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Chapter 1. Implementing Kernel-
Based Algorithms

Many image filters are based on the so-called kernel-based image filtering. The following section will
explain how to implement such filters efficiently.

Main sections are

» Section 1.1, “General Approach” gives a general overview of image processing with kernel-based
algorithms.

» Section 1.2, “Border Handling in Kernel Operations” explains how image borders are processed and
handled in kernel-based filters.

» Section 1.3, “Kernel Classes” gives an overview of classes.

e Section 1.4, “ Ker nel Tool s " gives an overview of tool classes.

» Section 1.5, “Kernel Example for Page-Based Image Filtering” gives an implementation example.

e Section 1.6, “Traps and Pitfalls in Kernel Programming ” discusses common problems when

implementing kernel-based classes.
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1.1. General Approach

When a fixed region around a voxel is needed to calculate output voxels (edge detector operations,
morphological operations, noise filters, smoothing, texture filters, ...) we talk about a kernel-based filter.

Examples are the modules Ker nel Exanpl e, Convol uti on, RankFi | t er, Mor phol ogy.

Figure 1.1. Kernel-Based: Used Page Extent
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Figure 1.2. Kernel-Based: Applying the Algorithm
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Advantages:

» Fast access to kernel range in 6D is possible with paging -> fits well into page concept
* Many algorithm categories can be implemented

Disadvantages:

» Base class is a bit more complex

» Image borders require consideration (supported by base classes, though)

For a kernel-based image processing approach, some measures must be taken:
» Adjust the extent of output image in Modul e: : cal cul at eQut put | magePr operti es()
» Calculate the extent of input pages in Modul e: : cal cul at el nput Subl mageBox()

» Apply border handling in Modul e: : cal cul at eQut put Subl mage()
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» Apply kernel to page in Modul e: : cal cul at eQut put Subl mage()
These measures include many complex steps which are supported by the following classes:
* Ker nel BaseMbdul e

This is a class for page-based kernel operations. Fields for the border handling mode and fill value
are automatically created. Macros are available for simple implementation and usage of the kernel
algorithm template.

e Ker nel Mbdul e

Defines a convenience class for kernel base image filtering. Many convenience methods are available
to configure the module with certain field combinations so that derived modules do not have to
implement most inputs like kernel extent, fill value, kernel input and output connectors, image and
kernel intervals, etc.

e Kernel

Manages a kernel matrix with value access, creation, manipulation and (de)coding as a string as well
as value copy and assignment, etc.

The class Ker nel manages a 6D kernel which can be applied to images. It handles a set of coordinates
(see Ker nel : : get Coor dTab() ) and values for those coordinates (see get Val ueTab() ). This permits
the specification of kernels with gaps or only a very few defined elements. Thus big kernels with only a
few elements can be manipulated and applied fast. A set of operations is available on a kernel instance
which includes arithmetics on the kernel values, gauss presets, normalization, different kernel set/
get routines to create/save partially defined kernels, get/set methods to load/save kernels as strings
or arrays, and much more.

This Ker nel class is implemented as a template dependent on KDATATYPE to have different precisions
for kernel elements. Usually, the kernel is instantiated with M_doubl e as KDATATYPE. This type is
also given as typedef Ker nel Dat aType which should be used e.g., when pointers to the table of
kernel elements are needed. This class can be instantiated with M_f | oat or M_.doubl e as KDATATYPE;
however, the Kernel base classes always use Ker nel Dat aType.

Note that using integer types for the kernels is not really useful since pure integer kernel operations
are rare and some operations would suffer because rounding errors occur.

1.2. Border Handling in Kernel Operations

For image filtering, image borders must be considered. Some modes are supported by the class
Ker nel BaseMbdul e and are automatically applied by the derived kernel filters.

* Kernel Tool s: : NO_PAD

Only those voxels are passed to the output which can be filtered correctly by the entire kernel. Hence
the output image is usually shrinked by the extent of the kernel minus 1.
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Figure 1.3. NO_PAD
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* Kernel Tool s: : PAD_SRC FI LL

The input image is virtually expanded by some voxels so that the kernel can filter all input image
voxels correctly. The area added around the input image is filled with the fill value.
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Figure 1.4. PAD_SRC_FILL
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* Kernel Tool s:: PAD DST_FI LL

The kernel filters all pixels of the output image if the kernel can filter them correctly without accessing
voxels outside the output image. The remaining voxels of the image are filled with the fill value.
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Figure 1.5. PAD_DST_FILL
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* Kernel Tool s:: PAD_DST_ORI GFI LL

The kernel filters all voxels of the output image if the kernel can filter them correctly without accessing
voxels outside the output image. All other voxels are copied from the input image.
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Figure 1.6. PAD_DST_ORIGFILL
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e Kernel Tool s: : PAD_SRC_UNDEFI NED

The input image is virtually expanded by some voxels so that the kernel can filter all input image
voxels correctly. The contents of the area added around the input image are left undefined. Hence,
the filtered image will also have a border with undefined image values.
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Figure 1.7. PAD_SRC_UNDEFINED
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* Kernel Tool s: : PAD_DST_UNDEFI NED

The kernel filters all voxels of the output image if the kernel can filter them correctly without accessing
voxels outside the output image. All other voxels are left undefined.
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Figure 1.8. PAD_DST_UNDEFINED
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* Kernel Tool s: : PAD_SRC_CLAMWP

The input image is virtually expanded by some voxels so that the kernel can filter all input image voxels
correctly. The contents of the area added around the input image are filled with the nearest voxel
found in the input image. This is usually the mode which produces the best results for image borders.
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Figure 1.9. PAD_SRC_CLAMP
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Note
Another mode Ker nel Tool s: : PAD_DST_CLAMP would be desirable. It is not implemented

since clamping to valid data does not work for requested pages which are completely
outside the valid computable area. Slice 64, for instance, cannot be calculated if the last
valid page is on slice 62 - and clamping to 62 cannot work, because 62 does not exist when
a page in slice 64 is requested. It is theoretically possible to request it, but such a request
would result in a very slow and difficult mode.

1.3. Kernel Classes

The following three sections give a detailed overview of the classes Ker neBaseMdul e, Ker nel Modul e
and Ker nel .

* Section 1.3.1, “ Ker nel BaseModul e ”

e Section 1.3.2, “ Ker nel Modul e ”
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e Section 1.3.3, “Kernel "

Tool classes are described in Section 1.4, “ Ker nel Tool s .

1.3.1. Ker nel BaseModul e

This class adds some functionality to the Modul e class which is used by most kernel-based algorithms.
This includes:

» a kernel (see Section 1.3.3, “ Ker nel ") member containing the structure element (kernel) for your
algorithm, which can be accessed by the methods

e getKernel ()

to access and modify the kernel object (read, set and modify kernel extent, elements, convert it
from/to a string)

e get Const Kernel ()

to access and read the same kernel and its properties without the possibility to change it.
Consequently, it can be called from constant methods.

» the method get Bor der Hand! i ngFl d() which returns the field that manages the way how image
borders are handled during kernel filtering. See Section 1.2, “Border Handling in Kernel Operations”
for more information on these modes.

» the method get Fi | | Val ueFl d() which returns the field that manages a fill value used for image
borders in some of the border handling modes. See Section 1.2, “Border Handling in Kernel
Operations” for more information on these modes.

» an overloaded cal cul at eCut put | mageProperti es() method which adapts the properties of the
output image, i.e., it corrects the image extent and the voxel-to-world coordinate transformation. See
Section 1.2, “Border Handling in Kernel Operations” for more information.

» anoverloaded cal cul at el nput Subl mageBox() method which requests correct regions from the input
image for the kernel filtering.

Although you will mainly derive your kernel-based ML module from the class Ker nel Modul e, you
can also use the class Ker nel BaseModul e without limitations. The class Ker nel Modul e adds much
convenience functionality, which is often used in kernel-based modules, and therefore Ker nel Modul e
is the recommended base class. See Section 1.3.2, “ Ker nel Mbdul e ” for detailed information.

In contrast to normal image processing modules, kernel-based modules use special template functions
and macros:

CALC_ROW CPP
CALC_ROW CPP_ANY
CALC_ROW CPP_EXT
CALC_ROW CPP_EXT_DD
CALC_ROW CPP_ANY_EXT

CALC_ROW CPP_SUBI MG
CALC_ROW CPP_ANY_SUBI MG
CALC_ROW CPP_SUBI MG_EXT
CALC_ROW CPP_SUBI MG_EXT_DD
CALC_ROW CPP_ANY_SUBI MG_EXT

In many kernel modules, using the CALC_ROW H() and CALC_ROW CPP() macros and a template function
such as

tenpl ate <typename DATATYPE>

14
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voi d StandardDevi ati onFilter::cal cRow M.sof f set *i ndexTab,

size_t i ndexTabSi ze,
M_sof f set srcVoxel Of f set ,
size_t numvox,
DATATYPE *j nCursor,
DATATYPE *out Cur sor,

const | mageVector & owStart)

is sufficient as explained in Section 1.5, “Kernel Example for Page-Based Image Filtering”. They are
used instead of the M._CALCULATE_OUTPUTSUBI MAGE_NUM | NPUTS_* macros and the template function
cal cul at eQut put Subl mage.

In the case of filtering with separable kernels, with more than one input or output, more flexible versions
are needed. Use CALC_ROW H() and CALC_ROW CPP_EXT() macros and the following template function:

tenpl ate <typename DATATYPE>

voi d Separ abl eKernel Filter::cal cRowm M_sof f set *i ndexTabs,
size_t i ndexTabSi ze,
M.sof f set srcVoxel O f set,
size_t nun\Vox,
DATATYPE **jnCursors,
DATATYPE *out Cur sor,
const | mageVector & owStart,
i nt out | ndex,
i nt num nSubl ngs,
size_t separ at i onPass,
size_t iteration);

There are derivates with similar function parameters using subimage parameters if subimage information
is needed. Then the subimage cursors are set appropriately instead of the cursors:

tenpl ate <typename DATATYPE>

voi d Separ abl eKernel Filter:: cal cRowm M_sof f set *i ndexTabs,
size_t i ndexTabSi ze,
M.sof f set srcVoxel O f set,
size_t numvox,

TSubl mage<DATATYPE> *i nSubl ngs,
TSubl mage<DATATYPE> &out Subl ng,
const | nmageVector & owStart,

i nt out | ndex,

i nt num nSubl ngs,
size_t separ at i onPass,
size_t iteration);

All CALC_ROW * _EXT versions also exist with _DD at the end to compile the cal cRow template with
different input and output types. Note that these versions compile considerable more code:

tenpl ate <typenane OI, typenane |T>

voi d Separ abl eKernel Fi |l ter:: cal cRowm M_sof f set *i ndexTabs,
size_t i ndexTabSi ze,
M.sof f set srcVoxel O f set,
size_t nunVox,
1T **jnCursors,
or *out Cur sor,
const | nmageVector & owStart,
i nt out | ndex,
i nt num nSubl ngs,
size_t separ at i onPass,
size_t iteration);

‘ Note
Former versions used i nt and unsi gned i nt types instead of the now used M.sof f set
and si ze_t. The i nt and unsi gned i nt types do not change their size to 64 on 64 bit
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systems. In order to provide safe 64 bit operations, older code versions should be updated
so that they use M_sof f set and si ze_t types.

See the ml Kernel Macros. h for more information. The macros KERNEL * PARAMS define the
parameters of the template functions called by these macros.

Also see the examples Ker nel Exanpl e, Separ abl eKer nel Exanpl e and Ker nel 31 n2Qut Exanpl e in
project MLKer nel Exanpl es for details.

1.3.2. Ker nel Modul e

The Ker nel Modul e class is quite a large convenience class derived from the Ker nel BaseMdul e class.
It adds a lot of stuff needed in many kernel-based algorithms such as the following methods. See header
file documentation for detailed information.

* A set of field creation methods normally called in the constructor for simple creation of the module
parameter interface:

1.

vi rtual void _createKernel ExtentFiel ds(int nunmDi m=6, const | mageVect or
&def aul t Ext =I nageVector(3,3,1,1,1,1))

creates fields specifying the (6D) extent of the kernel.
virtual void _createMakeSpherical Fi el d(bool defaultVal =fal se)

creates an on/off parameter field which decides whether the kernel should be made roughly
spherical. Sometimes "round" kernels are more suitable for filtering than rectangular ones.

virtual void _createNornmalizeFiel d(bool defaultVal=false)

creates an on/off parameter field which normalizes each kernel so that all kernel elements add
upto 1.

vi rtual voi d _createM nMaxCal cFi el ds(bool def aul t Val ue=f al se, bool
cr eat eSet Qut put M nMax=f al se)

creates an on/off parameter field which adds a minimum/maximum value determination after
filtering a page. The results can be used by the algorithm itself (e.g., to update the minimum/
maximum values of the output image) or can be shown by the fields created by number 5

virtual void _createM nMaxFi el ds(M.doubl e ninVal =0, M.double naxVal=0, bool
def aul t Val ue=f al se)

creates fields showing and updating the minimum and maximum values of the output image. See
also number 4 for an automatic way of how to update these fields by using filtering results that
have already been processed.

vi rtual void _creat eExternal Kernel Fi el ds(bool creat eUseToggl e=f al se, bool
def aul t Val =f al se)

creates a parameter field to which an external from another module can be connected as an
"input connector" for the kernel. This way, the module can share its kernel with other modules in
a network. See also humber 7.

virtual void _createKernel QutputField()
creates a parameter field containing the kernel as a value which can be connected to other

modules as an "output connector" for the kernel. This way, the internally used kernel can be shared
with other modules in a network. See also number 6.

16



Implementing Kernel-
Based Algorithms

8. virtual void _createl magel nterval Fi el ds(M.doubl e ni n=0, M.doubl e nax=1024, bool
creat eToggl e=fal se, bool uselt=false)

creates two parameter fields for an interval which can limit the number of voxels to be filtered.
Thus filtering can easily be limited to the desired object which saves computing time and leaves
other image areas unchanged or sets them to a certain value. See also number 1 to find out how
your algorithm can check whether a voxel belongs to that interval.

9. virtual void _createKernellnterval Fi el ds(M.doubl e nmi n=0, M.doubl e nax=1024, boo
creat eToggl e=fal se, bool uselt=false)

creates two or three fields for minimum and maximum interval limit and optionally as on/off toggle
to activate or deactivate the interval. See also number 2 to find out how your algorithm can check
whether a voxel belongs to that interval.
10.virtual void _createKernel I nfoField()
creates a module (output) field showing some information about the kernel and its state.
11.virtual void _createNunKernel El enent sFiel d()
creates a module (output) field showing the number of elements in the kernel.
12.virtual void _createKernel El enent sSunFi el d()

creates a module (output) field showing the sum of all kernel elements.

» The following methods allow to check whether voxels are within an image or a kernel interval defined
by number 8 or number 9:

1. bool _islnlnmagelnterval (M.double v) const
to check whether the value v is within the interval specified by the fields number 8 created.
2. bool _islnKernellnterval (M.double v) const

to check whether the value v is within the interval specified by the fields number 9 created.

Note

These intervals can be used to improve the speed and/or the quality of your filtering result:
firstly, by reducing the amount of filtered voxels and secondly by explicitly selecting the
voxels used in the filtering process itself which belong to the filtered object.

Note
Note that the intervals are considered being exclusive if maximum is smaller than minimum,
i.e., all values between maximum and minimum are excluded and all other values are
included. Intervals where minVal == maxVal are considered as ordinary intervals. Hence
these intervals can easily be used to specify objects by voxels which are either inside or
outside the interval.

» Derived modules often want to generate their own kernel before or after the kernel has been
determined by the above fields. It can be useful to overload one of the following methods:

1. virtual void _updateKernel (bool perm tExtentChanges)

is the core update method Ker nel Modul e uses to update the kernel to the state of the fields that
have been created by the cr eat e methods described above, but also to update the kernel to the
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state of user-defined fields and settings. It also calls numbers 2 and 3 to enable derived classes
to include their own kernel modifications.

virtual void _userKernel PreUpdate()

_updat eKer nel (permit Ext ent Changes) calls virtual void _userKernel PreUpdate() to
supply a method where the derived class can change the kernel before the kernel input is checked
or the kernel extent is set. See 1 for more information.

virtual void _userKernel Post Updat e()

_updat eKer nel (per m t Ext ent Changes) calls virtual void _userKernel Post Update()
to supply a method where the derived class can change the kernel after all automatic
changes have been performed, and before the output kernel fields, the _kernel I nf oFI d, the
_nunKer nel El enent sFl d and the _ker nel El enent Sunfl d are updated. See number 1 for more
information.

* Some other helper routines are available in derived modules when they add their own kernel
manipulations:

1.

virtual void _updateKernel QutputFiel d()
Updates the kernel output to the value of the kernel if the _ker nel Qut put FI d is defined.
virtual std::string _conposeKernellnfo(bool valid=true) const

Creates a string that contains all important kernel information. If f al se is passed, an "invalid”
message is added.

These methods are normally called by 1; however, they may be useful when special kernel update
algorithms are written.

» The following methods are also overloaded by Ker nel Modul e (see Section 1.3.2, “ Ker nel Modul e ” for
more information), so be aware when overloading those methods: the superclass functionality must
be called in derived modules to ensure correct operation. This is often not done in modules directly
derived from Modul e, because the original Modul e methods are not used or are simply replaced by
the derived classes.

1. virtual void handl eNotification(Field* field)
2. virtual void activateAttachnents()
3. virtual void cal cul at eQut put | rageProperties(int outlndex)
4. virtual void cal cul at eQut put Subl mage( Subl mage *out Subl ng, int outlndex, Subl mage
*i nSubl ngs)
1.3.3. Kernel

The class Ker nel provides a set of useful functionalities to support image processing algorithms using
a structure element.

The following sections give an introduction to this class:

e Section 1.3.3.1, “ Overvi ew of the Kernel dass”

e Section 1.3.3.2, “Basic Functionality of the Kernel Cass”

e Section 1.3.3.3, “ Support for an Interpretation as Separabl e Kernel
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1.3.3.1. Overview of the Kernel d ass

See the header file documentation of mi Kernel . h in project MLKer nel , for detailed information.

The file m Kernel.h contains the TKer nel class to manage a 6D kernel which can be applied to
images. It handles a set of coordinates (see get Coor dTab() ) and the corresponding values for these
coordinates (see get Val ueTab() ). This permits specifying kernels with gaps or with only a few defined
elements. Thus big kernels with only a few elements (sparse kernels) can be quickly manipulated and
applied.

The value and coordinate tables can be interpreted in two different ways: either as a structure element
for a normal kernel filtering or as a separable kernel where the first six rows of the table are interpreted
as the six 1D kernels which are used as kernels for separable filtering.

A set of operations can be performed on kernel instances, such as arithmetics on the kernel values,
gauss presets, normalization, different kernel set/get routines to create/save partially defined kernels,
get/set methods to load/save kernels as strings or arrays and much more. This TKer nel class
is implemented as template-dependent class on KDATATYPE to have different precisions for kernel
elements. Normally, the kernel is instantiated with doubl e as KDATATYPE, because it is the fastest type.
You could also instantiate the TKer nel class with M_f | oat or M_doubl e.

Note that using integer types for the kernels is not really useful since pure integer kernel operations are
rare and some operations would suffer because of rounding errors or integer overflows that might occur
when many kernel elements are summed up.

This class does not provide any support for applying the kernel to the image. However, m Ker nel Tool s
offers some helper functions for standard convolutions which can be called by the module directly and
which can filter the (sub)images.

The kernel types that included M.fl oat and M.doubl e are predefined. Note that currently only the
version with M_doubl e is used in the kernel library.

typedef TKernel <M.f| oat > Fl oat Ker nel ;
typedef TKer nel <M_.doubl e> Doubl eKer nel ;
typedef M.doubl e Ker nel Dat aType;

typedef TKer nel <Ker nel Dat aType> Ker nel ;

1.3.3.2. Basic Functionality of the Kernel C ass

The TKer nel class provides a set of functions that offers the most important features required in image
filtering algorithms.

* TKernel ();
Constructor. Builds an empty kernel.
* TKernel (const TKernel &kern);
Copy constructor. Builds a kernel with contents of ker n.
e ~TKernel ();
Destructor. Cleans up and removes instance of kernel.
e const TKernel & operator=(const TKernel &kern);
Assignment operator. Sets current instance to contents of ker n.

e void reset();
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Resets kernel to construction state.

unsi gned int getTabSi ze() const;

Returns the current number of kernel elements.

const | mageVector* get CoordTab(size_t dim= 0) const;

Returns a table of coordinates pointing to all kernel elements that are currently defined. The size of the
returned table is given by get TabSi ze() . In the case of separable filtering, it returns the coordinates
that are valid for the current pass of separable kernel filtering. It is then a subset of the array given
by get Separ abl eCoor dTab().

const KDATATYPE* get Val ueTab(size_t dim= 0) const;

Returns the table of the kernel element values that are currently defined. The size of the returned
table is given by get TabSi ze() . In the case of separable filtering, the subset of kernel elements for
the pass di mcan be requested.

KDATATYPE get Val ueTabSum() const;
Returns the sum of all kernel element values.
KDATATYPE get M nVal ue() const;

Returns the minimum value of all kernel element values. If the kernel value table is empty, 0O is
returned.

KDATATYPE get MaxVal ue() const;

Returns the maximum value of all kernel element values. If the kernel value table is empty, 1 is
returned.

KDATATYPE get NegVal ueSun() const;

Returns the sum of all negative kernel element values. If kernel the value table is empty, O is returned.
KDATATYPE get PosVal ueSun() const;

Returns the sum of all positive kernel element values. If the kernel value table is empty, O is returned.
voi d mani pul at eKer nel El enent s(Ker nModi fi er node, KDATATYPE v);

Modifies all kernel element values with the value v.

The node can be one of the following:

- KERN_SET : Sets all kernel elements to v.

- KERN_MULT : Multiplies each kernel elements with v.

- KERN_ADD : Adds v to each kernel element.

- KERNLI NVDI V : Each kernel element is replaced by v divided by the kernel element. Zero kernel
elements are left unchanged.

- KERN_I NVSUB : Each kernel element is replaced by v minus the kernel element.
- KERN_SQR : Each kernel element is replaced by its square.

- KERN_SQRT : Each kernel element is replaced by its square roots. Negative kernel elements are left
unchanged.

20



Implementing Kernel-
Based Algorithms

- KERN_POW: Each kernel element is replaced by itself raised to the power of v.
- KERN_LOG: Each kernel element is replaced by its logarithm of v.

- KERN_NORMAL | ZE : Multiplies the all kernel element values with a value so that their sum is 1. If the
sum is zero, values are left unchanged.

- KERN_GAUSS : Sets all kernel elements to binomial values and normalize.

- KERN_SPHERE : Throws the corners of the kernel value table away to make the kernel approximately
spherical.

- KERN_M RRCR : Applies a point symmetric mirroring of all kernel elements.

- KERN_M RROR X : Applies a point symmetric mirroring of all kernel elements in x direction.
- KERN_M RROR_Y : Applies a point symmetric mirroring of all kernel elements in y direction.
- KERN_M RROR _Z : Applies a point symmetric mirroring of all kernel elements in z direction.
- KERN_M RROR_C: Applies a point symmetric mirroring of all kernel elements in ¢ direction.
- KERN_M RROR_T : Applies a point symmetric mirroring of all kernel elements in t direction.

- KERN_M RROR U : Applies a point symmetric mirroring of all kernel elements in u direction.

const Vector &getExtent() const;

Returns the kernel extent in 6D. It defines the rectangular region in which all coordinates returned
by get Coor dTab() are found. Note that the returned region might be larger than required e.g., after
removing elements from the kernel. In the case of separable filtering, it returns a vector where the
components [0...5] contain the extent of the region spanned by the 6 separated 1D kernels. For
dimensions where no filtering takes place, the components are setto 1.

const | rmageVector &getNegativeExtent() const;

The extent of the kernel to both sides. The sum of both sides plusl is the extent of the kernel. By
using get Negat i veExt ent () as the negative extent of an image and get Posi ti veExt ent () as the
positive extent increment for the image, the kernel can be placed correctly on all normal image voxels
without voxel accesses being out of range.

const | nmageVector &getPositiveExtent() const;

See get Negat i veExt ent ().

M.i nt coordTol ndex(M.int x, Mint y, Mint z, Mint c, Mint t, Mint u, const
I mgeVect or &si ze);

Converts the coordinates x, y, z, c, t and u into the kernel to an index into an array with 6D
extent given by si ze.

M.i nt coor dTol ndex(const | mageVector &p, const |nmageVector &size);
Converts the coordinate p into the kernel with extent si ze to an index.

I mgeVect or i ndexToCoord(M.i nt idx, const |nageVector &ext);
Converts an index into an array with extent ext to a coordinate.

M.i nt findl ndex(const | mageVector &pos) const;
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Returns the index to the kernel element if it exists; otherwise - 1 is returned. Note that this method
needs to search, i.e., this method is not very efficient.

voi d setPartial Kernel (size_t nunEl ens, | mageVector * const coords, KDATATYPE * const
val ues=NULL) ;

Defines a set of local kernel coordinates and optionally defines a set of values that define the kernel
elements. nunEl ens defines the number of coordinates. If desired, the corresponding set of kernel
values can be passed in val ues. Otherwise, all kernel values are set to 1. 0/ ( KDATATYPE) _t abSi ze.
Note that coor ds and val ues have to contain nunEl ens entries when passed.

std::string getKernel (bool asLines=false, M.int fieldWdth=0, M.int precision=10)
const;

Returns the current kernel elements and values as a string. The string must have the following format:

(x_ 0, y 0, z0, c 0 t 0, uO):v_0\n
...\n
(x_n, y_n, z_n, c_n, t_n, un):v_n\n

where the coordinates to the left of the colon specify the 6D coordinate of the kernel element; the
value v_i to the right of the colon specifies the value of the kernel element. If asLi nes is true,
another string format is used:

(*, y 0, z0, cO0 t 0 uO:x0... xn\n
...\n
(*, yn, zn, cn tn un:yn...yn\n

All kernel elements of a row are saved in a string line; the x coordinate becomes invalid and is replaced
by an asterisk. To have a minimum field width, pass fi el dW dt h and the digits after the period if
given by pr eci si on. Note that these settings are used only if asLi nes istrue.

std::string setKernel (const std::string &ernString);

Defines elements and values of the kernel matrix by parsing a string. The string must have the
following format:

(x_ 0, y O, z0, ¢c0 t 0, uO:v_0\n
...\n
(x_n, y_n, z_n, c_n, t_n, u_n):v_n \n

where the coordinates left to the colon specify the 6D coordinate of the kernel element; the value v_x
right to the colon specify the value of the kernel element. Only one coordinate entry is scanned per
line. Big kernels with a only a few elements can easily be set. As long as lines with kernel elements
are found, elements are set in the kernel table. An empty string is returned for successful scans. For
errors, the returned string contains the number of error lines. The following format is another way of
how to specify more than one kernel element at once:

(*, y 0, 20, c O, t 0, uO0:x0, ... ,xn\n
...\n
(*, y_n, zn, cn, t_n, un):yn, ... ,y n\n

All kernel elements of a row are found in a string line. Note that the x coordinate becomes invalid and
must be replaced by an asterisk. Empty elements in the kernel can be left empty before, between
and after commas.

voi d setKernel (const |nageVector &ext, const KDATATYPE * const val ues=NULL, bool
* const mask=NULL) ;

Defines a complete kernel matrix whose extent is defined by ext. If desired, the set of
kernel values can be passed in val ues. Otherwise, all kernel values are to be set to 1.0/
( KDATATYPE) ext . conpMul (), i.e., to the number of entries of the matrix. If desired, a set of mask
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values can be specified. If mask[ n] istrue, t ab[ n] is included in the kernel; otherwise, it is not part
of the kernel. The specified kernel matrix is internally handled as a table of kernel elements. Note that
val ues and mask must have ext . conpMul () elements if they are defined.

tenpl ate <typename KDATATYPE2>

voi d set Kernel (const | nageVector &ext,

const KDATATYPE2 * const xaxi s,

const KDATATYPE2 * const yaxis,

const KDATATYPE2 * const zaxi s,

const KDATATYPE2 * const caxi s,

const KDATATYPE2 * const taxis,

const KDATATYPE2 * const uaxi s,

bool normalize)

Defines a complete kernel matrix whose extent is defined by ext . The values of the kernel elements
are products of the corresponding values along the six axes given as parameters. This is a convenient

way to build a kernel from separated axis. If desired, the kernel is nhormalized.

voi d set Separ abl eKernel (const std::vector<M._TYPENAME std::vect or <KDATATYPE> >
&separ abl eRows) ;

Creates kernel coordinate and value tables in a separable table format, that means a 2D kernel, in
which each row describes the elements of 1D kernels. The number of rows should not exceed 6,
because the maximum kernel dimension is 6. It is legal to pass empty vectors in order to ignore axes
and thus to define separable kernels with less than 6 dimensions. The separability flag is setto t r ue.
voi d resizeKernel (const | nmageVector &ext, KDATATYPE newval =0);

Resizes the kernel to a new state and tries to maintain the previous elements if possible. Note that
the new kernel size may differ from desired kernel size if empty areas are on the border of the resized
kernel so that only a smaller actual kernel remains. Newly created regions receive kernel elements
with value newval .

voi d fill Undefi nedEl ement s( KDATATYPE newval =0) ;

Fill all undefined kernel element with newval .

voi d makeCircul ar();

Takes the current kernel, computes radii from the extent of the kernel and removes all kernel elements
which are outside the ellipsoid defined by these radii. Note that this operation changes the kernel
filter's properties.

void mrror(int dinmension=1);

Applies point-symmetric mirroring to all kernel elements. The di nensi on specifies a mirroring
dimension if in [0...5], otherwise, mirroring is applied in all dimensions. The default is -1.

static M. doubl e binom al coeff(M.int n, Mint k);
Calculates binomial coefficients for (n) over (k).

static std::vector <KDATATYPE> get 1DGauss(si ze_t nunBSanpl es, bool normalize=true);
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Returns a vector with nunSanpl e values binomial coefficients. If nunSanpl es is passed as 0, an empty
vector is returned. If nor mal i ze is passed as t r ue (the default), all values are normalized to the sum
of absolute values 1.

e void set Gauss(const | nageVector &ext);

Replaces the current kernel by a normalized gauss kernel.

1.3.3.3. Support for an Interpretation as Separabl e Kernel

If the kernel is interpreted as a separable kernel, the first six rows of the first slice of the kernel matrix
are taken. These six rows are interpreted as the six 1-dimensional axes in x,y,z,c,t, and u dimensions
which are used as 1D filter kernels for 6D separable filtering.

Be sure to use a CALC_ROW * _EXT macro instead of a CALC_ROW * macro in your module implementation
so that you have all the necessary parameters for your cal cRowtemplate function when you implement
separable filtering.

For example:

6 4
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describes a separable kernel with the following axes extent: X=5, Y=3, Z=4, C=0, T=3, U=0. An extent
of 0 (C and U dimensions, for example) is used to define that filtering with a 1D kernel is not applied
in that dimension.

* voi d set Separ abl e(bool isSeparable);

Sets a flag to indicate that the first 6 rows of the first kernel slice are considered as the 1D axes of
a separable filter kernel. Note that this flag only defines how applications shall interpret this kernel;
the flag does not change any behavior of this class.

* bool isSeparable() const;

Indicates whether the first 6 rows of the first kernel slice are interpreted as 1D axes of a separable
filter kernel; the default is f al se.

* I mageVect or get Separ abl eDi nEntries() const;

Returns a vector with the number of entries of the separable kernel for dimensions [0...5]. This means
the i index contains the number of val ueTab entries of row i, where iis in [0...5].

* | mageVect or get Separ abl eOneDi nExtents() const;

Returns a vector where the components [0...5] contain the extent of the region spanned by the 6
separated 1D kernels if the kernel is interpreted as a separable kernel. Note that components of the
extent are O for those dimensions where no entries are available.

* size_t getSeparabl eD m ndex(size_t di me0) const;

Returns the index to entries of val ueTab or coor dTab which are related to the 1D separable kernel
for the dimension di mwhere di mmust be in [0...5]. Smaller values are clamped to 0, higher values
are clamped to 5. The index to the entries for the 1D kernel of the x-dimension is returned with the
default parameter.

e const std::vector<lmageVect or> &get Separ abl eCoordTab() const;
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Returns the table with all coordinates for filtering with separable kernels.

1.4. Ker nel Tool s

The class Ker nel Tool s can considerably simplify kernel filtering of images . Many of the functions
are used by the Ker nel BaseMbdul e and Ker nel Modul e, but some functions are useful for normal
implementations of kernel filters:

the Bor der Handl i ng enum type and a set of string names that correspond to the enum values.

cr eat el ndexTab: Creates the offset table from a pointer to a kernel origin to the image voxels below
kernel elements.

cal cSrcVoxel O f set : Calculates the offset from a pointer to a kernel origin to that voxel in the input
image (below kernel) corresponding to the written output voxel.

cal cQut | mageExt : Calculates the extent of an output image from the kernel extent and the input
image extent and the border handling mode. Useful in cal cul at eQut put | magePr operties().

adapt Wor | dCoor di nat es: Corrects the world coordinates of a kernel-filtered output image dependent
on the border handling mode. Useful in cal cul at eCQut put | ragePr oper ti es() . Usually already done
in kernel base classes.

cal cl nSubl mageBoxFor Qut Subl ng: Calculates the region of the input image needed to calculate a
kernel-filtered region of the output image. Useful in cal cul at el nput Subl mageBox() . Usually already
done by kernel base classes.

cal cQut I nCoor dShi f t : Calculates the voxel shift between input image and output image of a kernel-
filtered image dependent on kernel extent and border handling mode.

cal cAreaToBeCal cul at ed: Calculates the entire region of the output image which needs to be
calculated/written by kernel filtering.

copyLi ne: Copies the row to be filtered from the input buffer to the output buffer.
correl at eLi ne: Correlates the row to be filtered with the current settings.

correl at eLi neW t hl magel nt er val : Correlates all voxels in the row to be filtered if they are within
a certain interval. All other voxels are simply copied.

correl at eLi neW t hKer nel | nt er val : Correlates a row of the input image and writes the result to the
corresponding row of the output image. Voxels which are not part of a kernel interval are not included
in the correlation process.

correl at eLi neW t hl mageAndKer nel | nt er val : Correlates a row of the input image and writes the
result to the corresponding row of the output image. Voxels which are not in a kernel interval are not
included in the correlation process. Voxels that are not in an image interval are simply copied from
the input image to the output image without being filtered.

fill Borders: Fill borders of an input or output subimage correctly dependent on the border handling
mode and the image extent.

appl yFi | teri ng: Two versions of this function allow to apply the filtering function to a subimage and
to write the result to an output image dependent on border handling and fill values.

Tip

corr el at eLi ne implements a standard correlation. cor r el at eLi neW t hl magel nt erval is
a powerful alternative which only filters a subset of image voxels specified by an interval.
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That can save a lot of computing time. These functions might be useful in many kernel filter
implementations, and Ker nel Modul e already supports their parameters.

‘ Note
The Ker nel Tool s provide functionality to correlate an image with a kernel. For convolution,
the kernel must be point-mirrored at its center. Thus, correlation is identical with convolution
for point-symmetric kernels.

1.5. Kernel Example for Page-Based Image
Filtering

This section gives an example of how to implement a kernel filter where a gauss kernel is used to filter
the input image.

This module also uses some base class functionality.

 selectable border handling mode (from Ker nel BaseMbdul €)

« fill value for undefined areas in image borders (from Ker nel BaseMvdul e)

» animage interval which limits the number of filtered voxels to those voxels that are within that interval
(from Ker nel Modul €)

* a kernel input field where a kernel from another module can be connected which is then used for
filtering (from Ker nel Modul e)

It also uses functionality from the class Ker nel Tool s which applies a kernel to a row of image voxels
in a subimage.

Example 1.1. How to Implement a Kernel-Based Module
#pragma once

#i ncl ude <nl Modul el ncl udes. h>
#i ncl ude "nl Ker nel . h"
#i ncl ude "nl Ker nel Mbdul e. h"

M__START NANESPACE

/1" The class to convolute an i nmage.

cl ass M._EXAMPLE_CONVOLOUTI ON_EXPORT Exanpl eConvol uti onFil ter
publ i ¢ Kernel Mbdul e

{

public:
/]! Constructor. Initializes the fields, the nenbers and the field
//!" connections with the field container.
Exanpl eConvol uti onFilter();

pr ot ect ed:
/1! Called when a paraneter field is changed.
virtual void handl eNotification(Field* field);

/1! Updates the kernel to new field state and sets the new
/1! kernel for filtering.
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virtual void _updateKernel ();

/1! Conputes the output inage properties fromthe input inmage
/1! properties and the _convKernel Fl d.
virtual void cal cul at eQut put | nagePr operti es(i nt outl ndex);

/1! The inplenentation of the cal cul at eQut put Subl mage cl ass overl| oaded from
/1! Module is done in this macro. It inplenments page border handling

/1! and a dispatcher to call the correct tenplate version of cal cRow

/1" with the correct paraneters.

/1" Note that CALC ROWNCPP() also needs to be added in the .cpp file.
CALC_ROW H() ;

/1! In this virtual tenplate nethod the filtering of

/1! one row needs to be inplenented.

/1Y 1t will be called by the CALC RONH / CALC ROW.CPP nmcr o.
tenpl ate <typename DATATYPE>

voi d cal cRowm M.sof f set *i ndexTab,
size_t i ndexTabSi ze,
M_sof f set srcVoxel O f set ,
size_t numvox,
DATATYPE *i nCur sor,
DATATYPE *out Cur sor,

const | nmageVector & *rowStart*/);

/1! Macro to decl are methods/functions of the runtinme systeminterface of
/1! this class. It is defined in m Runti meSubC ass.h. Note that this

/1! class nmust be registered in the project initialization file by calling
/1! the initCass() function inplenented in this macro.

M._MODULE_CLASS HEADER( Exanpl eConvol utionFi | ter)

I

M__END_NAMESPACE

The source code:

#i ncl ude "m M_Cui deExanpl eConvol utionFilter.h"
#i ncl ude "nm Ker nel Tool s. h"

M__START NANMESPACE

/1 Macro to inplement runtime type system functions (see ml Runti neSubCl ass. h)
L e e
M._MODULE_CLASS_SOURCE_EXT( Exanpl eConvol uti onFi |l ter,

Ker nel Modul e, : Ker nel Mbdul e())

/1! Constructor: Activate/Add (base) class fields and initialize kernel.

Exanpl eConvol uti onFi | ter:: Exanpl eConvol uti onFilter() : Kernel Mbdul e()
{

/Il Set a flag that all fields are still invalid.

handl eNoti ficati onOff () ;

/1 Activate inherited fields: See Kernel Modul e. h
_createl magel nterval Fi el ds(0, 1024, true, false);
_createExternal Kernel Fi el ds(true, false);

_creat eKernel I nfoField();

_createKernel Qut put Fi el d();

/1 Now all fields are okay and their changes can be handl ed
/1 correctly in handl eNotification.
handl eNoti fi cati onOn();
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/1 Set kernel corresponding to the current settings.
_updat eKer nel () ;

}
e R
/1" Called when a field in the field contai ner is changed.
e e
voi d Exanpl eConvol utionFilter::handl eNotification(Field* field)
{

/1 Check your own field changes (not in this exanple)

[1if (field == _myOmFl d){ _updateKernel (); }

/1 Call superclass stuff.
Ker nel Mbdul e: : handl eNoti fication(field);

/'l update the kernel to the new field state.
R e
voi d Exanpl eConvol utionFilter:: updateKernel ()
{
// Define a filter kernel and its extent. The kernel
/1 is symretric, so the correlation
// is the sane as a convol ution.
| mgeVect or ext55(5,5,1,1,1,1);

// Unnormalized 5 x 5 Gauss Kernel

Ker nel Dat aType Kernel dat ab5Gauss[]={1, 4, 6, 4, 1,
4, 16, 24, 16, 4,
6, 24, 36, 24, 6,
4, 16, 24, 16, 4,
1, 4, 6, 4, 1};

/1 Cet kernel from base class, set it to upperly defined

/1 kernel matrix and normalize it.

get Kernel (). set Ker nel (ext 55, Kernel dat a55Gauss) ;

get Ker nel () . mani pul at eKer nel El enent s( Ker nel : : KERN_NORMALI ZE, 0);

/1 Kernel connected to kernel input field (which is

/1 inherited from Kernel Modul e) ?

i f (getUseExternal Kernel Fl d() - >get Bool Val ue()) {
/'l Yes, user has selected to use the kernel fromthe external
/'l kernel field. Permt extent
/1 changes (i.e., input kernel setting) in superclass call.
Ker nel Modul e: : _updat eKer nel (true);

}
el se{
/1 Input is NOT used. Forbid extent changes (i.e., input kernel
/1 setting) in superclass.
Ker nel Mbdul e: : _updat eKer nel (f al se);
}
}
A T

/1! Conputes the output inage properties fromthe input inage properties.

voi d Exanpl eConvol utionFilter:: cal cul at eQut put | nageProperties(int outlndex, Pagedl mage* outputl

{

/1 For normal convol utions/correl ati ons use conveni ence nethod to

/1 determ ne new m n/ max val ues.

_set Correct Correl ati onM nMax(
get Usel magel nterval FI d() && get Usel magel nterval Fl d()->i sOn(),
get | magel nterval M nFl d() ? getlnagel nterval M nFl d() - >get Doubl eVal ue() : O,
get | magel nt erval MaxFl d() ? getl magel nt er val MaxFl d() - >get Doubl eVal ue() : 0);
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/1 Execute superclass stuff.
Ker nel Mobdul e: : cal cul at eQut put | ragePr operti es(out | ndex, outputl mage);

/1!' Macro which needs to be added to the inplenentation

/1! of a class dervied from Kernel Modul e or

/1! Kernel BaseMbdul e. It guarantees that the correct

/1! tenplate functions are called for inmages

/1" with any data type. It al so overl oads cal cul at eQut put Subl mage
/1! of the base class Mdul e.

/1! See al so CALC_ROWH.

CALC_ROW CPP( Exanpl eConvol uti onFilter, Kernel Modul e);

/1! Calculates the result page in the desired data type.
/1! Called by cal cul at eQut put Subl mage
/1! which is inplemented as a nacro in .cpp.

tenpl at e <typenane DATATYPE>
voi d Exanpl eConvol uti onFilter::cal cRow( M_.sof f set *i ndexTab,

size t i ndexTabSi ze,
M_sof f set srcVoxel O f set ,
size t numvox,
DATATYPE *i nCur sor,
DATATYPE *out Cur sor,
const | mageVector & *rowStart*/)
{
i f (getUsel magel nterval Fld() && getUsel magel nterval FI d()->isOn()){
/] Convolute/correlate all row voxels with obey the inage interval.
Ker nel Tool s: : correl at eLi neW t hl magel nt erval (i nCursor, outCursor, nunVox,
get Ker nel (). get Val ueTab(),
i ndexTab, i ndexTabSi ze, srcVoxel O f set,
get | magel nt er val M nFl d() - >get Doubl eVal ue(),
get | magel nt er val MaxFl d() - >get Doubl eVal ue() ) ;
}
el se{
/] Correl ate/ Convolute the line normally.
Ker nel Tool s: : correl at eLi ne(i nCursor, outCursor, nunVox,
get Ker nel (). get Val ueTab(),
i ndexTab, indexTabSi ze);
}
}

M._END_NAMESPACE

In case you want to implement your own filter instead of using functionality from the class Ker nel Tool s
you can have a look at the following example implementing a very simple sum filter. It sums up all values
under kernel elements and then adds the kernel elements.

/1! Calculates the result page in the desired data type.
/1! Called by cal cul at eQut put Subl mage
/1! which is inplemented in CALC_RONCPP(...).

tenpl ate <typename DATATYPE>
voi d SumlpFilter::cal cRow M_sof f set *i ndexTab,

size_t i ndexTabSi ze,
M_sof f set srcVoxel O f set ,
size_t numvox,
DATATYPE *i nCursor,
DATATYPE *out Cur sor,
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const | mageVector & owStart)

/1l Get pointer to first value of kernel el enent table.
Ker nel Dat aType *kEl ement Val s = get Ker nel (). get Val ueTab() ;

/'l Process all voxels in subimage row whose start is given by inCursor.
for (size_t i=0; i < nunVox; i ++)({

/1 Get the voxel value under the input image voxel to be

/1 replaced in output inmage (not needed here):

/| DATATYPE srcVox = inCursor[srcVoxel O fset];

/1 Sum up input image voxels under all kernel
/1 elements and add kernel el enent val ues.
/1 Input image voxels can be addressed by offsetting
/1 the pointer to the input inage
/1 voxel with the indices fromindexTab.
for (size_t ¢ = 0; ¢ < indexTabSi ze; ++c){
*out Cursor += inCursor[indexTab[c]] + KEl enmentVal s[c];

}

/1l Move read pointer (into input subinmage) and wite cursor
[/l into output page) forward.
++out Cur sor;
++i nCur sor ;
}
}

1.6. Traps and Pitfalls in Kernel Programming

This sections discusses typical errors when programming kernel-based filters.

Typical errors are

« to forget to call superclass functionality in handl eNoti fi cati on, acti vat eAttachments and the
various cal c* methods.

In classes directly derived from Modul e, this is usually not necessary, because the Mbdul e methods
are empty or are simply replaced. Ker nel BaseMdul e and Ker nel Modul e, however, implement
important functionality which is needed for correct operation.

to change the kernel value at the wrong position in the class when you derive from Ker nel Modul e.
This can lead to invalid or no filtering of image data.

Refer to _userKernel PreUpdate(), _userKernel PostUpdate(), and _updateKernel ()
documentation for detailed information on how the change the kernel value at the correct position.

to implement the numerical part of kernel filtering with the template data type without considering that
the data type may also be an integer type with limited precision.

Refer to the comments at the end of the class Ker nel Exanpl e and to “Compile and Runtime Decisions
on Standard and Registered Voxel Types” for detailed information on how to implement different
algorithms for floating point, integer or registered voxel types.

to forget to add newlines to the end of lines of copied kernel strings e.g., from the Ker nel Edi t or
module. When using the set Kernel (std::string) method of the Kernel class, all element
description lines must be separated by "\n":

get Kernel ().setKernel ("(*,0,0,0,0,0): 0.06, 0.13, 0.06 \n"
"(*,1,0,0,0,0): 0.13, 0.25 0.13 \n"
"(*,2,0,0,0,0): 0.06, 0.13, 0.06 \n");
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