specific help, syntax highlighting, and indentation.

It also supports HTML, CSS, and XML with simple syntax highlighting.

Additionally, MATE has a built-in debugger for Python scripting, a GUI editor for module panels, and
functions as an editor for help files for modules (.mhelp).

For .mhelp, HTML, CSS, and XML, the editor checks the spelling of written text using Hunspell.

Besides all this built-in functionality, MATE offers a scripting API to configure MATE on startup by user
written Python scripting, as well as adding new features to MATE's GUI by writing Python user scripts,
similar to Section 4.8, “User Scripts”

MATE also offers direct access to a module's panel and automatic panel, and the related files via the
Module menu.

For quick scripting, a scripting console is available.

The following file types are supported:

• MDL files, namely

• .dat (MeVisLab license files written in MDL)

• .def (MeVisLab module definition)

• .mhelp (MeVisLab module help file, see Section 27.9, “Module Help Editor”)

• .mlab (MeVisLab network)

• .prefs (MeVisLab preferences file, for packages or other purposes)

• .script (MeVisLab MDL script)

• Other MeVisLab specific files

• .mlinstall, .mli (Installer specification used by the ADK add-on)

• .py (Python)

• .js (JavaScript)

• .html (HTML)

• .css (Cascading Style Sheets)

• .xml (Extensible Markup Language)

• .txt (Generic text files)

Open MATE via File → Show Integrated Text Editor (to start it without files) or File → Open File in
Integrated Text Editor (to start it with a file dialog for selecting a file).



MATE

185

MATE is also used as editor for source code by default (this can be changed in the Preferences, see
Section 4.3.4, “Preferences — Supportive Programs”). For example:

• For Related Files in the context menu of a module when selecting one of the possibly available .def,
.script, or .py files.

• When clicking on a link to a license .dat file or a module .def file in the Debug Output of MeVisLab.

MATE runs in a process separate from MeVisLab. This allows using it for Python debugging, see
Section 27.8, “Python Debugger”.

27.2. Text Editor User Interface
Figure 27.1. User Interface

The user interface provides the following areas:

• the menu bar

• the Attached Module menu (can be switched off in the Views submenu)

• the Outline area with a list of related modules (can be switched off in the Views submenu)

• the Edit area, with tabs for open files

• the Project Workspace area displays a list of projects that are collections of related files (this can
be switched off in the Views submenu)



MATE

186

• the Debug Output area with the same information as in MeVisLab (see Chapter 8, Debug Output;
this can be switched off in the Views submenu)

• the Find menu for incremental and normal search (this can be switched off in the Views submenu)

27.3. Menu Bar
In the menu bar, the following entries are provided.

In the File menu, New, Open, Close, Save, Save As, Revert To Saved, Recent Files, Project, Recent
Projects, Project Workspace, Recent Project Workspaces, Close Project Workspace, Session,
Recent Session, and Quit are available.

Figure 27.2. MATE File Menu

In the Edit menu, Undo, Redo, Cut, Copy, Paste are available. In addition to these standards, a number
of options for searching and code formatting are available. In the search, regular expressions may be
used.

• Find: Opens a Find dialog where you can enter a search term.

• Find Next: Finds the next entry, search direction down.

• Find Previous: Finds the previous entry, search direction up.

• Find and Replace: Opens a Find and Replace dialog. Enter the old and the new term.

• Find Incremental: Opens an independent search bar at the bottom of the MATE screen and starts
searching immediately while the term is entered.

• Use Selection for Find: Uses only the currently selected text portion as input for the Find dialog.

• Auto Indent Selection: Arranges the selection according to indentation per level. Alternatively, TAB
may be used.

• Shift Left Selection: Shifts the selection to the left.

• Shift Right Selection: Shifts the selection to the right.

• Comment Selection: Comments the selection (available for Python, MDL, and JavaScript).

• Uncomment Selection: Uncomments the selection (available for Python, MDL, and JavaScript).

• Go Back: Jumps to the last cursor position.



MATE

187

• Go Forward: Jumps to the next cursor position.

• Go To Line...: Opens a dialog to enter a line number in the currently active document to set the
cursor to.

• Preferences: Opens the preferences for the MATE editor, see Section 27.7, “Preferences”.

Figure 27.3. MATE Edit Menu

In the View menu, select the user interface areas for display: Attached Module toolbar, Outline
area, Project Workspace area, Session area, Debug Output area, the search functions Search in
Documentation area, Find Results area, Find toolbar, the Python debugging options Stack Frames
area, Variables area, Watches area, Evaluate Expression area, Breakpoints area, Debugging
toolbar, and the GUI editor options Preview area, Tag Editor area, MDL Controls area, and the Fields
area.

Figure 27.4. MATE View Menu



MATE

188

In the Window menu, the files in the Edit area can be closed and selected: Close, Close All (you will
be asked if you want to save changes).

Figure 27.5. MATE Window Menu

In the Debug menu, debug options are available, see Section 27.8, “Python Debugger”.

In the Extras menu, the following options are available:

• Attached Module: see Section 27.4, “Module Menu”.

• Enable GUI Editor: see Section 27.12, “GUI Editor”.

• Open File In External Editor: Opens file in the default editor (this may be set in Section 4.3.4,
“Preferences — Supportive Programs”).

• Open All Files In External Editor: Opens all files in the default editor (this may be set in Section 4.3.4,
“Preferences — Supportive Programs”).

• Show Enclosing Folder: Opens the folder containing the currently active document.

• Show Regular Expression Dialog: Shows a dialog where the user can test regular expressions with
own sample texts.

• Show MATE Scripting Console: Opens the MATE scripting console, see Section 27.13, “Scripting”.

• Edit MATE Startup Scripting File: Opens the MATE startup scripting file for editing, see
Section 27.13, “Scripting”.

• SVN: Contains a submenu with subversion commands that are applied to the currently open file. This
requires an SVN command-line executable to be available in the PATH environment variable.

• String Tools: Contains a submenu with assorted string manipulation tools. The scope of these
operations usually is the selected text.

Figure 27.6. MATE Extras Menu

27.4. Module Menu
MATE communicates with a running MeVisLab instance to get information about a currently edited
module, which is used for tasks like auto-completion. For this, the MeVisLab instance might create



MATE

189

the required module that is invisible to the user. The module menu allows for a direct handling of the
attached module. If no attached module is available yet, it has to be created (loaded). For this, select
the module in the Outline area and then click Create.

Figure 27.7. MATE Module Menu — Without Attached Module

Figure 27.8. MATE Module Menu - With Attached Module

Once a module is attached, more options are available.

Click Reload to reload the module information. This is useful if the module files were changed (for
example, DLL, .script, or .def file).

Click Goto to select and center the associated module in MeVisLab. This is only available if the file has
been opened from the context menu of an existing module in MeVisLab.

Run Tests will run the associated tests of an associated module in MeVisLab. If the currently edited file
belongs to a test case instead, this test case will be executed.

Figure 27.9. MATE Module Menu — Windows Submenu

The Windows submenu has the same options and effects as the module context menu entry Show
Windows in the MeVisLab user interface. The panels or viewers will be opened in MeVisLab.

Figure 27.10. MATE Module Menu — Files Submenu

In the Files submenu, all source files related to the attached module are listed. Select one to open it
in the editor.

Note

Not all related files may be available as source; for example, compiled modules delivered
with the SDK.

Add To Project Workspace adds the files of the module to the Project Workspace as an automatic
project if it is not already contained there.



MATE

190

27.5. Outline Area
The Outline area provides an overview over the content of the currently selected file; for example, if the
MLCoordUtils1.def file is opened, all modules defined there will be listed.

The nested elements of the module definition can be expanded by clicking the plus sign. Double-click
the entries to go to the code line in which this entry is defined.

Figure 27.11. Outline Area

27.6. Edit Area
In the Edit area, the source code is displayed. For each open file, a tab with the file name is displayed.
For the supported languages MDL, Python, HTML, CSS, XML, and JavaScript, syntax highlighting is
available.

For the text portions of .mhelp, CSS, HTML, and XML files, MATE performs spell checking based on
Hunspell. If a word is unknown to the spell checker, it is underlined in red; the context menu of this word
offers to replace the unknown word with a selectable known variant or to add the word to the user's
dictionary.

The spell checker is based on Hunspell and uses three dictionaries: the standard American English
dictionary, a MeVisLab-specific dictionary, and the user dictionary to which new words can be added.

At the bottom of the area, the line where the cursor currently stands is displayed. In addition, the cursor
position in the source code in terms of level/depth is displayed, if applicable.



MATE

191

Figure 27.12. MATE Edit Area

Figure 27.13. MATE Edit Area — Code Completion for Keywords

Code completion is available for the supported languages MDL and Python. Select the option with the
cursor keys and press ENTER.

In Python scripting files, the auto-completion provides information about functions of included libraries
and about local variable names.

Figure 27.14. MATE Edit Area — Code Completion for Commands Defined in MDL

For the supported languages, context-specific help is available. Either press F1 or right-click to open the
context menus and select a help to be displayed in the default browser (this may be set in Section 4.3.4,
“Preferences — Supportive Programs”).

Figure 27.15. MATE Edit Area — Context Menu

Tip

If you double-click a word in the editor, the word is selected, and all other occurrences
of that word are highlighted in the text (except for keywords). To remove the highlighting,
simply hit ESC.



MATE

192

27.7. Preferences
Under Edit → Preferences, the preferences for the user interface regarding indentation, fonts, and
syntax highlighting can be edited.

Figure 27.16. MATE Preferences



MATE

193

Default Indentation

Sets Tab Size (for TAB) and Indent Size (for automatic indents).

Auto-Indentation Options

Select Tab key always auto-indents to use the TAB key to auto-indent a selection.

Select Auto-indent on paste to automatically indent the pasted text.

Visual Options

Select a Color Scheme from “Automatic”, “Light”, or “Dark”. A restart of MATE is required after changing
this option.

Select Show line numbers to show line numbers in the editor.

Select Show graphical scrollbar to show a scroll area with an approximated text display in the edit
area instead of the usual vertical scrollbar.

Select Enable line wrap to enable wrapping of lines too long to display. This option can be set
individually for other document types.

Select Show spaces as dots to display spaces in the edited files as dots.

Set the color of the dots with Dots Color.

Select Use spellchecker to enable spell checking in .mhelp, CSS, HTML, and XML files.

Document Options

Select Automatically save documents to automatically save open documents periodically.

Select Silently reload changed files to automatically and silently reload changed files.

Select Keep closed documents in sessions to keep documents on closing in the currently active
session. Otherwise, a document will be removed from the session on closing the document.

Select Load last session on startup to load the last active session and its files on starting MATE. The
session files are being loaded lazily.

Select Close all secondary windows with Escape to close secondary windows by pressing ESC.
Secondary windows include the error check view window, the results windows for “Find in Files”, and
the “Debug Output”.

Connected MeVisLab Options

Select Disable automatic module creation to disable the creation of a module when starting to edit
module files (.def, .script, .py).

Select Show messages from all MeVisLab instances to display messages written to the debug output
console of all running MeVisLab instances in the debug output console of MATE. If not selected, only
messages from non-application, non-background instances will be shown.

Under the links MDL, Python, JavaScript, and Module Help, the tab, indent sizes, and line wrap
behavior for each language can be set. This will override the general settings.

Select Use internal HTML preview in the Module Help preferences to tell MATE to open generated
module help documents in an internal HTML view instead of the system web browser.



MATE

194

27.8. Python Debugger
MATE includes an integrated Python debugger. Its symbols and basic functions resemble those of Visual
Studio. Depending on the operating system, the available key commands are taken from Visual Studio.

Debugging can be used for .py Python files and for .script files. In case of the latter, only lines with
real Python code (i.e., starting with "py: or "*py:) will work as breakpoints.

There are two main ways to open code in the integrated debugger:

• Click the on bug button  in MeVisLab to start MATE in a separate process with debugging enabled,
and then open a file. The button is part of the Script Debugging toolbar, see Figure 4.30, “View —
Toolbars Submenu” for enabling and disabling the toolbar.

• Open a Python or Script file in MATE, then select Debug+Enable Debugging. (If the Debug menu
is disabled, MATE is not set up to start as separate process. In this case, change the Preferences
setting, see Section 4.3.4, “Preferences — Supportive Programs”.)

If debugging is enabled, the views Debug Output, Breakpoints, Stack Frames, Variables, and the
Debugging toolbar are switched on in the standard configuration.

Note

Configuration changes made by the user will be saved separately for MATE without
debugging and for MATE with debugging enabled. This way, two basic configurations are
available.



MATE

195

Figure 27.17. MATE with Python Debugger



MATE

196

Figure 27.18. MATE Debug Menu

Once debugging is enabled in principle, the actual process needs to be started. For a first test, the
module TestPython can be used.

1. In a line with executable code, click between the line number and the code to set a breakpoint. A
red dot  will be displayed at that position.

Breakpoints offer context menus.

Breakpoints can be set to conditional; the condition can also be removed. Conditions have to be
entered in Python syntax, for example: a==12.

2. In a next step, do something on the module's panel in MeVisLab, e.g., click a button.

Note

It is important to remember that the Python scripts in MeVisLab are part of a module or
network, and not stand-alone. Therefore, you cannot simply open a script in the MATE
debugger and debug it at runtime. What looks like a Start button is actually a Continue
button.

Note

During debugging, MeVisLab is unresponsive! Finish the debugging by letting it run its
course before trying to interact with MeVisLab.

Note

The debugger needs an up-to-date .pyc file for associating the run-time state with the
lines in the .py file. The debugger will not work (correctly) if you have multiple .pyc
copies of the same Python file on your system!

The script stops at the breakpoint, showing a yellow arrow. The Debug Output is the same as in
MeVisLab. In the Breakpoints view, a list of all breakpoints can be found, and a context menu is
available for editing them. The Stack Frames view shows the current location of the script. In the
Variables view, existing variables can be examined.



MATE

197

3. Click the Continue button  to run to the next breakpoint, or other buttons for other actions.

Table 27.1. Buttons for Debugging

Button Description Explanation

Break Pauses the running function.

Stop Stops and finishes the running function.

Continue Runs to the next breakpoint or the end of the routine.

Run to cursor Runs to line where the cursor is placed.

Step In Steps through the code one statement a time. If the
statement executes another function, the debugger will
step into that function.

Step Over Step Over is the same as Step In, except that when it
reaches a call for another function, it will not step into it.
The function will run, and then go to the next statement
in the current function.

Step Out If Step In has been used, Step Out can be used to run the
currently called function and return to the function from
which it was called.

Table 27.2. Icons for Debugging

Icon Description Explanation

Breakpoint Static breakpoint set by user.

Conditional breakpoint Breakpoint depending on a statement to be true. The
condition (in Python syntax) can be set via the context
menu of a breakpoint.

Top stack location Last executed statement.

Current stack location Displayed via double-clicking the stacks in the Stack
Frames view.

27.9. Module Help Editor
A module's help is created based on .mhelp files. When these are edited in MATE, a number of
additional, help-specific features are available: a customized GUI with special outline appearance
and toolbar, syntax highlighting, and auto-completion. The goal is to keep the actual documentation
generation process invisible to the user; for details on the workflow behind the scenes, see
Section 27.9.3, “How it Works”.

The free text areas use the reStructuredText (reST) markup, see Section 27.9.2, “Formatting”. Aside
of the usual formatting, two expressions are important. “Roles” refer to extensions for inline markup in
reST, in our case for field and module references. “Directives” refer to extensions that add support for
new constructs, in our case links to images, screenshots, and cross-references.

To open MATE as Help Editor, either open a .mhelp file or right-click a module and select Help →
Edit Help.



MATE

198

Figure 27.19. MATE for Module Help

When editing the help file of a module, all important information of the module down to the field
specifications are extracted automatically. The basic module information is therefore always available
in the module help. Additional documentation should be added by the user, especially into the areas
Purpose, Usage, Details, Interaction, and Tips.

The directives for screenshots (.. screenshot:: [window]) are already prepared, one entry for every
window of the module. To remove the screenshot from the module help, just remove the text from the
screenshot entries.

The help is aware of changes, this results in the following for field and enumeration items:

• Field is added: field is marked as new and needing documentation.

• Field is removed: documentation text is kept but marked as being removed. Previously written help
text is stored in the .mhelp file but will not be visible in the resulting HTML help.

• Field is renamed: if the field name is deprecated, the text is copied. (Otherwise, the system interprets
the renaming as an adding and removing of fields, so documentation text needs to be moved to the
new field manually.)

Tip

With these change-tracking mechanisms, the TestCenter can be used to test for
documented fields.

For fields and enumerations, the first paragraph of the help is used as a tooltip in the panels. This should
be kept in mind while entering information.

The outline formatting is as follows to show the state of the documented items:

• red italic: User-added documentation still missing.

• black bold: User-added documentation exists.



MATE

199

• light-gray italic: Element with “Needs documentation” unchecked.

• dark-gray italic: Fields not visible in the GUI.

• dark-gray italic bold: Fields not visible in the GUI, for which user-added documentation exists.

Formatting of the text can be done via the buttons in the middle of the toolbar (see Table 27.3, “Help
Toolbar Buttons”), using the context menu (see Figure 27.21, “Text Context Menu”), and manually
entering the markup in reST syntax (see Section 27.9.2, “Formatting”).

Generating the actual HTML help can be done with ( ) or without ( ) prior screenshot generation. The
result is automatically displayed in the default browser.

Tip

On the first generation of the HTML help, MATE checks for screenshots being made no
matter which of the two buttons above you press.

Table 27.3. Help Toolbar Buttons

Button Description Explanation

Check screenshots and generate
help

Opens a window first in which the screenshots to be
created can be selected. For the selected screenshots,
the images are created and added to the ...screenshot
directives.

If the module window is open with visible data, the
window will be captured as-is; this allows for adding
illustrative information via the screenshots.

Generate Help Compiles the help project to create HTML output without
creating new screenshots.

Bold Formats selected text in bold (** ** in reST syntax).

Italic Formats selected text in italic (* * in reST syntax).

Field link Adds a field link in the editor.

Module link Adds a module link in the editor.

Image link Opens a dialog to browse for images relative to the mhelp
folder of the module's help.

Insert cross reference Opens a dialog in which references to other documents
and sections in the MeVisLab help can be entered.

Show reST Opens the help source in reST format in a new tab.
The reST format serves as the basis for HTML creation;
therefore, in case of help generation problems, check this
to identify the problematic lines.

Show information Toggles an information area on top of the editor area.
It shows information about the selected element and
module.

Help Toggles a help area on top of the editor area. It shows
general information on how to enter contents in the help
format.

27.9.1. Context Menus
Two options for the outline display are available from the context menu:



MATE

200

• Needs Documentation [element]: If checked, the entry appears in red italic; if not checked, it appears
in light-gray italic.

• Hide Fields Not Needing Documentation: Hides all fields for which “Needs Documentation” is
unchecked.

Tip

The context menu entry can be selected by using the right mouse button. If you need to
toggle the requirement for documentation for multiple fields, simply use the right mouse
button to bring up the context menu and select the option with the same button.

Figure 27.20. Outline Context Menu

The context menu of the text area offers shortcuts to the three basic formatting styles bold, italic, and
fixed (see below). If more than one word is selected, the formatting will be applied to the entire selection.
If the cursor is placed on a word, the formatting is only applied to this word. It also offers shortcuts to
format words as roles (field, module, overview) and directives (screenshot, image, image in package,
cross-reference), and to add new directives (images and crosslinks).

If a word is unknown to the spellchecker, it will be underlined in red. The context menu (of that word)
offers known variants as a correction or to add the unknown word to the user's dictionary.

Figure 27.21. Text Context Menu

27.9.2. Formatting
For the formatting, reStructured Text (reST) syntax is used. It has some similarity with MarkUp or Wiki
syntax.



MATE

201

The editor supports the editing process by two means: syntax highlighting of reST elements and
autocompletion.

Selected formatting options:

Table 27.4. Inline markup

Markup Output

*text* italic text

**text** bold text

``text`` fixed space text

* • bullet list

#. 1. numbered list

[number]. (e.g., 2.) 2. explicitly numbered list

Table 27.5. Directives

Directive Effect

.. image::

relative/path/to/mhelpfile

Inserts the referenced image.

.. image-in-package::

packageidentifier.relative/path/to/image

Inserts the referenced image from another
package.

.. screenshot::

windowname.PanelName.name

or

windowname.TabName.name)

Inserts the screenshot (if already created) or a link
to the screenshot.

Example with autocompletion:



MATE

202

Table 27.6. Roles

Role Effect

:field:`(modulename.)fieldname` Links to a field of a module.

:module:`modulename` Links to a module.

Example with autocompletion:

:overview:`overviewname` Links to an overview.

:cross-ref:`document/targetptr` Links to targetptr in another document. Use
“Insert Cross-Reference” to insert this role (see
Table 27.3, “Help Toolbar Buttons”)

:file-in-

package:`packageIdentifier.relative/

path/to/file`

Links to a file in a package. This is similar to the
image-in-package directive.

:relative-link:`relative/path/to/file` Links to a file relative to the mhelp file.

:sub:`superscript`\ text Adds a superscript to the text.

:sub:`subscript`\ text Adds a subscript to the text.

For more information about the reST syntax, see Sphinx reStructuredText Primer.

27.9.3. How it Works
.mhelp files are written in MDL and have an MDL tree structure. They are created from the module
interface definition and the GUI definition. Upon every edit initiated from a module's context menu
in MeVisLab, this MDL tree is created again with all module data in the module help being updated
automatically. The texts that the user adds in the actual “Edit Help” step are merged with the updated
data. If the module has changed in structure, e.g., elements, fields, or enumerators are moved or
renamed, this will be handled as follows: deleted elements will be removed, added elements will be
added, renamed elements will be renamed, and a help text will be added to the element.

Figure 27.22. Automatically Documented Elements

Upon creation, the following information from module sources is extracted and added to the module help:

https://www.sphinx-doc.org/en/master/


MATE

203

• Windows: For each window of the module, an outline entry with the respective screenshot directive
is added.

• Inputs: Each input is added as outline entry. Available comments are added as documentation for
the respective inputs.

• Fields: All fields used in the GUI windows are added as outline entry (red italic). After that, all
fields not visible in the GUI (“hidden”) are listed (dark-gray italic). Available tooltips will be added as
documentation for the respective fields.

The conversion of the .mhelp file to HTML happens in two major steps:

• The MDL file is converted to reStructured Text (see reST) by a core macro module .

• In a second step, the reST format is converted to HTML via Sphinx (see Sphinx Python documentation
generator). To enable every MeVisLab user to create module help, Sphinx is provided with and
integrated into MeVisLab.

The help system is implemented in MeVisLab core libraries, this makes the automatic generation of
tooltips from help texts (and from tooltips to help text upon first creation of a help file) possible.

All module help source files are generated in a mhelp directory alongside the module definition files to
which they belong.

Resulting HTML files are placed in the Documentation folder of the package.

27.9.4. Internal HTML Preview
You can tell MATE to open generated module help documents in an internal HTML view instead of the
system web browser (Section 27.7, “Preferences”). The HTML view is an additional tab in the workspace:

Figure 27.23. HTML View

You can view the module help editor and the HTML view at the same time, by decoupling the HTML
view from the workspace as a separate window:

https://docutils.sourceforge.net/rst.html#user-documentation
https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/


MATE

204

Figure 27.24. HTML View Decoupling

By pressing the Add To Workspace button, the HTML view is returned to the workspace:

Figure 27.25. Decoupled HTML View

27.10. Session Management
MATE offers a session management. MATE can maintain multiple, named sessions and a session
consists of a list of associated files.

One default session called Default always exists and cannot be removed. New sessions can be
generated and named, and existing sessions can be cloned. This can be done either via the session
view's context menu or via the File menu.

If a session is active, all opened and created documents will be stored in that session. In MATE's
Preferences dialog, you can toggle to keep closed documents in the session.

The last active session can be set in the Preferences to be loaded on starting MATE. Note that MATE
loads the documents of a session lazily; only a tab with a corresponding title is prepared and the actual
document content is only loaded on opening that tab.

In the session and in the corresponding documents window, the so-called extended selection is enabled.
That means that multiple entries can be selected by either holding the CTRL key pressed for selecting
successively or by holding the SHIFT key pressed for selecting a range of entries.

Pressing DEL or BACKSPACE removes the selected entries. Only the default session cannot be
removed.

A single click selects a session or a document. A double click opens a session or a document.



MATE

205

Both the session and the documents window offer more options via the context menu.

27.11. Project Workspaces
MATE offers to organize files and directories in projects, which are referenced from a workspace. Only
one workspace can be open at a time.

If no persistent workspace is open, MATE manages a default workspace, whose content and state is
lost on closing MATE. A persistent workspace can be created from the File menu by selecting Project

Workspace → New.... Existing workspaces can be opened with Project Workspace → Open... and by
selecting an entry from the Recent Project Workspaces menu. The default workspace can be restored
by selecting Close Project Workspace. A workspace can be saved under a different filename from the

File menu by selecting Project Workspace → Save As.... The default workspace can also be saved
to convert it into a persistent one.

27.11.1. Project Types
There are two different types of projects: regular projects and module projects.

27.11.1.1. Regular Projects

Projects are stored as files in the filesystem and provide a view of all the files and directories from
their parent directory. Files and directories from other locations can be added to the project by right-



MATE

206

clicking on the project in the workspace view and selecting Add -> Existing File or Add -> Existing
Directory... from the context menu. These files and directories are listed under the paper clip symbol
that is named External.

To create a project, go to the File menu and select Project → New..., the project will be added to the

current workspace. Existing projects can be opened with Project → Open... and by selecting an entry
from the Recent Projects menu.

Projects can be removed from the workspace by right-clicking them in the workspace view and selecting
the Remove Project entry from the context menu.

27.11.1.2. Module Projects

Module projects are automatically managed and contain all related files of the module, as well as the
parent directory of these files. It is not possible to add files or directories to these projects, except by
editing the related files and directories of the module.

If the default workspace is open, then module projects are automatically added to the workspace when
a related file of a module is opened and MeVisLab is available to create the attached module. If a
persistent workspace is open, then a module project is not automatically added. Instead, it can be added
manually by clicking on Add to Project Workspace in the attached module menu.

Module projects can be removed from the workspace by right-clicking them in the workspace view and
selecting the Remove Module Project option from the context menu.

27.11.2. Context Menu
The project workspace context menu contains different actions.

The possible actions vary depending on the selected item:

• Add → File... and Add → Directory... (available on regular project's root item):

Adds an existing file or directory to the External section of the project.

• Remove Project or Remove Module Project (available on any project root item):

Removes the project from the workspace.

• New → File... and New → Directory... (available on directory entries):

Creates a new file or directory in the filesystem. New files are immediately opened in MATE.



MATE

207

• Remove File From Project and Remove Directory From Project (available on immediate children
of the External section):

Removes the file or directory from the project.

• Delete (available on any file or directory object):

Deletes the file or directory in the filesystem.

Note

Deleting a file or directory also removes the project reference to it if it was an external
resource.

Deleting a file or directory does not remove the related file or related directory entry of
the module. This must be done manually.

• Rename (available on any file or directory object):

Renames the file or directory in the filesystem and in the project.

Note

Renaming a file or directory does not adapt the related file or related directory entry of
the module. This must be done manually.

• Expand [...] and Collapse [...] (available on any item with children):

Expands or collapses the item in the workspace view.

• Collapse All (available everywhere):

Collapses all items in the workspace view.

• Sync View With Filesystem (available everywhere):

Scans the filesystem for changes that are not yet reflected in the workspace view.

Usually you do not need this since this is done in regular intervals.

• Show File Locator (available everywhere):

Shows the file locator, which is the search input line below the workspace view.

27.11.3. Views

MATE offers two different views for the project workspace: the Scripting View and Filesystem View.
Those views allow to manage exclude filter rules for the displayed files and directories. The Scripting
View includes several rules by default, which aim at showing only relevant files and directories for
scripting MeVisLab modules.

• Scripting View only shows the relevant files of your projects; many temporary or generated files are
filtered away.



MATE

208

• Filesystem View shows all files in your project by default.

The set of filtered files can be configured for both views:

27.11.4. File Locator
Many files can be contained in the workspace view. To quickly find certain files, you can use the file
locator input field below the workspace view:

This input field can be closed by pressing Escape when the input focus is in the input field. It can be
opened again with Show File Locator from the context menu in the workspace view, or by pressing
CTRL+K.

27.12. GUI Editor
MATE offers basic GUI editor functionality. The GUI editor is not a straightforward WYSIWYG editor but
provides lists of defined fields, available GUI controls, a preview window, and a tag editor. All those views
and data representations are synchronized and most of them offer basic drag-and-drop functionality.

The GUI editor in MATE is not meant to support the creation of large and complex user interfaces,
such as application interfaces, but should provide a fast and easy way to create a simple module panel
in a short amount of time. Most importantly, the GUI editor provides a panel preview that is updated
in realtime while writing the GUI description, while configuring it via drag-and-drop, or while adjusting



MATE

209

parameters of single controls. The preview also shows the scope of edited GUI controls and layout
groups for an easy orientation, which also helps learning how to build a panel for MeVisLab modules.

In the screenshot below, the GUI description of the Mask module is being edited in MATE's GUI editor.
In the editing window, the text cursor is set to the description of the field blending; the same field is
automatically highlighted in the outline to the left, and also highlighted with a yellow rectangle in the
preview to the right. Those three representations are all synchronized. Selecting another field in the
outline leads the preview to show the new selection and sets the text cursor in the editing area to the
corresponding field. Additionally, clicking on a field control in the preview highlights the field in the outline
and places the text cursor in the field's description in the editing area.

Drag-and-drop is implemented for the most views of the GUI editor. In the outline, controls can be re-
arranged by drag-and-drop, fields from the Fields can be dropped onto the editing area to generate a
control description (another window pops up to offer a selection how that field should be displayed), and
general controls can be dragged out of the MDL Controls view onto the editing area.

If the text cursor is in a control's description in the editing area, the Tag Editor offers a list of all available
tags, with the currently set tags displayed in bold. All shown tags' values can be edited in the Tag Editor.
If an edited tag changes the visualization of the field, the preview is updated accordingly.

27.13. Scripting
MATE can be augmented by Python scripting, very similar to the Section 4.8, “User Scripts” in MeVisLab.
For the scripting API, please refer to the MATE and the MATEDocument scripting references.

In addition to the user scripts, MATE can also execute a startup script. To edit that script, choose Edit
MATE Startup Script File from the Extras menu.

Other than that, custom user scripts for MATE are just like the user scripts in MeVisLab. MATE comes
with some predefined user scripts that manage SVN operations on files and directories, as well as
implementing some string functions on text selections. Have a look at those scripts to learn more.



MATE

210

27.14. Pylint Integration
MATE has Pylint integration: Python files are automatically checked for errors with Pylint if Pylint is
installed for Python in the user's Python package directory. (This is not the system's Python package
directory!)

27.14.1. Installation
Installation of Pylint can be done with the pip tool, e.g., from a Python installation with the command line
pip install --user pylint or from the Preferences dialog of MATE in the Python section:

Note

Automatic installation from the Preferences dialog requires an Internet connection.

Python code checking can be disabled from the preferences even if Pylint is installed. You can also
configure which checks should be suppressed (see the Pylint message documentation for this); code
convention warnings, recommendations, and some other warnings are not displayed by default.

27.14.2. Usage
Pylint checks are performed automatically on Python code when Pylint is installed and activated. Results
are displayed on the left side of the text file and indicated on the right side of the scroll bar for a complete

https://www.pylint.org
http://pylint-messages.wikidot.com/all-messages


MATE

211

overview. Result symbols are displayed according to the highest message category for that line, and
the tooltip for each symbol contains the error message(s) for that line:

Below the Python text, an indicator displays the total number of messages generated by Pylint. Clicking
this indicator will jump to the next result in the text. A tooltip will show how much time was spent in
the last check run.

A busy indicator will be shown in this place while a Pylint check is performed.

Note

The Pylint integration is not perfect, and Pylint may not interpret the code in the same way
as MeVisLab, which means it might raise complaints about unknown identifiers even if the
code executes without issues in MeVisLab.

Note

Pylint runs continuously while the currently edited Python file changes, and the process will
run at full steam in the background. If your computer has only one available CPU core, you
may not want to use this feature.

27.15. Black Integration
Optionally, you can install Black, which provides automatic code formatting for Python code in
accordance with PEP-8.

By default, CTRL+ALT+L runs the code formatting on a Python file, formatting and saving the file. You
can change the keyboard shortcut in the “Shortcuts” section of MATE's preferences.

You can automatically format an edited Python file when saving it manually by enabling the Run On
Save option.

https://pypi.org/project/black/
https://peps.python.org/pep-0008/


MATE

212

The formatting uses the default settings for black. There are a few settings that black allows to configure,
most notably the maximum line length, which defaults to 88 (the current de-facto standard). To change
these settings, you can create a configuration file named pyproject.toml in the package root or in one
of the subdirectories below which your Python files are located. For example, to change the maximum
line length to 120 characters, you can use:

[tool.black]

line-length = 120

in your pyproject.toml file.

27.16. Rope Integration
Optionally, you can install Rope, which provides Python code refactoring such as renaming and function
extraction.

Once Rope is installed, the context menu in MATE includes the entry Refactoring, which opens a
submenu with the entries Rename and Extract Function, depending on the current selection.

Note

For renaming to work properly, you need a workspace and an active project (see
Section 27.11, “Project Workspaces”). The file where you want to rename something must
be in the active project. Otherwise, renaming defaults to a string replacement.

Note

The renaming parses all files in the workspace, which may take some time depending on
the number of files in that workspace.

Tip

Rename and Extract Function take effect immediately; the changed files are saved, and
the operation cannot be undone. Ensure you save the original files or store them in your
source control system, such as SVN or Git.

27.16.1. Rename
When you select this entry, a dialog opens for entering the new name. After scanning your workspace,
a window displays a DIFF view listing the files where strings will be renamed, along with the proposed
changes in each file. You can then either press Perform Changes or Cancel to proceed or cancel the
operation.

27.16.2. Extract Function
When you select this entry, a dialog opens for entering a name for the new function or method. You can
then either press Yes or Cancel to proceed or cancel the operation.

https://black.readthedocs.io/en/stable/usage_and_configuration/the_basics.html#command-line-options
https://black.readthedocs.io/en/stable/usage_and_configuration/the_basics.html#configuration-via-a-file
https://github.com/python-rope/rope


213

Chapter 28. Tips and Tricks

28.1. Command-Line Options
MeVisLab can be started with command-line options.

Windows: To start MeVisLab from the command line, enter the following:

Mevislab [OPTIONS] [networkfile].mlab [networkfile2].mlab ...

Linux: To start MeVisLab from the command line, enter the following:

<mevislab installpath>/bin/Mevislab [OPTIONS] [networkfile].mlab [networkfile2].mlab ...

To get a list of all available options, start MeVisLab with the -help option. This will open a window with
all available options.



Tips and Tricks

214

Table 28.1. Command-Line Options

Option Meaning

-prefs FILE Loads an additional .prefs file.

-ignoreprefs Ignores all user .prefs files.

-ignoreuserpackagepath Ignores the user package path.

-updateonly Updates all required DLLs to run MeVisLab and
quits.

-install Creates required symlinks and MLabModules
cache file and quits.

-unique Runs a unique MeVisLab, does not try to use a
running one.

-noide Does not show the MeVisLab IDE.

-scan Scans Modules directories for new files.

-noscan Uses existing Modules cache files and does not
scan Modules directories for new files.

-quick Uses existing Modules cache files and does not
check for any file changes (allows a very quick
restart).

-diagnosis Shows a diagnosis console while starting.

-logfile FILENAME Sets the logfile. Overwrites any logfile from the
.prefs file and the registry.

-userscript FILENAME [arg1 arg2....] Runs the given user script (see Section 4.8, “User
Scripts”). Instead of the filename, the name of the
Action can also be given.

-runmacro MACRONAME arg1 arg2.... Runs a macro by calling its consoleCommand
(requires a license with 'cmdline' feature).

-runapp APPNAME arg1 arg2.... Runs a MeVisLab application, passing arguments
to its runApplicationCommand, and opening the
application's window afterward (requires a license
with 'cmdline' feature).

-runappbatch APPNAME arg1 arg2.... Like -runapp, but does not open the application
window and exits after the execution of
runApplicationCommand in conjunction with the -
noide option.

-appname APPNAME Specifies the application name that is used when
accessing registry keys and settings.

-showfullscreen Shows the application's window fullscreen.

-showmaximized Shows the application's window maximized.

-help Shows all available command line options.

-nosplash Does not show MeVisLab's splash screen.

-nowelcome Does not show MeVisLab's Welcome screen
(debugging option).

-singleinstance Only allows one MeVisLab instance to be started
and passes the files of the command line to another
running MeVisLab (debugging option).

-noninteractive Prints error messages instead of showing error
dialogs.

-hide-diagnostic-mevislab-messages Prevents MeVisLab from printing diagnostic
messages like “Loading package MeVisLab/IDE
(Installed) from ...”.

-show-diagnostic-mevislab-messages Tells MeVisLab to print diagnostic messages
like “Loading package MeVisLab/IDE (Installed)
from ...”.

-disable-logging-timestamp Prevents MeVisLab from printing the timestamp
when logging output.

-enable-logging-timestamp Tells MeVisLab to print the timestamp when
logging output.

-exec EXECUTABLE arg1 arg2... --- Runs the given executable with the given
arguments on startup of MeVisLab.

The --- delimiter tells MeVisLab that the
arguments end here and that the rest of the
commandline are normal MeVisLab options. The
executables are terminated again when MeVisLab
is exited.

-v/-version/--version Prints the version of MeVisLab.

Some of these options are not available when using the MeVisLabStarter executable on
Windows; if required, use MeVisLab instead.



Tips and Tricks

215

28.2. MeVisLabPackageScanner.exe
MeVisLabPackageScanner.exe is a tool with which you can search for and analyze packages. It is used
by various others tools; for example, it is used by the ToolRunner.

MeVisLabScanner.exe is located in MeVisLab/Packages/MeVisLab/IDE/bin/.

If you enter no arguments or -help, the help file will be displayed automatically.

Figure 28.1. MeVisLabPackageScanner Help

28.3. Connecting Inventor Engines to ML
Modules
There are two types of Inventor modules: nodes (basically objects with a state) and engines (basically
functions/actions, for example, a calculator or a time counter). Inventor modules of the engine type
cannot be directly connected to ML connectors. In this case, a field bridge has to be used.



Tips and Tricks

216

Figure 28.2. Field Bridge Example

28.4. Using SyncFloat to Reduce System
Load
When creating parameter connections between ML modules and Inventor modules, system load may
increase considerably. This increase is due to the delay queue handling of Open Inventor modules,
which may cause notification loops. To avoid this, the SyncFloat or SyncVector modules can be used.

SyncFloat is a macro module offering an input parameter Float1, an output parameter Float2 and
an Epsilon parameter. As long as the difference between the floating-point fields Float1 and Float2
is smaller than Epsilon, SyncFloat filters the notifications. Only when the difference between Float1
and Float2 is larger than Epsilon, notifications are sent. For vectors, the similar module SyncVector
is available.

In the following paragraphs, the two basic situations in which SyncFloat reduces load are described.

28.4.1. Case 1: Two Inventor and One ML Module
Connected in a Circle

If a circular parameter connection between two Inventor modules and one ML module is created, the
system load will increase because of a constant notification of the fields. To avoid this, the SyncFloat
module needs to be inserted, either between the Inventor modules or the ML and an Inventor module.



Tips and Tricks

217

Figure 28.3. SyncFloat Example — ML and Inventor Modules

28.4.2. Case 2: A Macro Module (Including an Inventor
Module) and Another Inventor Module Connected in a
Circle

If a macro module encapsulates an Inventor module with fields that can be connected, and a circular
parameter connection is established between the macro's Inventor field and another Inventor module,
this also increases the system load. To avoid this, the SyncFloat module needs to be inserted between
the macro module and the Inventor module.



Tips and Tricks

218

Figure 28.4. SyncFloat Example — Macro and Inventor Modules

28.5. Printing MeVisLab Networks
MeVisLab offers no print function. Networks have to be captured as image and printed via image
processing software.

On Windows, press Print and paste the result to Paintbrush or a similar program.

On Linux, use your tool of choice, for example, Gimp.

Note

For better printing result, the Network Rendering Style in the Preferences can be set to
print styles, see Section 4.3.7, “Preferences — Network Appearance”.

28.6. Multi-threading in MeVisLab

28.6.1. Multi-threading in the ML
In order to profile modules using multi-threading, use the view described in Chapter 9, ML Parallel
Processing Profiler View.

28.6.2. Background Tasks
The Background Tasks feature allows for sending complete tasks into the background of MeVislab, for
example to disconnect calculation tasks from the GUI functionality. However, Background Tasks handle
only complete tasks and will not allow breaking a task into a number of parallel processes.



Tips and Tricks

219

For more about Background Tasks, see Chapter 7, Background Tasks and the ToolBox Reference,
chapter “Background Tasks”.

28.6.3. Modules for Multi-threading

Many modules do not have multi-threading enabled because it requires a good understanding of
common multi-threading pitfalls to determine if a module is already thread-safe or what needs to be
done to make it thread-safe.

28.7. Set Open Inventor Override Flag
(Inventor Modules)
In the context menu of Open Inventor modules, the option Set Open Inventor Override Flag is available
(see Section 3.9.1, “Module Context Menu”). This option has an effect on how Open Inventor scenes
are rendered.

Tip

For information on Open Inventor scenes, see Getting Started, chapter “Creating an Open
Inventor Scene”, or the Inventor Module help, first chapter.

Here is an example for the effects of the Override option:

Figure 28.5. Open Inventor Scene Without Override

In a normal scene rendering, the blue color overrides the red color. However, if in the context menu of
SoMaterial (red) the Override Flag is set, the red color overrides the blue color.



Tips and Tricks

220

Figure 28.6. Open Inventor Scene With Override

Note

The Override Flag only works for modules within the traversing route. For example, if
SoMaterial (red) were connected to a SoSeparator module, the override would have no
effect outside this SoSeparator.

In addition to the override on module level, an ignore flag for each parameter can be set in the context
menu of the automatic panel. In the example with the module override, if the red color is ignored, all
colors are overridden with the default gray.

Figure 28.7. Open Inventor Scene With Ignore Flag (Red)



Tips and Tricks

221

The ignore flag can also be set in the SoMaterial (blue) panel. In the example without module override,
if the blue color is ignored, the red color is visible.

Figure 28.8. Open Inventor Scene With Ignore Flag (Blue)



222

Chapter 29. Settings File and
Environment Variables
MeVisLab reads a settings file, mevislab.prefs, on startup that can be used to configure certain
settings that may not be available through the GUI.

There are also some environment variables that change the behavior of MeVisLab in certain places.

29.1. Possible Locations of mevislab.prefs
This settings file is searched for in various places. If the file exists in more than one place, all files are
evaluated, but if contradicting settings are given, the last file wins. The searched locations are:

• First the directory of the MeVisLab executable (.../MeVisLab/IDE/bin).

• Then, depending on the platform:

• Windows

1. The user's home directory

2. The user's document folder

3. The folder "MeVis" in the user's document folder

• Linux

1. Directory $HOME/.local/share/MeVis/MeVisLab

2. The user's document folder

3. The folder "MeVis" in the user's document folder

(This can be suppressed by adding the -ignoreprefs command line option.)

• The file name is defined by the MEVISLAB_PREFS environment variable. Also suppressed by -
ignoreprefs.

• The file name is specified after the -prefs command line option.

For applications created with MeVisLab, the same search rules apply. However, the "MeVisLab" part
in the file, directory, or environment variable name must be replaced by the application name. This
replacement should use uppercase, lowercase, or camel case corresponding to how MeVisLab is
spelled in the rules provided above.

29.2. Options in mevislab.prefs
The syntax of mevislab.prefs is as described in the MDL Reference. All settings must be contained
in a "Settings" element like this (example):

        
  Settings {

    // show windows when network is loaded
    RestorePanels = YES

    // autoreload the MDL/script files when a window of a module is opened
    AutoReload = YES



Settings File and
Environment Variables

223

    // autosave networks when changed
    AutoSave = YES

  }   
      

The settings file can contain any variable name. The value of a variable can be queried from scripting with
MLAB.hasVariable, MLAB.variable, and MLAB.variableIsTrue. Variable names are case-sensitive.
Besides self-defined variables, there are some pre-defined variables for various - sometimes very
specialized - purposes, which are listed in the following table. This list does not include (with some
exceptions) variables that can also be set from the Preferences dialog in MeVisLab.

Name Type Description

Development

PackagePaths Complex This allows for the definition of additional
user packages that should be available in
MeVisLab.

This attribute has two subattributes:
pathRoot and path. pathRoot specifies
a root path to which all subsequent path
entries are relative. path should typically
consist of a pair of package group and
package, separated by a slash.

Example:

                
    PackagePaths {
      pathRoot = "C:/Users/a_user/Documents/Packages"
      path     = MyPackageGroup/MyPackage

      pathRoot = "C:/Users/a_user/Documents/Development/MeVisLab"
      path     = MyOrganization/Package1
      path     = MyOrganization/Package2
    }   
              

Logfile File path Writes all console output to the specified
file. You can use $(LOCAL) to reference
files relative to the settings file.

RestorePanels Bool Shows module panels when the network
is loaded. It is also available from the
Preferences dialog.

AutoReload Bool Automatically reloads the MDL/script files
of a module when a module panel is
opened (recommended for fast prototyping;
no explicit module "reload" is required). It is
also available from Preferences dialog.

AutoSave Bool Automatically saves networks when
changed. It is also available from
Preferences dialog.

VerboseScripting Bool Prints messages when entering and leaving
command-handling scripting functions.

ShowModulesByUser Bool By default, deprecated modules (or
modules in other hidden module groups)
do not appear in the module search. If this



Settings File and
Environment Variables

224

Name Type Description
option is set, modules by the current user
will always be shown.

Note

The author name for a module
must be exactly the same
as the username in the
Preferences dialog.

ExternalDocumentationUrl URL Overrides the location of the MeVisLab
documentation, giving the base path as a
URL. A suitable default is, e.g.: https://
www.mevislab.de/docs/current.

UserSpellcheckFile File path MeVisLab has an integrated spell checker
(based on Hunspell) for English text in the
module help editor. With this option, users
can include an extra dictionary file.

PreloadModule Module name With this option, modules can be loaded
at startup of the IDE (created in an
invisible network), which can in turn execute
code and, for example, initialize preference
variables. This tag can be specified multiple
times.

disableImmediateDebug-

OutputConsoleRefresh

Bool The MeVisLab debug console, by default,
refreshes immediately after each output
to remain up-to-date (for example, in
the case of crashes). However, this can
lead to problems with event handling
and may slow down performance. Disable
immediate refreshes by setting to YES;
then the console is only updated when
MeVisLab is idle or processes events for
other reasons.

General

ExtraDllLoadPaths Directory path Windows only.

Sets additional directories from which to
load DLLs. Multiple paths can be specified,
separated by “;”; this entry can also be
provided more than once.

It is also possible to reference environment
variables in a path with ${}, e.g.,
${CUDA_PATH_V11_4}, or even ${PATH}.

MLCacheSizeInMB Integer Sets the cache size for the ML image
processing (in MB). It is also available from
Preferences dialog.

OverrideCursorDirectory Directory path Allows the specification of a directory that
can contain alternative mouse cursors to be
used in Inventor scenes. See the comments
in $(MLAB_ROOT)/MeVis/Foundation/

Sources/MLInventorGUIBinding/

SoQtViewerProxy.h.



Settings File and
Environment Variables

225

Name Type Description

View2DEnableQtFontRendering Bool Use Qt for rendering fonts in SoView2D
and similar viewers if set to YES (default).
Otherwise, it uses a simpler font rendering
engine that lacks Unicode support.

GL2DFont_DefaultSystemFont Name Sets the font to use for font rendering.

GLDefaultSystemFontProportional Name Same as above, but only affects the
simpler, not Qt-based font rendering.

GlobalScaleFactor Float Scales all MDL panels with this factor.
Default is 1.

qmlStyle Name Defines the QML style to be used in the
QuickView control.

Deployment

ReleaseOptimized Bool If set to YES, MeVisLab will not look for
updated MDL/script files after the initial
load. It is used for application deployment
(defaults to YES for applications and NO for
IDE).

LowPriority Bool Runs MeVisLab with a low process priority.

SplashPenColor Hex value Sets the color with which text is drawn on
the splash screen. It must be a 6-digit hex
value (without '#').

SplashHideMessages Bool Hides initialization messages on the splash
screen.

Advanced

PythonMultiThreading Bool If set to NO, it disables Python multi-
threading support. Disable this in case of
issues.

MLRestrictMaxNumThreads Integer Sets the maximum number of threads to be
used by the ML image processing pipeline
for standard image processing. The default
is the number of virtual cores in the system.

CoreMaxNumThreads Integer Sets the maximum number of threads to
use by the GVR framework. The default is
the number of virtual cores in the system. It
is also available from Preferences dialog.

EnableHighPrecisionLogging-

TimeStamps

Bool If enabled, time stamps in the log will be
printed with a higher precision (the actual
precision depends on the system). This can
be useful if the exact timing of events is
important.

DisableModuleWindowsPersistence Bool If this option is ON, .mlab files will not store
the position and state of module panels if
they are closed at the time of saving. This
can reduce the changes displayed in DIFF
tools when using a version control system.

FullscreenFlickerFix Bool If set to ON, it fixes flickering of fullscreen
panels with OpenGL content (for some
setups).

PreferReleaseModeExecutables Bool If set to NO, Debug mode tools (according
to the debug suffix of the executable



Settings File and
Environment Variables

226

Name Type Description
name) will be called from MeVisLab if
MeVisLab is in Debug mode. Otherwise, the
faster release mode variant will always be
preferred. The default is YES.

StoreModuleCacheInUserLibrary Bool Sets whether to store the module cache
files in a directory outside the installation
directory. Default is NO.

DontShowIconsInMenus Bool If this option is set, pop-up menus do
not show icons for their entries (on some
platforms this is a no-op, as there are no
icons shown anyway).

DisableLicenseExpirationWarning Bool If this option is set, MeVisLab (and
applications based on MeVisLab) will not
display a warning if the current license is
about to expire.

29.3. Environment variables
Similar to the values in the mevislab.prefs file, there are also settings that can be configured through
environment variables, primarily to correct certain issues of the platform. We have collected some here
that might be useful for you:

Name Type Description

General

MLAB_ROOT Directory path Sets the path where the MeVisLab
packages are installed. This must be
set if you call some shell scripts that,
e.g, create compiler projects or generate
installers. The Windows installer will set this
automatically.

Fixes

MLAB_FORCE_MESA Bool (Windows only) If set to 1, MeVisLab will
always attempt to use the Mesa software
OpenGL driver supplied with the SDK. This
can be used if the system OpenGL driver
does not work.

MLAB_QT_OPENGL_WIDGET "old" or "new" Qt deprecated the old OpenGL widget with
Qt 5. Since the first versions of the new
widget had problems on some systems,
you can switch back to the old widget
by setting the value "old" - but since the
widget is deprecated you might run into
other problems.

MLAB_OPENGL_10BIT Bool Forces MeVisLab to support 10-bit color
depth in OpenGL if the auto-detection fails.

MLAB_TTF_FONT File path Overrides the font to use for font rendering.
It must be a true type font.

MLAB_DISABLE_BUSY_CURSOR Bool Disables the display of a busy cursor when
MeVisLab is calculating.

MLAB_SOQT_ROUNDUP_WHEEL_DELTA Bool Fixes misbehaving mouse wheel in Inventor
views (for some buggy mouse drivers).



Settings File and
Environment Variables

227

Name Type Description

SOVIEW2D_NO_SHADER Bool Toggles the use of OpenGL shaders in
SoView2D views.

Debugging

MEVISLAB_DEBUGGER String (Linux only) Sets a debugger command to
call if MeVisLab crashes. The command is
called with executable name and process
ID.

MLAB_DEBUG_PYTHON_IMPORT String Prints additional information about imports
occurring in Python code.

IV_DEBUG_SHADER,

IV_DEBUG_SHADER_LOG, and

IV_DEBUG_SHADER_STRING

Bool (Used by SoShader framework) Receives
additional log output to debug. shaders.

GVR (Giga Voxel Renderer) - OpenGL Compatibility

GVR_NO_3D_TEXTURES Bool Toggles the use of 3D textures in the GVR
rendering.

GVR_NO_GLSL Bool Toggles the use of OpenGL shader
language.

GVR_NO_NONPOW2 Bool Toggles the use of textures that do not have
a size that is a power of two.

GVR_NO_GEOMETRYSHADER Bool Toggles the use of geometry shaders.

GVR_USE_FLOAT_LUT Bool Uses look-up-tables with float values
(instead of integer).

GVR_NO_BINDLESS Bool Toggles the use of bindless textures.

GVR_PRINT_SHADER_WARNINGS Bool Prints additional diagnostic messages
when OpenGL shaders are compiled.

Special Settings

MLAB_GPU_AFFINITY Integer (Nvidia graphics only) Forces MeVisLab to
run on a specific graphics card if several are
installed on a system.

MLAB_CUDA_DEVICE Integer (Used by the PathTracer framework)
Selects the CUDA device to perform
calculations on.

MLAB_NUMBER_CONCURRENT_PANEL_RENDERINGInteger (Used by RemotePanelRendering module)
Serializes GPU access of parallel running
processes.


	MeVisLab Reference Manual
	Table of Contents
	Chapter 1. Introduction
	1.1. About the MeVisLab Reference Manual
	1.2. Associated Documents

	Chapter 2. MeVisLab User Interface
	2.1. Overview
	2.2. Views

	Chapter 3. Modules and Networks
	3.1. Types of Modules
	3.2. Module Network Panels
	3.3. Connector and Connection Types
	3.4. Connecting, Disconnecting, Moving, Copying, and Replacing Connections
	3.4.1. Connecting Modules
	3.4.1.1. Connecting by Dragging
	3.4.1.1.1. Connecting to Open Inventor Groups by Dragging
	3.4.1.1.2. Connecting from Open Inventor Groups by Dragging

	3.4.1.2. Connecting by Proximity
	3.4.1.2.1. Connecting to Open Inventor Groups by Proximity

	3.4.1.3. Connecting by Inserting into an Existing Connection
	3.4.1.4. Inserting a Module with More than One Input Connector
	3.4.1.5. Variation of Inserting a Module with More than One Input Connector

	3.4.2. Disconnecting Modules
	3.4.2.1. Disconnecting by Dragging to the Background
	3.4.2.2. Disconnecting by Selection
	3.4.2.3. Disconnecting by Context Menu

	3.4.3. Moving Connections
	3.4.3.1. Moving Connections Within Open Inventor Groups

	3.4.4. Copying Connections
	3.4.5. Replacing Connections

	3.5. Mouse Pointers
	3.6. Mouseover Information
	3.7. Module Halo
	3.8. Module Highlighting
	3.9. Module Handling
	3.9.1. Module Context Menu
	3.9.1.1. Show Window
	3.9.1.2. Instance Name
	3.9.1.3. Help
	3.9.1.4. Extras
	3.9.1.5. Reload Definition
	3.9.1.6. Related Files
	3.9.1.7. Show Enclosing Folder
	3.9.1.8. Groups

	3.9.2. Additional Inputs
	3.9.3. Show Internal Network (Macro Modules)

	3.10. Network Handling
	3.10.1. Network Context Menu
	3.10.2. Connections Context Menus
	3.10.2.1. Context Menu of Parameter Connections
	3.10.2.2. Context Menu of Data Connections


	3.11. Using Groups
	3.11.1. Creating Groups and Adding/Removing Modules
	3.11.2. Editing, Converting, and Deleting Groups
	3.11.3. Copying Groups Including Modules

	3.12. Using Notes
	3.12.1. Creating Notes
	3.12.2. Handling Notes
	3.12.3. Editing and Deleting Notes
	3.12.4. Copying Notes Including Text

	3.13. Using the Mini Map
	3.14. Network Quick Search
	3.15. Network Selector
	3.16. Network Preview
	3.17. Network Mouse Gestures
	3.17.1. Gesture for Closing the Current Network
	3.17.2. Gesture for Closing the Current Network Without Prompt


	Chapter 4. Menu Bar
	4.1. File Menu
	4.1.1. New
	4.1.2. Open
	4.1.3. Close
	4.1.4. Close all
	4.1.5. Save
	4.1.6. Save As
	4.1.7. Save Copy As
	4.1.8. Revert To Saved
	4.1.9. Recent Files
	4.1.10. Open Most Recent File
	4.1.11. Run Project Wizard
	4.1.12. Create Local Macro
	4.1.13. Add Local Macro
	4.1.14. Open File in MATE
	4.1.15. Show MATE
	4.1.16. Run ToolRunner
	4.1.17. Run TestCaseManager
	4.1.18. Recent Test Cases
	4.1.19. Run Most Recent Test Case
	4.1.20. Restart with Current Networks
	4.1.21. Quit

	4.2. Edit Menu
	4.2.1. Undo
	4.2.2. Redo
	4.2.3. Clear Undo History
	4.2.4. Cut
	4.2.5. Copy
	4.2.6. Paste
	4.2.7. Duplicate
	4.2.8. Delete
	4.2.9. Select All
	4.2.10. Deselect All
	4.2.11. Invert Selection
	4.2.12. Align / Distribute
	4.2.13. Auto Arrange Selection
	4.2.14. Reload Selected Modules

	4.3. Preferences
	4.3.1. Preferences — General
	4.3.2. Preferences — Packages
	4.3.3. Preferences — Module Groups
	4.3.4. Preferences — Supportive Programs
	4.3.5. Preferences — Paths
	4.3.6. Preferences — Scripting
	4.3.7. Preferences — Network Appearance
	4.3.7.1. How to define your own badge scripts

	4.3.8. Preferences — Network Interaction
	4.3.9. Preferences — Error / Debug Handling
	4.3.10. Preferences — Shortcuts

	4.4. Modules Menu
	4.5. Applications Menu
	4.6. Extras Menu
	4.6.1. Reload Updated Shared Libraries
	4.6.2. Reload Module Database (Keep Cache)
	4.6.3. Reload Module Database (Clear Cache)
	4.6.4. Reload Imported Python Modules
	4.6.5. Show Global MDL Definitions...
	4.6.6. Run Module Tests...
	4.6.7. Run Tests On Selection...
	4.6.8. Generate Module Reference for User Packages (HTML)
	4.6.9. Show Widget Explorer
	4.6.10. Debug Widgets
	4.6.11. Show Connector Details
	4.6.12. Show Image Connector Preview
	4.6.13. Clear Image Cache

	4.7. Scripting Menu
	4.7.1. Show Scripting Console
	4.7.2. Scripting Context Menu
	4.7.3. Edit Network Script
	4.7.4. Start Network Script

	4.8. User Scripts
	4.8.1. Example Scripts
	4.8.2. Run User Script...
	4.8.3. Run Last User Script: <NameOfUserScript>
	4.8.4. Run Recent User Script
	4.8.5. Example Scripts

	4.9. View Menu
	4.9.1. View All
	4.9.2. Zoom To Selection
	4.9.3. Zoom In
	4.9.4. Zoom Out
	4.9.5. Zoom 100%
	4.9.6. Layout
	4.9.7. Toolbars
	4.9.8. Views

	4.10. Networks Menu
	4.10.1. Close
	4.10.2. Close All

	4.11. Panels Menu
	4.11.1. Panels Stay In Front Of Main Window
	4.11.2. Hide Panels Of Invisible Networks
	4.11.3. Close All Panels
	4.11.4. Close Panels Of Current Network
	4.11.5. Minimize All Open Panels
	4.11.6. Show All Minimized Panels
	4.11.7. Working with the Panel List

	4.12. Help Menu
	4.12.1. (Search in documentation and menu entries)
	4.12.2. Full-text Search in Documentation...
	4.12.3. Show Context Help...
	4.12.4. Show Help Overview
	4.12.5. Browse Help Pages
	4.12.6. Welcome
	4.12.7. About
	4.12.8. Enter License


	Chapter 5. Toolbar
	5.1. File Operations
	5.2. Edit
	5.3. Zooming
	5.4. Script Debugging
	5.5. Quick Search
	5.6. Align / Distribute

	Chapter 6. Bottom Bar
	6.1. Loop! indicator
	6.2. ML Cache
	6.3. Stop Button
	6.4. Toggle Layout

	Chapter 7. Background Tasks
	Chapter 8. Debug Output
	Chapter 9. ML Parallel Processing Profiler View
	Chapter 10. Module Browser
	Chapter 11. Module Inspector
	11.1. Fields
	11.1.1. Editing Field Values
	11.1.2. Module Inspector Fields Context Menu

	11.2. Files
	11.2.1. Module Inspector Files Context Menu

	11.3. Tree
	11.3.1. Tree Context Menu

	11.4. About
	11.5. Related
	11.5.1. Related Context Menu

	11.6. Scripting

	Chapter 12. Module List
	Chapter 13. Module Search
	13.1. Module Search
	13.2. Advanced Search
	13.3. Module Search Result Context Menu
	13.3.1. General Options
	13.3.2. Additional Options for Macro Modules

	13.4. Search in Network

	Chapter 14. Network Field WatchList
	Chapter 15. Output Inspector
	Chapter 16. Parameter Connections Inspector
	16.1. Parameter Connections Inspector View
	16.2. Parameter Connections Inspector Context Menu

	Chapter 17. Profiling
	17.1. Introduction to Profiling
	17.2. Using Profiling
	17.2.1. Modules
	17.2.2. Fields
	17.2.3. Functions


	Chapter 18. Recent Outputs
	Chapter 19. Screenshot Gallery
	19.1. Screenshot Gallery
	19.2. Screenshot Gallery Context Menu
	19.3. Movies in the Screenshot Gallery

	Chapter 20. Scripting Console
	Chapter 21. Scripting Assistant
	Chapter 22. Search in Network
	Chapter 23. Search in Documentation
	Chapter 24. Full-text Search in Documentation
	Chapter 25. Snippets List
	Chapter 26. Project Wizard
	26.1. Project Wizard Introduction
	26.2. Modules (C++) Wizard
	26.2.1. First C++ Module Wizard Dialog
	26.2.2. Inventor Module
	26.2.3. ML Module
	26.2.3.1. ML Module (New Style)
	26.2.3.2. ML Module (Classic Style)
	26.2.3.3. Additional ML Module Properties
	26.2.3.4. ML Module — Created Files


	26.3. Modules (Scripting) Wizard
	26.4. Module Field Interface
	26.5. Packages
	26.6. Example .Wiz File (Inventor Module), indented for a better readability

	Chapter 27. MATE
	27.1. What is MATE?
	27.2. Text Editor User Interface
	27.3. Menu Bar
	27.4. Module Menu
	27.5. Outline Area
	27.6. Edit Area
	27.7. Preferences
	27.8. Python Debugger
	27.9. Module Help Editor
	27.9.1. Context Menus
	27.9.2. Formatting
	27.9.3. How it Works
	27.9.4. Internal HTML Preview

	27.10. Session Management
	27.11. Project Workspaces
	27.11.1. Project Types
	27.11.1.1. Regular Projects
	27.11.1.2. Module Projects

	27.11.2. Context Menu
	27.11.3. Views
	27.11.4. File Locator

	27.12. GUI Editor
	27.13. Scripting
	27.14. Pylint Integration
	27.14.1. Installation
	27.14.2. Usage

	27.15. Black Integration
	27.16. Rope Integration
	27.16.1. Rename
	27.16.2. Extract Function


	Chapter 28. Tips and Tricks
	28.1. Command-Line Options
	28.2. MeVisLabPackageScanner.exe
	28.3. Connecting Inventor Engines to ML Modules
	28.4. Using SyncFloat to Reduce System Load
	28.4.1. Case 1: Two Inventor and One ML Module Connected in a Circle
	28.4.2. Case 2: A Macro Module (Including an Inventor Module) and Another Inventor Module Connected in a Circle

	28.5. Printing MeVisLab Networks
	28.6. Multi-threading in MeVisLab
	28.6.1. Multi-threading in the ML
	28.6.2. Background Tasks
	28.6.3. Modules for Multi-threading

	28.7. Set Open Inventor Override Flag (Inventor Modules)

	Chapter 29. Settings File and Environment Variables
	29.1. Possible Locations of mevislab.prefs
	29.2. Options in mevislab.prefs
	29.3. Environment variables


