ML Reference
mlMatrix3.h
Go to the documentation of this file.
1/*************************************************************************************
2**
3** Copyright 2007, MeVis Medical Solutions AG
4**
5** The user may use this file in accordance with the license agreement provided with
6** the Software or, alternatively, in accordance with the terms contained in a
7** written agreement between the user and MeVis Medical Solutions AG.
8**
9** For further information use the contact form at https://www.mevislab.de/contact
10**
11**************************************************************************************/
12
13#ifndef ML_MATRIX3_H
14#define ML_MATRIX3_H
15
17
18// Include system independent file and project settings.
20#include "mlLinearAlgebraDefs.h"
22
24
25#include "mlMatrix2.h"
26#include "mlVector3.h"
27
28#include <cstdlib>
29// All declarations of this header will be in the ML_LA_NAMESPACE namespace.
30ML_LA_START_NAMESPACE
31
32//--------------------------------------------------------------------
34//--------------------------------------------------------------------
35template <class DT>
36class Tmat3 : public FloatingPointMatrix<Tvec3<DT>, 3>
37{
38
39public:
40
42 typedef DT ComponentType;
43
44 // Builds a 3x3 matrix from 9 zero elements.
46
47 // Builds a matrix that has the argument at the diagonal values, zero otherwise
48 Tmat3(const DT diagValue);
49
50 // Builds a matrix of the three row vectors row0, row1, row2.
51 Tmat3(const Tvec3<DT> &row0, const Tvec3<DT> &row1, const Tvec3<DT> &row2);
52
53 // Copy constructor from the Tmat3 mat.
54 Tmat3(const Tmat3<DT> &mat);
55
56 // Constructor from 9 floating point values in an array given by mat, row by row.
57 Tmat3(const float mat[9]);
58
59 // Constructor from 9 double values in an array given by mat, row by row.
60 Tmat3(const double mat[9]);
61
62 // Initializes all matrix elements explicitly with scalars,
63 // filling it row by row.
64 Tmat3(const double in00, const double in01, const double in02,
65 const double in10, const double in11, const double in12,
66 const double in20, const double in21, const double in22);
67
68 // Copies the contents from float array mat into *this, row by row.
69 void setValues(const float mat[9]);
70
71 // Copies the contents of *this into float array mat, row by row.
72 // Note that range and precision of the float values may not be
73 // sufficient for the double matrix contents.
74 void getValues(float mat[9]) const;
75
76 // Copies the contents from double array mat into *this, row by row.
77 void setValues(const double mat[9]);
78
79 // Copies the contents of *this into double array mat, row by row.
80 void getValues(double mat[9]) const;
81
82 // Sets the diagonal matrix with scale on diagonal.
83 void setScaleMatrix(const DT scale);
84
85 // Returns a matrix filled with values val.
86 static Tmat3<DT> getMat(const double val);
87
88 // Sets all values to val.
89 void set(DT val);
90
93 bool operator<(const Tmat3<DT> &) const { return false; }
94
95 // Assigns from a Tmat3
96 const Tmat3<DT> &operator=(const Tmat3<DT> &m);
97
98 // Increments by a Tmat3.
99 const Tmat3<DT> &operator+=(const Tmat3<DT> &m);
100
101 // Decrements by a Tmat3
103
104 // Multiplies by a scalar constant
105 const Tmat3<DT> &operator*=(const DT d);
106
107 // Divides by a scalar constant.
108 // Division by zero is not handled and must be avoided by caller.
109 const Tmat3<DT> &operator/=(const DT d);
110
111 //-------------------------------------------------
112 // Special functions
113 //-------------------------------------------------
114 // Returns the determinant of this matrix.
115 DT det() const;
116
117 // Returns the transpose of this matrix.
119
120 // Returns the identity matrix.
122
123 // Returns the inverse. Gauss-Jordan elimination with partial pivoting.
124 // If a non-NULL Boolean pointer is passed to isInvertible
125 // then true is returned in *isInvertible in the case of a
126 // successful inversion or false if the inversion is not possible
127 // (function return is the identity then).
128 // If a NULL pointer is passed as isInvertible the matrix must
129 // be invertible, otherwise errors will occur.
130 Tmat3 inverse(bool* isInvertible=nullptr) const;
131
132 // Applies the function fct to each component.
134
135 // Calculates the Jacobi-Decomposition of 3x3 matrix.
136 Tmat3 jacobi(Tvec3<DT> &eVal, int &rots) const;
137
138}; // end of class *Tmat3*
139
140
141
142//---------------------------------------------------------------------
145//---------------------------------------------------------------------
147template <class DT>
149{
150 this->v[0] = this->v[1] = this->v[2] = Tvec3<DT>(0);
151}
152
153// Constructs a matrix that has the argument at the diagonal values, zero otherwise
154template <class DT>
155inline Tmat3<DT>::Tmat3(const DT diagValue)
156{
157 this->v[0][0] = this->v[1][1] = this->v[2][2] = diagValue;
158 this->v[1][0] = this->v[2][0] = this->v[2][1] = 0;
159 this->v[0][1] = this->v[0][2] = this->v[1][2] = 0;
160}
161
163template <class DT>
164inline Tmat3<DT>::Tmat3(const Tvec3<DT> &row0, const Tvec3<DT> &row1, const Tvec3<DT> &row2)
165{
166 this->v[0] = row0;
167 this->v[1] = row1;
168 this->v[2] = row2;
169}
170
172template <class DT>
173inline Tmat3<DT>::Tmat3(const Tmat3<DT> &mat)
174{
175 this->v[0] = mat.v[0];
176 this->v[1] = mat.v[1];
177 this->v[2] = mat.v[2];
178}
179
181template <class DT>
182inline Tmat3<DT>::Tmat3(const float mat[9])
183{
184 setValues(mat);
185}
186
188template <class DT>
189inline Tmat3<DT>::Tmat3(const double mat[9])
190{
191 setValues(mat);
192}
193
195template <class DT>
196inline Tmat3<DT> Tmat3<DT>::getMat(const double val)
197{
198 return Tmat3<DT>(val, val, val,
199 val, val, val,
200 val, val, val);
201}
202
204template <class DT>
205inline void Tmat3<DT>::set(DT val)
206{
207 this->v[0] = this->v[1] = this->v[2] = Tvec3<DT>(val);
208}
209
211template <class DT>
213{
214 if (&m != this){
215 this->v[0] = m.v[0];
216 this->v[1] = m.v[1];
217 this->v[2] = m.v[2];
218 }
219
220 return *this;
221}
222
224template <class DT>
226{
227 this->v[0] += m.v[0];
228 this->v[1] += m.v[1];
229 this->v[2] += m.v[2];
230
231 return *this;
232}
233
235template <class DT>
237{
238 this->v[0] -= m.v[0];
239 this->v[1] -= m.v[1];
240 this->v[2] -= m.v[2];
241
242 return *this;
243}
244
246template <class DT>
247inline const Tmat3<DT> &Tmat3<DT>::operator*=(const DT d)
248{
249 this->v[0] *= d;
250 this->v[1] *= d;
251 this->v[2] *= d;
252
253 return *this;
254}
255
257template <class DT>
258inline const Tmat3<DT> &Tmat3<DT>::operator/=(const DT d)
259{
260 this->v[0] /= d;
261 this->v[1] /= d;
262 this->v[2] /= d;
263 return *this;
264}
266
267
268//====================================================================
271//====================================================================
273template <class DT>
275{
276 return Tmat3<DT>(a) *= static_cast<DT>(-1.0);
277}
278
280template <class DT>
281inline Tmat3<DT> operator+(const Tmat3<DT> &a, const Tmat3<DT> &b)
282{
283 return Tmat3<DT>(a) += b;
284}
285
287template <class DT>
288inline Tmat3<DT> operator-(const Tmat3<DT> &a, const Tmat3<DT> &b)
289{
290 return Tmat3<DT>(a) -= b;
291}
292
294template <class DT>
295inline Tmat3<DT> operator*(const Tmat3<DT> &a, const DT d)
296{
297 return Tmat3<DT>(a) *= d;
298}
299
301template <class DT>
302inline Tmat3<DT> operator*(const DT d, const Tmat3<DT> &a)
303{
304 return Tmat3<DT>(a) *= d;
305}
306
309template <class DT>
310inline Tmat3<DT> operator/(const Tmat3<DT> &a, const DT d)
311{
312 Tmat3<DT> retVal(a);
313 retVal /= d;
314 return retVal;
315}
317
318
319//-------------------------------------------------------------------
320//
323//
324//-------------------------------------------------------------------
325
326//-------------------------------------------------------------------
329//-------------------------------------------------------------------
330template <class DT>
331inline Tmat3<DT>::Tmat3(const double in00, const double in01, const double in02,
332 const double in10, const double in11, const double in12,
333 const double in20, const double in21, const double in22)
334{
335 this->v[0][0]=static_cast<DT>(in00); this->v[0][1]=static_cast<DT>(in01); this->v[0][2]=static_cast<DT>(in02);
336 this->v[1][0]=static_cast<DT>(in10); this->v[1][1]=static_cast<DT>(in11); this->v[1][2]=static_cast<DT>(in12);
337 this->v[2][0]=static_cast<DT>(in20); this->v[2][1]=static_cast<DT>(in21); this->v[2][2]=static_cast<DT>(in22);
338}
339
340
341//--------------------------------------------------------------------
343//--------------------------------------------------------------------
344template <class DT>
345inline void Tmat3<DT>::setValues(const float mat[9])
346{
347 this->v[0][0] = static_cast<DT>(mat[0]); this->v[0][1] = static_cast<DT>(mat[1]); this->v[0][2] = static_cast<DT>(mat[2]);
348 this->v[1][0] = static_cast<DT>(mat[3]); this->v[1][1] = static_cast<DT>(mat[4]); this->v[1][2] = static_cast<DT>(mat[5]);
349 this->v[2][0] = static_cast<DT>(mat[6]); this->v[2][1] = static_cast<DT>(mat[7]); this->v[2][2] = static_cast<DT>(mat[8]);
350}
351
352//--------------------------------------------------------------------
356//--------------------------------------------------------------------
357template <class DT>
358inline void Tmat3<DT>::getValues(float mat[9]) const
359{
360 mat[0] = static_cast<float>(this->v[0][0]); mat[1] = static_cast<float>(this->v[0][1]); mat[2] = static_cast<float>(this->v[0][2]);
361 mat[3] = static_cast<float>(this->v[1][0]); mat[4] = static_cast<float>(this->v[1][1]); mat[5] = static_cast<float>(this->v[1][2]);
362 mat[6] = static_cast<float>(this->v[2][0]); mat[7] = static_cast<float>(this->v[2][1]); mat[8] = static_cast<float>(this->v[2][2]);
363}
364
365//--------------------------------------------------------------------
367//--------------------------------------------------------------------
368template <class DT>
369inline void Tmat3<DT>::setValues(const double mat[9])
370{
371 this->v[0][0] = static_cast<DT>(mat[0]); this->v[0][1] = static_cast<DT>(mat[1]); this->v[0][2] = static_cast<DT>(mat[2]);
372 this->v[1][0] = static_cast<DT>(mat[3]); this->v[1][1] = static_cast<DT>(mat[4]); this->v[1][2] = static_cast<DT>(mat[5]);
373 this->v[2][0] = static_cast<DT>(mat[6]); this->v[2][1] = static_cast<DT>(mat[7]); this->v[2][2] = static_cast<DT>(mat[8]);
374}
375
376//--------------------------------------------------------------------
380//--------------------------------------------------------------------
381template <class DT>
382inline void Tmat3<DT>::getValues(double mat[9]) const
383{
384 mat[0] = static_cast<double>(this->v[0][0]); mat[1] = static_cast<double>(this->v[0][1]); mat[2] = static_cast<double>(this->v[0][2]);
385 mat[3] = static_cast<double>(this->v[1][0]); mat[4] = static_cast<double>(this->v[1][1]); mat[5] = static_cast<double>(this->v[1][2]);
386 mat[6] = static_cast<double>(this->v[2][0]); mat[7] = static_cast<double>(this->v[2][1]); mat[8] = static_cast<double>(this->v[2][2]);
387}
388
389
390//-------------------------------------------------------------------
392//-------------------------------------------------------------------
393template <class DT>
394inline void Tmat3<DT>::setScaleMatrix(const DT scale)
395{
396 this->v[0][0]=scale; this->v[0][1]=0; this->v[0][2]=0;
397 this->v[1][0]=0; this->v[1][1]=scale; this->v[1][2]=0;
398 this->v[2][0]=0; this->v[2][1]=0; this->v[2][2]=scale;
399}
401
402
403//-------------------------------------------------------------------
406//-------------------------------------------------------------------
407
409#define DET3(A,B,C,D,E,F,G,H,I) ((A*E*I + B*F*G + C*D*H) - (A*F*H + B*D*I + C*E*G))
410//-------------------------------------------------------------------
412//-------------------------------------------------------------------
413template <class DT>
415{
416 return DET3(this->v[0][0], this->v[0][1], this->v[0][2],
417 this->v[1][0], this->v[1][1], this->v[1][2],
418 this->v[2][0], this->v[2][1], this->v[2][2]);
419}
420#undef DET3
421
422//-------------------------------------------------------------------
424//-------------------------------------------------------------------
425template <class DT>
427{
428 return Tmat3<DT>(Tvec3<DT>(this->v[0][0], this->v[1][0], this->v[2][0]),
429 Tvec3<DT>(this->v[0][1], this->v[1][1], this->v[2][1]),
430 Tvec3<DT>(this->v[0][2], this->v[1][2], this->v[2][2]));
431}
432
433//-------------------------------------------------------------------
435//-------------------------------------------------------------------
436template <class DT>
438{
439 return Tmat3<DT>(Tvec3<DT>(1,0,0),
440 Tvec3<DT>(0,1,0),
441 Tvec3<DT>(0,0,1));
442}
443
444//-------------------------------------------------------------------
446//-------------------------------------------------------------------
447template <class DT>
449{
450 this->v[0].apply(fct);
451 this->v[1].apply(fct);
452 this->v[2].apply(fct);
453 return *this;
454}
455
457#define _ML_MAT3_RC(i, j) a[i][0]*b[0][j] + a[i][1]*b[1][j] + a[i][2]*b[2][j]
458//-------------------------------------------------------------------
460//-------------------------------------------------------------------
461template <class DT>
462inline Tmat3<DT> operator*(const Tmat3<DT> &a, const Tmat3<DT> &b)
463{
464 return Tmat3<DT>(Tvec3<DT>(_ML_MAT3_RC(0,0), _ML_MAT3_RC(0,1), _ML_MAT3_RC(0,2)),
466 Tvec3<DT>(_ML_MAT3_RC(2,0), _ML_MAT3_RC(2,1), _ML_MAT3_RC(2,2)));
467
468}
469#undef _ML_MAT3_RC
470
471//-------------------------------------------------------------------
473//-------------------------------------------------------------------
474template <class DT>
475inline bool operator==(const Tmat3<DT> &a, const Tmat3<DT> &b)
476{
477 return (a[0] == b[0]) &&
478 (a[1] == b[1]) &&
479 (a[2] == b[2]);
480}
481
482//-------------------------------------------------------------------
484//-------------------------------------------------------------------
485template <class DT>
486inline bool operator!=(const Tmat3<DT> &a, const Tmat3<DT> &b)
487{
488 return !(a == b);
489}
490
491//-------------------------------------------------------------------
492//
493// Special global 2D functions and 3D functions
494//
495//-------------------------------------------------------------------
496
497//--------------------------------------------------------------------
500//--------------------------------------------------------------------
501template <class DT>
506
507//-------------------------------------------------------------------
510//-------------------------------------------------------------------
511template <class DT>
513{
514 return Tmat3<DT>(Tvec3<DT>(1.0, 0.0, v[0]),
515 Tvec3<DT>(0.0, 1.0, v[1]),
516 Tvec3<DT>(0.0, 0.0, 1.0));
517}
518
519//-------------------------------------------------------------------
522//-------------------------------------------------------------------
523template <class DT>
524Tmat3<DT> rotation2D(const Tvec2<DT> &Center, const DT angleDeg)
525{
526 DT angleRad = angleDeg * M_PI / 180.0;
527 DT c = cos(angleRad);
528 DT s = sin(angleRad);
529
530 return Tmat3<DT>(Tvec3<DT>(c, -s, Center[0] * (1.0-c) + Center[1] * s),
531 Tvec3<DT>(s, c, Center[1] * (1.0-c) - Center[0] * s),
532 Tvec3<DT>(0.0, 0.0, 1.0));
533}
534
535//-------------------------------------------------------------------
537//-------------------------------------------------------------------
538template <class DT>
539inline Tmat3<DT> scaling2D(const Tvec2<DT> &scaleVector)
540{
541 return Tmat3<DT>(Tvec3<DT>(scaleVector[0], 0.0, 0.0),
542 Tvec3<DT>(0.0, scaleVector[1], 0.0),
543 Tvec3<DT>(0.0, 0.0, 1.0));
544}
545
546
547
548//-------------------------------------------------------------------
560//-------------------------------------------------------------------
561template <class DT>
562Tmat3<DT> Tmat3<DT>::jacobi(Tvec3<DT> &evalues, int &rots) const
563{
564 Tmat3<DT> evectors (getIdentity());
565
566 // TODO: Further documentation of the algorithm required!
567
568 DT sm = 0; // smallest entry
569 DT theta = 0; // angle for Jacobi rotation
570 DT c = 0, s = 0, t = 0; // cosine, sine, tangent of theta
571 DT tau = 0; // sine / (1 + cos)
572 DT h = 0, g = 0; // two scrap values
573 DT thresh = 0; // threshold below which no rotation done
574
575 int p = 0, q = 0, i = 0, j = 0;
576
577 // Initialization
578 Tvec3<DT> b (this->v[0][0], this->v[1][1], this->v[2][2]); // diagonal elements
579 Tvec3<DT> z (0, 0, 0);
580 evalues = b;
581
582 Tmat3<DT> a (*this);
583
584 rots = 0;
585 for (i = 0; i < 50; i++){ // typical matrices require 6 to 10 sweeps to achieve convergence - hence 50 gives some safety margin
586 sm = 0.0;
587 for (p = 0; p < 2; p++){
588 for (q = p+1; q < 3; q++){
589 sm += std::abs(a.v[p][q]); // sum off-diagonal elements
590 }
591 }
592
593 if (sm == 0.0){
594 return *(&evectors); // circumvent a code generation bug in Visual Studio 2019 (version 16.5.4)
595 }
596
597 thresh = (i < 3 ? (.2 * sm / 9) : 0.0);
598
599 for (p = 0; p < 2; p++) {
600 for (q = p+1; q < 3; q++) { // compute on sweep, i.e. one rotation for each of-diagonal element of the matrix
601
602 g = 100.0 * std::abs(a.v[p][q]);
603
604 if ((i > 3) &&
605 (std::abs(evalues[p]) + g == std::abs(evalues[p])) &&
606 (std::abs(evalues[q]) + g == std::abs(evalues[q]))){
607 a.v[p][q] = 0.0; // after three sweeps, skip rotation of small off diagonal elements
608 }
609 else if (std::abs(a.v[p][q]) > thresh) {
610 h = evalues[q] - evalues[p];
611 if (std::abs(h) + g == std::abs(h)){
612 t = a.v[p][q] / h;
613 }
614 else {
615 theta = .5 * h / a.v[p][q];
616 t = 1.0 / (std::abs(theta) + sqrt(1 + theta * theta));
617 if (theta < 0.0){
618 t = -t;
619 }
620 }
621 // End of computing tangent of rotation angle
622
623 c = 1.0 / sqrt(1.0 + t*t);
624 s = t * c;
625 tau = s / (1.0 + c);
626 h = t * a.v[p][q];
627 z[p] -= h;
628 z[q] += h;
629 evalues[p] -= h;
630 evalues[q] += h;
631 a.v[p][q] = 0.0;
632
633 for (j = 0; j < p; j++) {
634 g = a.v[j][p];
635 h = a.v[j][q];
636 a.v[j][p] = g - s * (h + g * tau);
637 a.v[j][q] = h + s * (g - h * tau);
638 }
639
640 for (j = p+1; j < q; j++) {
641 g = a.v[p][j];
642 h = a.v[j][q];
643 a.v[p][j] = g - s * (h + g * tau);
644 a.v[j][q] = h + s * (g - h * tau);
645 }
646
647 for (j = q+1; j < 3; j++) {
648 g = a.v[p][j];
649 h = a.v[q][j];
650 a.v[p][j] = g - s * (h + g * tau);
651 a.v[q][j] = h + s * (g - h * tau);
652 }
653
654 for (j = 0; j < 3; j++) {
655 g = evectors.v[j][p];
656 h = evectors.v[j][q];
657 evectors.v[j][p] = g - s * (h + g * tau);
658 evectors.v[j][q] = h + s * (g - h * tau);
659 }
660 } // else if (std::abs(a.v[p][q]) > thresh)
661
662 rots++;
663
664 } // for (q = p+1; q < 3; q++)
665 } // for (p = 0; p < 2; p++)
666
667 for (p = 0; p < 3; p++) {
668 evalues[p] = b[p] += z[p];
669 z[p] = 0;
670 }
671 } // for (i = 0; i < 50; i++)
672 return evectors;
673}
674
675//-------------------------------------------------------------------
683//-------------------------------------------------------------------
684template <class DT>
685Tmat3<DT> Tmat3<DT>::inverse(bool* isInvertible) const
686{
687 // Epsilon for comparison with 0 in inversion process.
688 static const DT Epsilon = static_cast<DT>(0.);
689
690 // Use helper function from tools to invert the matrix.
691 return MLInverseMatHelper(*this,
692 isInvertible,
693 Epsilon,
694 "Tmat3<DT> Tmat3<DT>::inverse(bool* isInvertible) const, matrix not invertable",
695 getIdentity(),
696 3);
697}
698
699//-----------------------------------------------------------------------------------
702//-----------------------------------------------------------------------------------
703
713
714ML_LA_END_NAMESPACE
715
716namespace std
717{
718 //-------------------------------------------------------------------
720 //-------------------------------------------------------------------
721 template <class DT>
722 inline std::ostream &operator<<(std::ostream &os, const ML_LA_NAMESPACE::Tmat3<DT> &m)
723 {
724 return os << m[0] << '\n' << m[1] << '\n' << m[2];
725 }
726
727 //-------------------------------------------------------------------
729 //-------------------------------------------------------------------
730 template <class DT>
731 inline std::istream &operator>>(std::istream &is, ML_LA_NAMESPACE::Tmat3<DT> &m)
732 {
733 ML_LA_NAMESPACE::Tmat3<DT> m_tmp;
734
735 is >> m_tmp[0] >> m_tmp[1] >> m_tmp[2];
736 if (is){ m = m_tmp; }
737 return is;
738 }
739}
740
741
742#endif // __mlMatrix3_H
743
744
Base class of all matrix classes which holds the data buffer and provides some general access methods...
VectorT v[size]
The rows constituting the matrix.
A three by three matrix class of three row vectors.
Definition mlMatrix3.h:37
bool operator<(const Tmat3< DT > &) const
Dummy "lesser than operator" which always returns false.
Definition mlMatrix3.h:93
void setValues(const float mat[9])
Copies the contents of mat into *this, row by row.
Definition mlMatrix3.h:345
static Tmat3 getIdentity()
Returns the identity matrix.
Definition mlMatrix3.h:437
static Tmat3< DT > getMat(const double val)
Returns a matrix filled with values val.
Definition mlMatrix3.h:196
void setScaleMatrix(const DT scale)
Sets a diagonal matrix with scale on diagonal.
Definition mlMatrix3.h:394
Tmat3(const double in00, const double in01, const double in02, const double in10, const double in11, const double in12, const double in20, const double in21, const double in22)
Initializes all matrix elements explicitly with scalars, filling it row by row.
Definition mlMatrix3.h:331
const Tmat3< DT > & operator+=(const Tmat3< DT > &m)
Increments by a Tmat3.
Definition mlMatrix3.h:225
Tmat3(const double mat[9])
Constructor from 9 double values in an array given by mat, row by row.
Definition mlMatrix3.h:189
const Tmat3< DT > & operator-=(const Tmat3< DT > &m)
Decrements by a Tmat3.
Definition mlMatrix3.h:236
void getValues(float mat[9]) const
Copies the contents of *this into mat, row by row.
Definition mlMatrix3.h:358
const Tmat3< DT > & operator*=(const DT d)
Multiplies by a constant.
Definition mlMatrix3.h:247
void getValues(double mat[9]) const
Copies the contents of *this into mat, row by row.
Definition mlMatrix3.h:382
Tmat3 transpose() const
Returns the transpose of this matrix.
Definition mlMatrix3.h:426
Tmat3(const Tmat3< DT > &mat)
Copy constructor from the Tmat3 mat.
Definition mlMatrix3.h:173
Tmat3(const Tvec3< DT > &row0, const Tvec3< DT > &row1, const Tvec3< DT > &row2)
Builds a matrix of the three row vectors row0, row1, row2.
Definition mlMatrix3.h:164
Tmat3(const DT diagValue)
Definition mlMatrix3.h:155
DT ComponentType
A typedef to "export" the type of components.
Definition mlMatrix3.h:42
const Tmat3< DT > & apply(MLDblFuncPtr fct)
Applies the function fct to each component.
Definition mlMatrix3.h:448
Tmat3(const float mat[9])
Constructor from 9 floating point values in an array given by mat, row by row.
Definition mlMatrix3.h:182
void setValues(const double mat[9])
Copies the contents of mat into *this, row by row.
Definition mlMatrix3.h:369
Tmat3 jacobi(Tvec3< DT > &eVal, int &rots) const
Calculates the Jacobi-Decomposition of 3x3 matrix.
Definition mlMatrix3.h:562
Tmat3()
Builds a 3x3 matrix from 9 0 elements.
Definition mlMatrix3.h:148
Tmat3 inverse(bool *isInvertible=nullptr) const
Returns the inverse.
Definition mlMatrix3.h:685
const Tmat3< DT > & operator=(const Tmat3< DT > &m)
Assigns by a Tmat3.
Definition mlMatrix3.h:212
const Tmat3< DT > & operator/=(const DT d)
Divides by a constant. Division by zero is not handled and must be avoided by caller.
Definition mlMatrix3.h:258
void set(DT val)
Sets all values to val.
Definition mlMatrix3.h:205
DT det() const
Determinant.
Definition mlMatrix3.h:414
Declaration of float vector type traits:
Definition mlVector2.h:57
Forward declarations to resolve header file dependencies.
Definition mlVector3.h:66
#define DET3(A, B, C, D, E, F, G, H, I)
Internal helper macro to calculate the determinant of 3x3 matrix with given entries,...
Definition mlMatrix3.h:409
#define _ML_MAT3_RC(i, j)
Internal helper macro to multiply two matrices, do not use.
Definition mlMatrix3.h:457
double(* MLDblFuncPtr)(double)
A function pointer type to a function which returns a double and takes a double as argument.
FloatingPointVector< T, size, DataContainer > operator/(FloatingPointVector< T, size, DataContainer > lhs, MLdouble rhs)
Component wise division of lhs by specialized rhs of type MLdouble.
bool operator==(const Tmat2< DT > &a, const Tmat2< DT > &b)
a == b ? Return true if yes.
Definition mlMatrix2.h:425
Tmat3< DT > translation2D(const Tvec2< DT > &v)
Returns a 2D translation matrix as 3D homogeneous matrix where the translation is located in the righ...
Definition mlMatrix3.h:512
Tmat3< DT > identity2D()
Returns a 3x3 homogeneous identity2D matrix; synonym for Tmat3<DT>::getIdentity().
Definition mlMatrix3.h:502
T operator*(const FloatingPointVector< T, size, DataContainer > &a, const FloatingPointVector< T, size, DataContainer > &b)
Dot product, returns a.dot(b).
Tmat3< DT > rotation2D(const Tvec2< DT > &Center, const DT angleDeg)
Returns a 2D rotation matrix as 3D homogeneous matrix where center specifies the center of rotation.
Definition mlMatrix3.h:524
bool operator!=(const Tmat2< DT > &a, const Tmat2< DT > &b)
a != b ? Return true if yes.
Definition mlMatrix2.h:433
Tmat3< DT > scaling2D(const Tvec2< DT > &scaleVector)
Returns a 2D scale matrix as 3D homogeneous matrix.
Definition mlMatrix3.h:539
FloatingPointVector< T, size, DataContainer > operator-(FloatingPointVector< T, size, DataContainer > lhs, const FloatingPointVector< T, size, DataContainer > &rhs)
Return value is the component wise subtraction of rhs from lhs.
BASE_TYPE MLInverseMatHelper(const BASE_TYPE &origMat, bool *isInvertible, const typename BASE_TYPE::ComponentType, const char *const ZeroDetErrString, const BASE_TYPE &Identity, const size_t Dim)
Computes an N dimensional inverse from given default parameters.
STL namespace.
MLEXPORT std::ostream & operator<<(std::ostream &s, const ml::Field &v)
Overloads the operator "<<" for stream output of Field objects.
istream & operator>>(istream &is, ml::FloatingPointVector< T, size, DataContainer > &v)
Reads a vector from std::istream.