
1

Getting Started

First Steps with MeVisLab

Getting Started

2

Getting Started
Copyright © 2003-2025 MeVis Medical Solutions
Published 2025-06-26

3

Table of Contents
1. Before We Start ... 10

1.1. Welcome to MeVisLab ... 10
1.2. Coverage of the Document .. 10
1.3. Intended Audience ... 11
1.4. Conventions Used in This Document .. 11

1.4.1. Activities ... 11
1.4.2. Formatting .. 11

1.5. How to Read This Document ... 12
1.6. Related MeVisLab Documents ... 12
1.7. Glossary (abbreviated) ... 13

2. The Nuts and Bolts of MeVisLab ... 15
2.1. MeVisLab Basics ... 15
2.2. Development in MeVisLab ... 16
2.3. MeVisLab Modules .. 17
2.4. Fields .. 18
2.5. Networks ... 19
2.6. Overview of Important Files .. 20
2.7. User Interfaces Controls .. 21
2.8. Scripting .. 22
2.9. How to Find More Information on Networks and Modules ... 22

3. Loading and Viewing Images .. 24
3.1. The MeVisLab GUI .. 24
3.2. Searching and Adding Modules .. 25
3.3. Using the ImageLoad Module ... 28
3.4. Adding Viewers to ImageLoad .. 33

3.4.1. Adding the View2D Module ... 33
3.4.2. Adding the View3D Module ... 37

3.5. Alternative Ways to Load Images ... 37
3.5.1. Dragging Images onto the Workspace .. 37
3.5.2. Using the LocalImage Module ... 38

3.6. A Note on Importing DICOM Images .. 39
4. Implementing a Contour Filter ... 41

4.1. Loading the Input Image .. 41
4.2. Implementing the Contour Filter .. 42
4.3. Parameter Connection for Synchronization .. 46

5. Defining a Region of Interest (ROI) ... 49
5.1. Creating a Viewer with a Selection Rectangle ... 50
5.2. Adding a Second Viewer for the Subimage ... 50
5.3. Adding the Interactivity for the Viewers ... 51

6. Excursion: Functionality Overview ... 56
6.1. Image Handling and Processing ... 56

6.1.1. Image Handling .. 56
6.1.2. Image Properties .. 56
6.1.3. Basic Image Processing .. 56
6.1.4. Filter .. 57
6.1.5. Segmentation ... 57

6.2. Visualization .. 57
6.2.1. 2D Viewing ... 57
6.2.2. 3D Viewing ... 58
6.2.3. Lookup Tables .. 58

6.3. Data Objects ... 58
6.3.1. Markers .. 58
6.3.2. Curves ... 59
6.3.3. Contours .. 59
6.3.4. Surface objects ... 59

Getting Started

4

6.4. Miscellaneous .. 59
6.4.1. Fields ... 59
6.4.2. Diagnostic .. 60

7. Creating an Open Inventor Scene ... 61
7.1. Introduction to Open Inventor ... 62
7.2. Creating the Applicator .. 64
7.3. Creating the Interaction .. 67
7.4. Creating the Anatomical Image .. 70
7.5. Finishing the Complete Open Inventor Scene .. 71

8. Starting Development with Package Creation ... 75
8.1. What are Packages ... 75
8.2. Creating a User Package for Your Project ... 77

9. Introduction to Macro Modules .. 78
10. Developing a Macro Module for an Applicator .. 80

10.1. Creating a Basic Global Macro ... 80
10.2. Adding the Macro Parameters and Panel .. 84
10.3. Programming the Python Script .. 89
10.4. Addition: Shifting the Whole Tip .. 93

11. GUI Design in MeVisLab .. 96
11.1. MeVisLab Definition Language (MDL) ... 97

11.1.1. MDL Validator ... 97
11.1.2. MDL Controls ... 98
11.1.3. MDL GUI definition .. 101
11.1.4. A Note on Fields in Scripting Interfaces .. 102

11.2. Developing the ExampleToggleButton ... 105
11.2.1. Creating the Macro Module .. 105
11.2.2. Defining the Interfaces ... 106
11.2.3. Programming the Button Action in Python ... 107
11.2.4. Referencing the Command in the MDL Script .. 108
11.2.5. Persistent Field Values .. 109
11.2.6. Implementing a Keyboard Shortcut ... 109
11.2.7. Arranging Multiple Buttons ... 110
11.2.8. Auto Layouting with the AlignGroups Control .. 111
11.2.9. Prototypes for Controls .. 111
11.2.10. Designing Larger GUIs .. 111

11.3. MDL Styles .. 112
11.3.1. How to Use MDL Styles .. 113
11.3.2. Defining Global Styles ... 114
11.3.3. Creating Custom MDL Controls .. 115

11.4. Customize GUI Appearance Using Qt Style Sheets (CSS) .. 116
12. Excursion: Image Processing in ML ... 119

12.1. Some Advanced Information on Image Processing ... 119
12.2. Structure of MeVisLab .. 119
12.3. Coordinate Systems ... 120
12.4. Affine Transformations ... 121
12.5. DICOM Data and Coordinates .. 122
12.6. Coordinate Systems in the MeVisLab GUI ... 124
12.7. Data Types for DICOM and TIFF .. 125
12.8. Image Processing Concepts: Pages, Slices, VirtualVolumes, and More 126

13. Introduction to C++ Modules ... 128
13.1. Module and Connection Specifics on the C++ Level ... 128
13.2. Some Tips for Module Design .. 129

13.2.1. Macro Modules or C++ Modules? .. 129
13.2.2. Combining Functionalities .. 129
13.2.3. Tips for Module Testing ... 130

13.3. Programming Examples ... 130
14. Developing ML Modules .. 132

14.1. Creating a New ML Module for Adding Values ... 132

Getting Started

5

14.1.1. Creating the Basic ML Module with the Project Wizard 132
14.1.2. Preparing the Project ... 137
14.1.3. Programming the Functions of the ML Module .. 137
14.1.4. GUI Creation/Optimizing .. 138
14.1.5. Creating an Example Network and Help File ... 139

14.2. Creating an ML Module For Simple Average ... 139
14.2.1. Creating the Basic ML Module with the Project Wizard 140
14.2.2. Editing the Header File of SimpleAverage .. 141
14.2.3. Editing the CPP File of SimpleAverage .. 141
14.2.4. Testing the Module ... 143

14.3. Combining Two Modules in One Project .. 144
14.3.1. Copying the Source Files .. 144
14.3.2. Editing and Recompiling the CMakeLists.txt File .. 144
14.3.3. Editing the Project in the Development Environment 145
14.3.4. Editing the Module Definition (.def) ... 146
14.3.5. Cleaning up Folders and Example Networks ... 147

15. Developing a Base Communication .. 148
15.1. A Note on Base Types Checks ... 149

15.1.1. Base Connectors and Field Types .. 149
15.1.2. Overriding Base Type Checks .. 150
15.1.3. Implementing Base Type Checks ... 150

15.2. Developing the MLBaseOwner Module and the BaseMessenger Class 151
15.2.1. Creating the BaseCommunication Project in the Wizard 151
15.2.2. Adding New Files .. 156
15.2.3. Adding References to the new Files in CMakeLists.txt 157
15.2.4. Adding Contents to BaseMessenger.h .. 157
15.2.5. Add Contents to BaseMessenger.cpp ... 158
15.2.6. Editing MLBaseCommunicationInit.cpp ... 159
15.2.7. Editing mlBaseOwner.h .. 159
15.2.8. Editing mlBaseOwner.cpp .. 160
15.2.9. Making MLBaseCommunication classes known .. 162
15.2.10. Adding an object wrapper for MLBaseCommunication objects 163

15.3. Developing the SoBaseReceiver Module ... 163
15.3.1. Creating the New Open Inventor Module with the Wizard 164
15.3.2. Editing CMakeLists.txt of SoBaseReceiver ... 167
15.3.3. Edit SoBaseReceiver.h ... 167
15.3.4. Editing SoBaseReceiver.cpp ... 168

16. Using the TestCenter .. 171
16.1. Introduction to Testing in MeVisLab .. 171
16.2. Developing a Test Case ... 172

16.2.1. Creating a New Test Case .. 172
16.2.2. Populating the Test Network .. 175
16.2.3. Editing the Module Settings ... 175
16.2.4. Creating a First Test Script with Manual Threshold Setting 176
16.2.5. Automating the Test Case with the FieldValueTestCaseEditor 179
16.2.6. Automating the Test Case with an Iterative Test .. 185
16.2.7. Grouping Test Functions ... 187
16.2.8. Enhancing Test Reports with ScreenShots ... 188
16.2.9. Disabling Test Functions ... 189

6

List of Figures
1.1. Welcome Screen and Documentation Links .. 13
2.1. Image Processing Pipeline ... 17
2.2. Network Layout ... 20
2.3. Module Context Menu: Show Help ... 22
3.1. MeVisLab User Interface .. 24
3.2. View Selection ... 25
3.3. Modules Menu and Module Browser ... 26
3.4. Quick Search Options .. 27
3.5. Quick Search Results .. 27
3.6. ImageLoad Module .. 27
3.7. ImageLoad Panel and Output Inspector .. 29
3.8. Adjusting the Window/Level ... 29
3.9. Output Inspector with Image Properties .. 30
3.10. Output Inspector with Additional Information Display .. 31
3.11. 3D Output Inspector ... 31
3.12. Connector Details in the Edit Menu .. 32
3.13. Connector Details in the Preferences .. 32
3.14. Connector Details Depending on Zoom ... 33
3.15. Setting up the Connection .. 34
3.16. Panel of View2D .. 34
3.17. Opening the Settings Panel of View2D ... 35
3.18. Settings Panel of View2D ... 35
3.19. Automatic and Settings Panel of View2D .. 36
3.20. Connecting the View3D Module .. 37
3.21. The View3D Panel ... 37
3.22. LocalImage Module .. 38
3.23. Show the Internal Network ... 38
3.24. Internal Network of the LocalImage Module ... 39
3.25. DicomImport .. 39
4.1. Example Network Contour Filter ... 41
4.2. Viewing the Input Image for the Contour Filter .. 42
4.3. Adjust Filter Parameters ... 43
4.4. Constructing the Filter Pipeline — Convolution Output ... 44
4.5. Constructing the Filter Pipeline — Morphology Output ... 44
4.6. Constructing the Filter Pipeline — Arithmetic2 Output .. 44
4.7. Creating a New Group ... 45
4.8. Resulting Contour Filter Network .. 45
4.9. Establishing the Parameter Connections ... 47
4.10. Resulting Network .. 47
5.1. Example Network ROISelection .. 49
5.2. Viewer with Selection Rectangle ... 50
5.3. Viewer for the Subimage ... 51
5.4. Searching for World to Voxel Conversion .. 52
5.5. WorldVoxelConvert Panel .. 52
5.6. WorldVoxelConvert Modules Added .. 53
5.7. Adding the Parameter Connections .. 54
5.8. Example Network ROI Selection ... 55
7.1. Example Network: Open Inventor Result ... 61
7.2. Applicator Only .. 62
7.3. Traversing in Open Inventor ... 63
7.4. Creating the Applicator Shaft ... 64
7.5. Coloring the Applicator Shaft .. 65
7.6. Adding an Applicator Tip .. 65
7.7. Adding Translation and Grouping ... 66
7.8. Finishing the Applicator .. 67

Getting Started

7

7.9. Using SoCenterballManip ... 68
7.10. SoCenterballManip — Turned .. 69
7.11. Connecting Parameters .. 69
7.12. Combining Interaction and Applicator .. 70
7.13. Loading a Local Image .. 70
7.14. Adding the GigaVoxel Renderer ... 71
7.15. Adding the Windowing to the Applicator .. 71
7.16. Combining the Groups ... 72
7.17. Combined Graphic Elements .. 73
7.18. Adding the Applicator Scaling ... 73
7.19. Improved Applicator/Interaction Arrangement ... 74
8.1. Example for a Package Tree .. 75
8.2. Preferences — Packages .. 76
8.3. Package Wizard .. 77
10.1. Starting a new Macro from the Existing Applicator ... 80
10.2. Existing Applicator with Clean Instance Names ... 81
10.3. Macro Module Wizard .. 81
10.4. Selecting a Genre .. 82
10.5. Macro Module Properties ... 83
10.6. File Browser with the New Macro Module Files ... 84
10.7. ApplicatorMacro as Macro Module .. 84
10.8. ApplicatorMacro.script in MATE .. 85
10.9. ApplicatorMacro Module with Output Connector ... 86
10.10. Internal Network of the ApplicatorMacro Module .. 86
10.11. Automatic Panel of the ApplicatorMacro Module .. 87
10.12. Panel of the ApplicatorMacro Module .. 88
10.13. Parameters for Diameter Setting ... 90
10.14. Changing the Diameter of the Applicator ... 91
10.15. Strange Behavior of the ApplicatorMacro ... 92
10.16. Adding the Correct Tip Translation .. 92
10.17. Complete ApplicatorMacro .. 93
10.18. Feeding the SoCalculator Module ... 94
10.19. Improved Applicator Macro Module ... 95
11.1. View3D Panels as Example for GUI Elements ... 96
11.2. Fields as Model ... 99
11.3. Controls as View/Controller .. 99
11.4. Controls as Views/Controller ... 100
11.5. View3D Panel with C++ Class Names of Included MDL Controls for Scripting 101
11.6. Command Execution Context ... 104
11.7. Contexts of the Scripting Console ... 105
11.8. ExampleToggleButton .. 106
11.9. ExampleToggleButton .. 109
11.10. Buttons in a Grid ... 111
11.11. View3D Panels with the Panel Control .. 112
11.12. Redesigned Panel .. 113
11.13. Entering Style Settings ... 114
11.14. ExampleToggleButton with Application Style Panel .. 114
11.15. Color Chooser Example Control .. 116
11.16. View3D Panel with Qt Widgets ... 117
12.1. MeVisLab Structure .. 119
12.2. Coordinate Systems ... 120
12.3. Matrix Multiplication .. 121
12.4. World Coordinates in Context of the Human Body ... 122
12.5. The DICOM Tag Browser ... 123
12.6. Image Properties for an Ideal Image ... 124
12.7. Image Properties for a Sagittal Image ... 124
12.8. Image Properties in the Info Module .. 125
14.1. Entering the ML Module Properties ... 133

Getting Started

8

14.2. Entering the Imaging Module Properties .. 134
14.3. Additional Module Properties .. 135
14.4. Entering the ML Module Properties — Fields ... 136
14.5. Example Network for SimpleAdd ... 139
15.1. Example Network for ML Module and an Open Inventor Module 148
15.2. Mouse-over Information for Base Connectors .. 149
15.3. Mouse-over Information for Different Base Connectors in One Module 149
15.4. Base Field Connection Checked for Type Compatibility .. 150
15.5. Project Wizard — Module Properties ... 152
15.6. Project Wizard — Imaging Module Properties .. 153
15.7. Project Wizard — Additional Module Properties ... 154
15.8. Project Wizard — Module Field Interface .. 155
15.9. Resulting BaseOwner Module .. 163
15.10. SoBaseReceiver Module Alternative ... 163
15.11. Project Wizard — General Module Properties .. 164
15.12. Project Wizard — Module Type .. 165
15.13. Project Wizard — Module Field Interface ... 165
16.1. Creating a New Test Case ... 173
16.2. New Test Case in Test Selection .. 174
16.3. New Test Case in the Package Path .. 175
16.4. Basic Test Case Setup .. 176
16.5. Test Functions in the TestCaseManager ... 178
16.6. Report for ManualTest_75 .. 179
16.7. The FieldValueTestCaseEditor Panel .. 180
16.8. Dragging Fields into the Parameter List .. 181
16.9. Dragging Fields into the Expected Results List .. 182
16.10. The Resulting Panel ... 183
16.11. Our Automatic FieldValue Tests Added ... 184
16.12. Report for AutomaticTest_1 .. 184
16.13. Our Iterative Test in the Test Center ... 186
16.14. Report for AutomaticTest_2 .. 187
16.15. Grouped Test Functions ... 188
16.16. Report for ScreenShot Example .. 189

9

List of Tables
1.1. List of MeVisLab Documents .. 12
2.1. Module Types ... 17
2.2. Connectors .. 18
2.3. Connections .. 18
2.4. Important Files .. 21

10

Chapter 1. Before We Start

1.1. Welcome to MeVisLab
MeVisLab is a rapid prototyping and development platform for medical image processing and
visualization. With its image processing library, it fulfills the following requirements:

• Able to handle large, six-dimensional images (x, y, z, color, time, user-defined).

• Offers easy ways to develop new algorithms or changing/improving existing ones in a modular C++
interface, perfect for a fast-developing research area.

• Offers easy ways of combining algorithms to algorithm pipelines and networks.

• Fast and easy integration into clinical environments due to standard interfaces, for example to DICOM.

• Fair performance for clinical routine due to a page-based, demand-driven approach in the image
processing.

Beside general image processing algorithms and visualization tools, MeVisLab includes advanced
medical imaging modules for segmentation, registration, volumetry and quantitative morphological, and
functional analysis.

Based on MeVisLab, several clinical prototypes have been developed, including software assistants for
neuro-imaging, dynamic image analysis, surgery planning, and vessel analysis.

The implementation of MeVisLab makes use of a number of well known third-party libraries and
technologies, most importantly the application framework Qt, the visualization and interaction toolkit
Open Inventor, the scripting language Python, and the graphics standard OpenGL. In addition, modules
based on the Insight ToolKit (ITK) and the Visualization ToolKit (VTK) are available.

1.2. Coverage of the Document
Reading this document you will become familiar with the basic features of MeVisLab and how to
use them. The chapters are going from the easy to the complex, from the visual programming over
assembling macro modules and programming modules in C++ to writing tests on a network level for
modules. You will get an idea of how to

• work with the graphical module/network interface concept of MeVisLab

• load and view 2D, 3D and 4D images of various formats

• prototype your specific image processing, image visualization, or image interaction tasks with a
standard set of modules provided by the SDK distribution

• let your own image processing C++-algorithms run in MeVisLab as self-defined module plug-ins

• create compact graphical user interface representations of your image processing and image
visualization pipelines, functioning as quasi-applications

• write tests for a manual and automatic testing of modules and networks

Note

Depending on your software license, not all features of MeVisLab may be available. For
licensing information, please refer to the MeVisLab website (https://www.mevislab.de/).

https://www.mevislab.de/

Before We Start

11

1.3. Intended Audience
Getting Started is aimed at people new to MeVisLab and those who want to explore more of its options.

The necessary prior knowledge depends on the MeVisLab usage:

• For pure network creation, no programming knowledge is required.

• For macro creation, basic knowledge of Python is required. The examples in this document will also
make use of the MDL (MeVisLab Definition Language).

• For developing modules, basic C++ knowledge is required.

• For using the visualization options to their best advantage, some knowledge of image processing and
computer graphics is required.

1.4. Conventions Used in This Document

1.4.1. Activities

Select: Click an object with the left mouse button.

Right-click: Click an object with the right mouse button, usually to open the context menu.

Double-click: Click the object twice in fast repetition. Starts the default action of the object (e.g., for a
module, opens the default panel).

Drag: Click the object with the mouse and keep the mouse button pressed while moving the object to
another position. Place/stop by releasing the mouse button.

Right-drag: Click the object with the right mouse button and keep it pressed while moving (as described
for drag).

Mouse-over: Move the mouse pointer to the object to display additional information in a tool tip, for
example on panels and connectors.

CTRL+N: Press the keys CTRL and N at the same time.

ALT + double-click: Press the ALT key and double-click the object.

Menuitem → Submenuitem: Open the menu and select the submenu item.

1.4.2. Formatting

Views: Parameter Connections Inspector

MeVisLab modules: ImageLoad:

Parameters: Diameter

Programming code: *outVoxel = *inVoxel0

and also

 outMin = inMin + constValue
 outMax = inMax + constValue

Before We Start

12

1.5. How to Read This Document
If these are your first steps with MeVisLab, start with Chapter 2, The Nuts and Bolts of MeVisLab and
proceed to the first network example Chapter 3, Loading and Viewing Images.

If you have basic experience with image processing and want to learn more about visualization and
scenes in Open Inventor, read Chapter 7, Creating an Open Inventor Scene.

If you have basic experience with all module types in MeVisLab and think about extending your networks
with scripting, read Chapter 10, Developing a Macro Module for an Applicator.

If you have basic experience with the possibilities of MeVisLab networks and think about programming
your own modules in C++, start with Chapter 13, Introduction to C++ Modules.

In addition, the following sections might be of help:

• Chapter 12, Excursion: Image Processing in ML for some background on coordinate systems and
how they are used in MeVisLab.

• Chapter 8, Starting Development with Package Creation for the package structure of the module
database and how to create your own packages for development.

1.6. Related MeVisLab Documents
Besides the document at hand, the following documents are available:

Table 1.1. List of MeVisLab Documents

Title Contents

How to Get Help? Overview over available help in MeVisLab

MeVisLab Reference Manual Reference for the MeVisLab user interface

The ML Guide MeVis Image Processing Library — Programming
Guide

ML Reference MeVis Image Processing Library — API
description

MDL Reference MeVisLab Definition Language (MDL) Panel/GUI
Reference

Open Inventor Overview Help for Open Inventor Modules

Open Inventor Reference Reference for all implemented Open Inventor
classes (converted from the original manpages)

Scripting Reference (Python) Scripting Reference for Python in MeVisLab

Toolbox Reference MeVisLab Toolbox Class Reference for various
API libraries

TestCenter Reference Class Reference for the TestCenter

Package Structure Information about the package structure in
MeVisLab

ToolRunner Manual for ToolRunner, a stand-alone program for
building projects and help files

CMake CMake in the MeVisLab context, including
explanations for how to use CMakeLists.txt files

To search in the online documentation, use Help → Search in Documentation, see the MeVisLab
Reference Manual, “Search in Documentation”.

Before We Start

13

The full list of available documents and resources is available on the Welcome Screen (which can also

be opened via Help → Welcome). While the Getting Started tab offers links to some important resources
and demos, the Documentation tab links to all documentation (HTML and PDF, if available).

Figure 1.1. Welcome Screen and Documentation Links

Tip

On the Documentation tab, you can also find the help files for all installed packages and
your user packages listed. This is possible because the documentation links are created
dynamically for your installation. For more information on packages, see Chapter 8, Starting
Development with Package Creation.

For all questions related to programming that are not covered by the documentation, please refer to the
MeVisLab forum where you can search old topics or post new questions.

1.7. Glossary (abbreviated)
For an extensive glossary, see the ML Guide.

ML, MDL, Open Inventor — Some Important Terms
Explained
Base Base fields/objects, for example the connectors for base objects. Base

connectors handle pointers to an abstract data object defined by the
user. How the Base object is handled depends on how it is integrated
in the module.

Module The base class (superclass) of all ML modules (page-based, demand-
driven). Not to be confused with the Base object described above.
WEM and CSO modules are also derived from Module.

ITK™ The Insight Segmentation and Registration Toolkit™. A large,
well known, open source image processing library which has been

Before We Start

14

wrapped in many parts for MeVisLab to work seamlessly with other
ML modules. See http://www.itk.org/ and https://www.mevislab.de/ for
details.

ML MeVis Image Processing Library, also called MeVis Library at times.

MDL MeVis Description Language, the language in which user interfaces of
modules and applications are written.

MeVisLab IDE The Integrated Development Environment.

Open Inventor Object-oriented 3D toolkit on top of OpenGL, a library of objects and
methods used for interactive 3D graphics

VTK™ The Visualization Toolkit™. A large, well known, open source
visualization library which has been wrapped in many parts to work also
in MeVisLab. See http://www.vtk.org/ and https://www.mevislab.de/
for details.

http://www.itk.org/
https://www.mevislab.de/
http://www.vtk.org/
https://www.mevislab.de/

15

Chapter 2. The Nuts and Bolts of
MeVisLab
In the following chapter, we give you a brief (and dry) introduction into the nuts and bolts of MeVisLab,
that is:

• Section 2.1, “MeVisLab Basics”

• Section 2.2, “Development in MeVisLab”

• Section 2.3, “MeVisLab Modules”

• Section 2.5, “Networks”

• Section 2.6, “Overview of Important Files ”

• Section 2.7, “User Interfaces Controls”

• Section 2.9, “How to Find More Information on Networks and Modules”

2.1. MeVisLab Basics
Some of the most prominent features of MeVisLab:

• Full 6D image processing (x, y, z, color, time, user dimensions)

• Paging

• Caching

• Multithreading support

• Multi-platform (Windows and Linux supported)

• Scripting support (Python)

• Macro system

• Defining of GUI elements with the MDL scripting language

• C++ programming interface

• Pure C++ and object-oriented design

• Self-descriptive module and application interfaces

• Error handling: configurable exception usage; configurable error handling; diagnosis modules,
automatic module tester

• Runtime type system

• Extensible voxel type

• Resources-friendly memory usage

• Supports highly complex module networks

The Nuts and Bolts of MeVisLab

16

• Based on standard libraries

• Currently around 960 Standard modules in the MeVisLab SDK core, around 3300 modules delivered
in total (with around 350 ITK modules, around 1400 VTK modules, and around 440 modules in the
Fraunhofer MEVIS release)

• Long time maintenance

2.2. Development in MeVisLab
In MeVisLab, development can be done on three levels:

• Visual level: Programming with “plug and play”: Individual image processing, visualization and
interaction modules can be combined to complex image processing networks using a graphical
programming approach.

• Scripting level: Creating macro modules and applications based on macro modules: Python scripting
components can be added to implement dynamic functionality on both the network and the user
interface level.

• C++ level: Programming modules: New algorithms can easily be integrated using the modular,
platform-independent C++ class library.

In addition, the abstract, hierarchical MeVisLab Definition Language (“MDL”) allows designing efficient
graphical user interfaces, hiding the complexity of the underlying module network to the end user.

From a workflow point of view, an application development would look as follows:

1. Connect existing modules to networks.

2. Develop new modules if necessary.

3. Build user interface (GUI).

4. Build macro modules to recycle complex functionality.

5. Use scripts to control networks, GUIs, and macros.

6. Build installer (only with a special ADK license which is only available for very close partners of
MeVis).

In MeVisLab, the algorithms are visualized as a network of modules (graphs). In a minimalist approach,
an image processing pipeline would consists of an image source, some algorithm/image processing
step in the middle and a viewer for displaying the output. This pipeline is mirrored in the MeVisLab GUI.

The Nuts and Bolts of MeVisLab

17

Figure 2.1. Image Processing Pipeline

Modules can be connected in various ways which will be described in the following paragraphs.

2.3. MeVisLab Modules
Within the concept of MeVisLab the basic entities we are working with are graphical representations of
modules with their specific functions for image processing, image visualization, and image interaction.

The three basic module types (ML, Inventor and macro) are distinguished by their colors:

Table 2.1. Module Types

Type Look Characteristics

ML Module (blue) Page-based, demand-driven
processing of voxels

Open Inventor Modules (green) Visual scene graphs (3D); naming
convention: all modules starting
with “So” (for scene object)

Macro Module (brown) Combination of other module
types, allowing implementing
hierarchies and scripted
interaction

Most modules have connectors which are displayed on the module. These represent the inputs (bottom)
and outputs (top) of modules.

The Nuts and Bolts of MeVisLab

18

In MeVisLab, three types of connectors are defined.

Note

In principle, every module type can have any kind of connector.

Table 2.2. Connectors

Look Shape Definition

triangle ML images

half-circle Inventor scene

square Base objects: pointers to data
structures

By connecting these connectors and therefore establishing a so-called data connection, image data, or
Open Inventor information is transported from one module to one or more others.

Besides connecting connectors, basically any field of modules can be connected to other compatible
fields of modules with a parameter connection.

Note

A special case are Inventor engine fields; they have no value representation themselves
unless connected to a fitting destination field. See Section 28.3, “Connecting Inventor
Engines to ML Modules” for more details.

Table 2.3. Connections

Type Look Characteristics

Data connections (connector
connections)

The direct connection between
connectors. Depending on which
connectors are involved, the
connection is rendered in a
different color: blue for ML, green
for Open Inventor, brown for Base.

Parameter connections (field
connections)

Connections created by
connecting parameter fields within
or between modules

Tip

For more display options, see the MeVisLab Reference Manual, chapter “Modules and
Networks”.

2.4. Fields
Fields define the interface of a module, that means they are also the basis of the connector types given
above.

They come in two types:

1. In/out fields — connected by data connections

The Nuts and Bolts of MeVisLab

19

• Images

• Nodes

• Objects

2. Parameter fields — connected by parameter connections

• Numbers, Strings, Booleans

• Vectors

• Triggers

Field changes trigger events handled by field listeners. Field connections are a special forms of field
listeners.

Tip

Read Section 2.9, “FieldListener” for information about the use of explicit field listeners for
Python scripting.

2.5. Networks
Networks are connections between modules with which you can implement complex processing tasks
from sets of standard ML, Inventor, WEM, CSO, ITK, or VTK modules.

Networks are edited and saved as *.mlab files in MeVisLab.

In Figure 2.2, “Network Layout”, the internal network of the RegionGrowingMacro module is shown. It
consists of all three types of modules and shows data connections as well as parameter connections.

The Nuts and Bolts of MeVisLab

20

Figure 2.2. Network Layout

Remember that macro modules are encapsulated networks of their own, so you effectively work with
subnetworks (see Chapter 9, Introduction to Macro Modules for more information).

Tip

For information on the involved classes for the programming of modules, connectors, and
connections, see Chapter 13, Introduction to C++ Modules.

2.6. Overview of Important Files
Here a list of the most important file types:

The Nuts and Bolts of MeVisLab

21

Table 2.4. Important Files

File type Contents

.mlab Network file, includes all information about
the network's modules, their settings, their
connections, and module groups.

.def Module definition file, necessary for a module to be
added to the common MeVisLab module database.
May also include all MDL script parts (if they are
not sourced out to the .script file).

.script MDL script file, typically includes the user interface
definition for panels. See Section 10.2, “Adding the
Macro Parameters and Panel” for an example on
GUI programming.

.mhelp File with descriptions of all fields and the use of a
module. See MATE as a Module Help Editor in the
MeVisLab Manual.

.py Python file, used for scripting in macro modules.
See Chapter 10, Developing a Macro Module for an
Applicator for an example on macro programming.

.dcm DCM part of the imported DICOM file, see
Section 12.7, “Data Types for DICOM and TIFF”.

.tiff TIFF part of the imported DICOM file, see
Section 12.7, “Data Types for DICOM and TIFF”.

.mlimage 6D image saved with all DICOM tags, lossless
compression, and in all data types.

.gvr Precomputed octree file for direct volume
rendering.

For files related to module programming in C++, see Chapter 13, Introduction to C++ Modules.

2.7. User Interfaces Controls
MeVisLab uses Qt for rendering the GUI (panels, etc.) and offers a scripting interface.

Every module comes with an automatic panel on which all fields and available settings are listed.

For improving the handling, user interfaces (“panels”) can be added for modules, see Figure 3.19,
“Automatic and Settings Panel of View2D” for an example. Panels are written in MDL and offer the
following possibilities:

• layouting and grouping of fields

• excluding some of the available fields (to make the panels more user-friendly)

• adding additional fields

• adding additional functionality by calling script methods

The components of the user interface are controls.

• User input controls, like text and number edit controls; popup menus, radio buttons, checkboxes, and
trigger buttons. They are typically, but not necessarily linked to a field. Several controls can be linked
to the same field.

• Layout controls, like for horizontal/vertical grouping.

• Decoration controls, complex controls, dynamic controls, etc.

The Nuts and Bolts of MeVisLab

22

To these controls, scripting can be added.

An example for the programming of a small module panel is given in Section 10.2, “Adding the Macro
Parameters and Panel”.

Tip

See the ExampleGUIScripting module or other example modules. Enter “Test” in the quick
search to get a list of available modules.

For further details on panel scripting, please refer to the MDL Reference.

2.8. Scripting
MeVisLab offers scripting interfaces. The scripts can be implemented in Python.

Scripts can be triggered by field listeners or user interface controls.

The trigger source defines the "context" of the script execution, i.e., the set of objects accessible by
the script code.

• Modules, fields, connections

• User interface controls, windows

• Wrapped C++ objects like ML images, CSOs, or markers

Global objects provide access to MeVisLab core and system functionality.

2.9. How to Find More Information on
Networks and Modules
1. When you enter the module name in the quick search, the About information of the module is

displayed.
2. If the View Module Inspector is open, you can find the About information on the respective tab.
3. To get a detailed description of the module's function and how to use it, refer to its help file.

a. Right-click the module to open the context menu.

b. Select Help → Show Help to open the module's HTML help in your default browser.

Figure 2.3. Module Context Menu: Show Help

The Nuts and Bolts of MeVisLab

23

4. To see how the module is working, an example network is delivered with most modules.

a. Right-click the module to open the context menu.

b. Select Help → Show Example Network to open the example network on another network tab.

24

Chapter 3. Loading and Viewing
Images
In the following chapter, we will walk through an example network for loading and viewing images.

• Section 3.1, “The MeVisLab GUI”: first steps in the MeVisLab user interface

• Section 3.2, “Searching and Adding Modules”: searching and finding modules

• Section 3.3, “Using the ImageLoad Module”: loading images

• Section 3.4, “Adding Viewers to ImageLoad”: adding viewers (View2D and View3D)

In addition, two special topics are discussed:

• Section 3.5, “Alternative Ways to Load Images”: alternative ways to load images

• Section 3.6, “A Note on Importing DICOM Images”: importing and converting DICOM images to the
internal image format of MeVisLab

3.1. The MeVisLab GUI
First, start MeVisLab (the “how” depends on your platform). After the Welcome Screen (see Figure 1.1,
“Welcome Screen and Documentation Links”), the start view opens.

Figure 3.1. MeVisLab User Interface

Loading and Viewing Images

25

By default, MeVisLab starts with an empty workspace and some Views on the right (like the Output
Inspector) and bottom of the screen (usually the Debug Output). In the Debug Output, you can find
information about your MeVisLab installation and start-up, which preferences and license file are loaded,
and whether all packages loaded correctly or with errors.

Views can be configured via the menu bar, View → Views, or by a right-click on the border of Views.

Figure 3.2. View Selection

Some View arrangements are pre-defined as layouts, which can be selected via View → Layout. If
you are working in the User Default Layout, all changes you make in the Views configuration are
persistent and will be saved as your “User Default Layout”. Therefore, most screenshots in the MeVisLab
documentation are only examples — your own MeVisLab GUI may look different. Only the workspace
always remains visible.

Tip

For details on layouts, see the MeVisLab Reference Manual, chapter “Layout”.

The workspace is the place for constructing and editing module networks. If more than one network is
open, tabs appear on top of the workspace. To create, open and save one or more networks, use the
tool bar buttons or the File menu in the menu bar. To switch between different network tabs, use the
Networks menu in the menu bar or press Tab.

3.2. Searching and Adding Modules
There are several ways to add a module to the current network, for example:

Loading and Viewing Images

26

• via the menu bar, entry Modules.

• via the menu bar, Quick Search.

• via the View Module Search.

• via the View Module Browser.

• via copy and paste from another network.

• by scripting, see the Scripting Reference.

Both the Modules menu and the Module Browser display all available modules. The modules are
sorted hierarchically by topics and by module name, as given in the file Genre.def.

Therefore, both places are a good starting point when in need of a specific function, like an image load
module.

Figure 3.3. Modules Menu and Module Browser

The advantage of the Module Browser is that you can right-click the entries, open the context menu
and, for example, open the help (in your default Internet browser) or the module files (in MATE, the in-
built text editor).

Note

For a module to get listed, it has to be available in the SDK distribution or in your user-
defined packages. If in doubt or missing something, check out the loaded packages in the

Preferences (on Windows and Linux: Edit → Preferences → Packages; on Mac OS X:

MeVisLab → Preferences → Packages). For details on packages, see Chapter 8, Starting
Development with Package Creation.

Usually the quickest way to add modules to a network is the quick search in the menu bar. It offers you
the possibility to search for modules by module name. By default, the search will also be extended to
keywords and substrings and is case-insensitive. To change these settings, click the magnifier button
for the search options.

Tip

The quick search field does not need to have the focus — any time you enter something
in the MeVisLab GUI while not being in a dialog window, this will be entered into the quick
search automatically.

Loading and Viewing Images

27

Figure 3.4. Quick Search Options

To search for a module to load an image, you could either type “load” or “image”. Let us go with the
second option this time. While typing “image”, the possible results appear. Use the up/down keys on
your keyboard to move to one of the listed modules. The module's About information will appear next
to it, allowing you to decide if this is the right module for you.

Figure 3.5. Quick Search Results

Tip

For a more complex search, use the Module Search View.

Select ImageLoad and press ENTER to add the module to a new network.

On the left-hand side of the bottom of the tooltip, you will find three buttons that you can click.

•
Adds the module to the network. If no network exists, a new network is added before adding the
module.

•
Shows the help file for the module in a browser.

•
Opens a context menu with further options.

Figure 3.6. ImageLoad Module

Loading and Viewing Images

28

The module is an ML module, as can be seen by the blue color. It offers one image output connector
(triangle for image, output because it is on the top of the module; see Chapter 2, The Nuts and Bolts
of MeVisLab).

In the next section, we will have a closer look at the module details.

3.3. Using the ImageLoad Module

Note

For the following section, we expect that the Views Output Inspector and Module

Inspector are open. If necessary, add them via View → Views.

1. First, we need to load an image.

a. Double-click the ImageLoad module to open its panel.

b. Click Browse to select a file for display. The default file browser opens.

c. Go to the MeVisLab DemoData directory at $(InstallDir)Packages/MeVisLab/Resources/
DemoData in the MeVisLab installation path and select a file, for example a MRI scan of a head
(Head4_t1.small.tif). The image is loaded immediately. (Instead of ImageLoad, you could
also use LocalImage which is optimized for loading images in relative paths, as explained in
Section 3.5.2, “Using the LocalImage Module”).

Tip

If you would like to start with your own image data immediately, please see the chapter
Section 3.6, “A Note on Importing DICOM Images” on how to convert your DICOM slices
into the internal file format of MeVisLab first. Then continue in place.

Module panels are intended to stay open, so keep the panel open or minimize it if it gets in your
way. There are two ways to minimize a panel:

• Click the minimize button on the top right of the panel window: this will minimize only this panel.

• Select Panels → Minimize All Open Panels (or press the respective keyboard shortcuts): this
will minimize all panels of this network.

2. For display, you can either add a viewer (we will do this later in this example) or you can click the
module's output connector to display the image in the Output Inspector.

The great thing about the Output Inspector is that it will display the output of any connector (or
data connection) in the process chain (as long it is a format the inspector can interpret). So if you
are ever unsure about what is actually the input or output of a module, simply click the connector
or connection to find out.

Loading and Viewing Images

29

Figure 3.7. ImageLoad Panel and Output Inspector

Your image does not look like this? One reason might be that the slice of the image you are looking at
has no information. Click on the Output Inspector and scroll through the slices by

• using the mouse wheel

• keeping the middle mouse button (mouse wheel) pressed and moving the mouse up and down

• pressing the arrow keys Up or Down (Left or Right slice through time points)

Still not seeing anything? Then try to adjust the visibility range by changing the windowing. For this,
keep the right mouse button pressed while moving the mouse up/down (for window width) or left/right
(for window center). During these actions, the mouse cursor changes into a contrast symbol.

Figure 3.8. Adjusting the Window/Level

Both on the panel and on the additional information of the Output Inspector, the image properties can
be found. In the Output Inspector, you can open them by clicking .

Loading and Viewing Images

30

Figure 3.9. Output Inspector with Image Properties

The image properties show the following information (see Chapter 12, Excursion: Image Processing in
ML for more information):

• Image Size in x, y, z, c, t, u

• Page size in x, y, z, c, t, u

• Data type and range

• Voxel size in mm

• World matrix

A number of options are available:

• More Info...: opens the panel of an Info module showing additional information about the image.

• Update Min Max: scans in the input image for the real min/max values. Also resets the LUT on base
of the new min/max values.

• Set Default LUT: sets the LUT on base of the image's min/max values or on stored DICOM tags if
available.

• View All: centers the rendered image in the 3D view, has no effect in the 2D view.

• Save Image As...: Saves the image to disk.

• Settings...: Shows the panel of the used 2D viewer. Has no effect on the 3D rendering.

The layout of the Output Inspector's viewer and control panel can be adjusted.

In addition, two key shortcuts are available:

• A: Toggles the display of the annotations.

• I: Toggles the display of an additional information display.

Loading and Viewing Images

31

Figure 3.10. Output Inspector with Additional Information Display

A 3D display is possible (in case of a single slice its depth is the voxel depth). For this, click the 3D
tab in the Output Inspector.

Figure 3.11. 3D Output Inspector

Note

The 2D and 3D views are independent of each other.

The 3D display can be rotated. The orientation can be seen on the little cube in the lower right corner
of the viewer (Notation: A = anterior, front; P = posterior, back; R = right side; L = left side; H = head; F
= feet). You can also use the windowing described above for the 2D view.

The information given in the panel and the 2D view image properties of the Output Inspector can also
be displayed right next to the module connector. For this, check

• Extras → Show Image Connector Preview for a thumbnail preview and/or

• Extras → Show Connector Details for connector details.

Loading and Viewing Images

32

Alternatively, activate the respective options in the Preferences, section “Network Appearance” (on

Windows and Linux: Edit → Preferences; on Mac OS X: MeVisLab → Preferences).

Figure 3.12. Connector Details in the Edit Menu

Figure 3.13. Connector Details in the Preferences

The additional information is displayed when single-selecting a module. The amount of displayed
information depends on the zoom factor. To zoom in/out of a network, scroll with the mouse wheel.

Loading and Viewing Images

33

Figure 3.14. Connector Details Depending on Zoom

For this example, we will work without the connector details display, because it tends to clutter the
interface.

3.4. Adding Viewers to ImageLoad
Instead of using the Output Inspector (whose display might change with every clicked connector), it is
sensible to add a viewer to the network. There are two standard macro modules available in MeVisLab
which provide standard viewer configurations for 2D and 3D rendering, namely View2D and View3D.
Especially the 2D Viewer is frequently used to examine image processing results within a module
pipeline, for example. Once you begin to implement your own applications, you are free to create your
own viewer implementations adapted to your special tasks.

3.4.1. Adding the View2D Module

1. Add a View2D module to your network. In the Modules menu it is located at Modules →
Visualization → 2D Viewers → View2D.

The View2D module has one input connector for the image to be rendered, as well as three Inventor
inputs.

2. Feed in the image by connecting the image output of the ImageLoad module with the image input
of the View2D module. This is done as follows:

a. Click the output connector of ImageLoad.

b. Keep the left mouse button pressed while dragging the connection to the input connector of
View2D (white line).

c. Check that the connection is well-defined (green line).

d. At the input connector of View2D, release the mouse button and establish the connection (blue
line).

Loading and Viewing Images

34

Figure 3.15. Setting up the Connection

Tip

There are many more ways to connect and to disconnect modules, see Section 3.4,
“Connecting, Disconnecting, Moving, Copying, and Replacing Connections”.

Although the connection is established, no image rendering has started yet. To initialize rendering,
open the View2D panel by double-clicking the View2D module in your network. As you can see, the
default panel is the viewer itself.

Figure 3.16. Panel of View2D

The View2D panel provides a standard viewer with many features, like slicing, zooming, windowing,
annotations, slab view, cine mode, and many more. A full description of all supported features and
how to use them can be found on the View2D help page which you can open from the module's
context menu.

The View2D module offers various settings. As the default panel is the viewer, the Settings panel

needs to be opened explicitly from the context menu via Show Window → Settings.

Loading and Viewing Images

35

Figure 3.17. Opening the Settings Panel of View2D

Figure 3.18. Settings Panel of View2D

Note

A module always has one automatic panel and may have an arbitrary number of
additional panel windows, as defined in an MDL file (in the .script file by default). The
automatic panel lists all variables, fields and inputs/outputs of the module; the scripted
panels may only include a fraction of these fields (see also Section 2.7, “User Interfaces
Controls”) or more controls than fields.

Loading and Viewing Images

36

Figure 3.19. Automatic and Settings Panel of View2D

3. Now is a good time to save your network as MyFirstNetwork.mlab. You can do this in several ways:

• Select File → Save or press the respective keyboard shortcut (for how to get a list of all shortcuts,
see the MeVisLab Reference Manual, chapter “Shortcuts”).

• Click the disk symbol in the toolbar.

The network modules and all module parameters are stored. Next time you open the network, you
will get access to the loaded image at the output of the ImageLoad module immediately.

Tip

You can quickly re-open the last twenty networks via the menu bar, File → Recent Files.

Tip

The most recent network file can be opened via File → Open Most Recent File which
has an own keyboard shortcut.

Tip

If the option Auto save MeVisLab documents in the Preferences is selected, MeVisLab
networks are auto-saved as <NetworkName>.mlab.auto upon major changes. This
allows for restoring the networks in case of system crashes. Auto-saved copies are
deleted when the according networks are saved.

Loading and Viewing Images

37

3.4.2. Adding the View3D Module
The View3D macro module is an easy-to-use application of the SoGVRVolumeRenderer module, which
is a high-end, hardware-based image rendering module using 3D textures. Adding the View3D module
to the network, we get access to a 3D scene of our example image.

Figure 3.20. Connecting the View3D Module

Figure 3.21. The View3D Panel

In addition to the 3D display offered by the Output Inspector, the View3D viewer comes with several
panels on which you can set display details or even record a movie.

3.5. Alternative Ways to Load Images
Besides the way described above, there are variations.

3.5.1. Dragging Images onto the Workspace
Instead of adding the module, you can drag the image file

Loading and Viewing Images

38

• onto the workspace: An ImageLoad module is created automatically in the current network when you
drag a DICOM or TIFF image file from a file browser onto the MeVisLab workspace. The dragged file
is loaded automatically and available at the image output connector of the created ImageLoad module.

Tip

This mechanism also works for WEM files (creates a WEMLoad module) and CSO files
(creates a CSOLoad module).

• onto an existing ImageLoad module
• onto the filename field of an existing ImageLoad module

3.5.2. Using the LocalImage Module

Instead of using the ImageLoad module, you can use LocalImage.

LocalImage is a macro module that allows for image selection based on relative paths. This method
is recommended for image referencing because it enables an easier exchange of networks between
cooperating parties. The list of supported variables can be seen when using the drop-down box of the
input widget.

Figure 3.22. LocalImage Module

Macro modules are a combination of an internal network and a script. You can open the internal network
via the module's context menu or by pressing SHIFT and double-clicking the module. Alternatively, the
internal network can be opened in the preview state of a network (see the MeVisLab Manual).

Figure 3.23. Show the Internal Network

In the case of LocalImage, the internal network consists of an ImageLoad only. The difference to that
module is only in the scripting that offers relative instead of absolute paths to the file — a feature that
has become somewhat obsolete by the introduction of the isFilePath attribute on string fields, which
accomplishes roughly the same without the need for extra code.

Loading and Viewing Images

39

Figure 3.24. Internal Network of the LocalImage Module

3.6. A Note on Importing DICOM Images
Without importing your DICOM slices, the standard MeVisLab image loading modules like ImageLoad
will only be able to load single DICOM slices separately. For further information, see the chapter
Chapter 12, Excursion: Image Processing in ML.

The DICOM import is mainly provided by the modules DicomImport and DirectDicomImport. The use
of DicomImport will be described here:

1. Add the module to the network via the quick search or the menu bar, Modules → File → DICOM →
DicomImport. Open the module panel with double-click on the module.

Figure 3.25. DicomImport

2. Enter the necessary data.

a. Select the Source Directory where your DICOM slices are located. In the MeVisLab installation
path you can find some example DICOM slices in the directory $(InstallDir)/Packages/
MeVisLab/Resources/DemoData/BrainT1Dicom. All subdirectories will be scanned recursively
by default.

Loading and Viewing Images

40

b. Click the Import button. The lower part of the module panel will show error messages (if there
are any).

Most of the import process happens asynchronously. When the progress bar at the bottom of the
module panel disappears the import has finished. The area above the error message area will contain
the list of imported patients, which can be expanded to show studies, series, and finally image
volumes. You can click on the volume entries, which will be provided at the first and second output
connector of the module. (The second output only contains the combined DICOM tree, while the first
one also provides the image volume.) By default no entry will be selected.

You can now connect any module that processes images (or DicomTree objects) to the module.

If your DICOM import fails, or doesn't provide the expected results, check the settings of the module
by clicking the Configuration... button, especially check the sections Sort/Part. You should probably
also consult the help page for this module which is available through the context menu of this module

via Help → Show Help.

Tip

DICOM multi-frame files can be opened directly in MeVisLab through the ImageLoad
module; therefore, the use of DicomImport is not absolutely necessary for displaying the
data. ImageLoad will not split or re-arrange the frames in a multi-frame file, though.

DICOM files without image data can also be opened with LoadDicomTree.

Note

MeVisLab has its own 3D file format which stores the image values and the image DICOM
tags in a file with the file extension .mlimage, which can be stored with MLImageFormatSave
and loaded with MLImageFormatLoad.

There is also an older format that stores image and tags separately in two files with the
same base file name but different file extensions: <filename>.tiff and <filename>.dcm.
These pairs can be loaded with ImageLoad

41

Chapter 4. Implementing a Contour
Filter
In this chapter we will introduce to you how an image processing pipeline is implemented by means of a
MeVisLab network. We are going to implement a contour filter which is based on the elementary image
processing steps average, dilation, and subtraction. To get a visual impression of what the filter is doing,
we will also implement two synchronized render pipelines with 2D viewers for the filter in- and output.

• Section 4.2, “Implementing the Contour Filter”: implementing an image processing pipeline
• Section 4.3, “Parameter Connection for Synchronization”: synchronizing parameters between

different modules by establishing parameter connections

This will be our resulting network:

Figure 4.1. Example Network Contour Filter

Note

In this example, the Inventor inputs of the View2D modules are hidden by unchecking the

context menu option View2D Options → Show Inventor Inputs. For more information,
see the MeVisLab Reference Manual, chapter “Additional Inputs”.

4.1. Loading the Input Image
First, we need an image as input. This image will be used as the input image for the normal viewer as
well as as the input and filter image for the image processing pipeline.

1. Create a new network (File → New) and save it to disk.
2. Find and add the LocalImage module via the Quick Search. As image input, use an image from the

default MeVisLab demo data path.
3. The default image loaded by LocalImage, ProbandT1 is fine.
4. For the output, find and add the View2D module via the Quick Search and connect it to the

LocalImage output. Double-click View2D to see the original image. Later, we will compare this output
with the image resulting from the filter process.

Implementing a Contour Filter

42

Figure 4.2. Viewing the Input Image for the Contour Filter

Tip

To see an immediate (albeit small) preview of the input image, you can enable the preview

modus in the menu bar, Extras → Show Image Connector Preview.

4.2. Implementing the Contour Filter
We want to implement a contour filter that is composed of the following image processing pipeline:

1. Take an input image a.
2. Smooth the input image with an average kernel: Average[image a] -> image b.
3. Dilate the smoothed image by means of a morphological kernel operation: Dilate[image b] -

> image c.
4. Subtract the smoothed image from the dilated and smoothed image: Subtract[image c,image b]

-> image d.
5. Show the filter output image d.

For this processing pipeline we need the following basic image operators:

• Average operator: a search yields the module Convolution. From the description: “Simple constant
convolution filters like Average, Gauss, Sobel, Laplace.”

• Dilation operator: a search yields the module Morphology. From the description: “Implements dilation
and erosion filters that separately act on single bits.”

• Subtraction operator: a search yields various arithmetic modules. How to decide which module is the
correct one? When you add the modules and have a look at the modules' help, you will find that
Arithmetic0 is for arithmetic operations on scalars or 3D vectors, Arithmetic1 is for arithmetic
operations on a single image, and Arithmetic2 is for arithmetic operations on two images. As we
want to subtract two images, Arithmetic2 is the correct module.

Proceed as follows:

1. Add the modules Convolution, Morphology, and Arithmetic2 to the network.

Alternatively you could find and add the modules to the network via the Modules menu:

Implementing a Contour Filter

43

a. via Modules → Filters → Kernel → Convolution,

b. via Modules → Filters → Morphology → Morphology and

c. via Modules → Analysis → Arithmetic → Binary → Arithmetic2.

The image we use as input has to be processed first via the Convolution module. After that, the
resulting convoluted image will be processed and also output directly to the Arithmetic2 module
where the two images will be subtracted.

For the subtraction, the following information is offered in the help of Arithmetic2: “The input image
1 decreased by input image 2 is passed to the output.” Therefore, it is important to connect the
images in the correct order, otherwise the result will look rather strange.

2. Open the panels of Convolution, Morphology and Arithmetic2 by double-clicking the modules.
Then adjust/check the default values of the following parameters:
a. Module Convolution: Keep the default kernel type "3x3 Average Kernel" for predefKernel.
b. Module Morphology:

i. In the field Filter Mode, keep the default value "Dilation".
ii. For the Kernel Geometry, use a kernel of the size 3x3x1.

c. Module Arithmetic2: In the field Function, change the default value "Add" to the value
"Subtract".

Figure 4.3. Adjust Filter Parameters

Tip

You can view and edit module field values also in the Module Inspector View. On the
Fields tab, all fields of the currently selected module are listed by names and values.

Note

Field names (in the module) and field labels (in the interface of the module panel) do
not have to be the same. To find the field name, right-click the field label on the panel;
the field name is listed as first entry of the context menu.

3. To view the results of every step in the processing pipeline, use the Output Inspector, which can

be opened via the menu bar, View → Views. Click each connector to follow the image processing.

Implementing a Contour Filter

44

Figure 4.4. Constructing the Filter Pipeline — Convolution Output

Figure 4.5. Constructing the Filter Pipeline — Morphology Output

Figure 4.6. Constructing the Filter Pipeline — Arithmetic2 Output

4. To distinguish the image processing pipeline, you can create a group for it. For that:

Implementing a Contour Filter

45

a. Select the three modules, for example by dragging a selection rectangle around them, or by
single-selecting the modules while pressing SHIFT.

b. Right-click the selection to open the context menu and select Add to New Group.
c. Enter a name for the new group, for example “Filter”.

Figure 4.7. Creating a New Group

The new group is created and displayed as a green rectangle. The group allows for quick interaction;
for example, a double-click on its title bar zooms in and centers the group; a right-click on the title
bar opens a menu for editing and deleting the group. You can also change the default color in the
Preferences. For further information on groups, please refer to the MeVisLab Reference Manual,
chapter “Using Groups”.

5. For the output, add another View2D module, either via the quick search or by selecting the existing

View2D module in the network and duplicating it (via Edit → Duplicate or by pressing the keyboard
shortcuts given there).

Figure 4.8. Resulting Contour Filter Network

Implementing a Contour Filter

46

Tip

The filter can be tuned via some parameters given in the Convolution and Morphology
modules. Changing the convolution kernel size (field predefKernel of the Convolution
module) and/or the dilation kernel (fields kernelX, kernelY, kernelZ of the Morphology
module) will enhance contours at different scales.

In a final step, we will synchronize the Viewers of the two View2D modules by establishing parameter
connections between them.

4.3. Parameter Connection for
Synchronization
Besides data connections between module inputs and outputs (Image, Inventor, and Base connectors)
it is also possible to connect module fields via a parameter connection. The values of connected fields
are synchronized, that means when changing the value of one field, all fields connected to this field will
be adapted to the same value.

Some important points:

• Fields can be connected to an arbitrary number of other fields as source, but only once as destination.
(Similar to data connections, for which an output connector can be connected to an arbitrary number
of other connectors but an input connector can only be connected once.)

• Connections between fields may be unidirectional or bidirectional.

Unidirectional: Field A is the output and field B the input. Changes in field A reflect in field B but
changes in field B have no effect on field A.

Bidirectional: Field A is the output and field B the input and vice versa (two parameter connections).
Changes in field A reflect in field B and changes in field B reflect in field A. (This is the setting we
will use in our example.)

Note

MeVisLab prevents the creation of infinite loops between fields in most cases. A notable
exception is a loop between Inventor fields when ML or macro interface fields constitute
intermediate fields. In this case the loop cannot be detected and - once triggered - will
lead to a background computational load. This can be avoided by using the SyncFloat
or SyncVector modules (see “Using SyncFloat to Reduce System Load”) or by using
scripting to only propagate real value changes.

• Not all connections between all fields are sensible. Usually the connected fields should be of the
same type.

• Parameter connections may be established both between fields within the same module and between
fields of different modules.

• On the MeVisLab user interface, parameter connections are established by dragging fields onto the
labels of automatic panels (and most scripted MDL panels, see the MeVisLab Reference Manual,
chapter “Parameter Connections Inspector” for details).

In our example, a bidirectional parameter connection is the way to synchronize the View2D modules so
that the same slice is rendered in both viewers. To establish this, proceed as follows:

1. Add a SyncFloat module to the network and open its panel with a double-click.

Implementing a Contour Filter

47

2. Right-click each View2D module to open the context menu and select Show Window → Automatic
Panel (alternatively, press ALT and double-click the module). The field that controls the currently
rendered slice in a SoView2D module is the startSlice field.

3. On the SoView2D panel, select the label of the startSlice field and drag the (invisible) connection
onto the label of startSlice field on the SoView2D1 panel. The connection is drawn as thin gray
arrow with the arrowhead pointing to the module that receives the parameter as input.

4. In the other direction drag the startSlice field from the SoView2D1 panel to the float1 field of the
SyncFloat panel, and from the same panel the float2 field to the startSlice field of the SoView2D
panel. The intermediate SyncFloat module breaks the inevitable notification loop by only triggering
the second connection at real value changes.

Tip

Another typical way of notating the fields is “InstanceName.FieldName”, for example
SoView2D.startSlice. You will find this notation when you right-click the parameter
connection to open its context menu, in which you can disconnect single or all parameter
connections.

Figure 4.9. Establishing the Parameter Connections

Figure 4.10. Resulting Network

As a result, moving through the slices with the mouse wheel (“slicing”) in one of the viewers synchronizes
the rendered slice in the second viewer.

Tip

A list of all parameter connections is displayed in the Parameter Connections Inspector

View (which can be opened via the menu bar, View → Views → Parameter Connections
Inspector). Right-click the connections for a context menu with various options.

Implementing a Contour Filter

48

For further information on parameter connections, please refer to the MeVisLab Reference Manual.

This is the end of this example. The full network is delivered with the demos of MeVisLab (available via

Help → Welcome → more... → ContourFilter.mlab).

49

Chapter 5. Defining a Region of
Interest (ROI)
In the following chapter, we will walk through the creation of a network that allows defining a 2D region
of interest (ROI), that is by selecting a region of the image in the first viewer, the selected region is
displayed as a subimage in a second viewer.

• Section 5.1, “Creating a Viewer with a Selection Rectangle”

• Section 5.2, “Adding a Second Viewer for the Subimage”

• Section 5.3, “Adding the Interactivity for the Viewers”

The resulting network looks as follows:

Figure 5.1. Example Network ROISelection

In this chapter, we will use the terms “world position” (absolute) and “voxel position” (relative to the
image), which are discussed in detail in the chapter Chapter 12, Excursion: Image Processing in ML.

Defining a Region
of Interest (ROI)

50

5.1. Creating a Viewer with a Selection
Rectangle
The first part is building a simple network with an image load module, a viewer, and a module that allows
for drawing a selection rectangle.

1. Add LocalImage and the View2D module to the new network and connect their image connectors.
2. Double-click on LocalImage to open the panel, and select the image Head3_dualecho.small.dcm

for this example. Load the image.
3. Add the Open Inventor module SoView2DRectangle and connect its output to the first View2D Open

Inventor input connector.

The module help offers the following purpose for the module: “The SoView2DRectangle module
allows for a drawing and interactive adjustment of a 2D rectangle in a 2D viewer. Note: Although
this module is called SoView2DRectangle, it actually draws a 3D box.” (The latter is the reason why
the world positions are given in 3D.)

Double-click on SoView2DRectangle to open its panel. For displaying the subimage, the world
positions will be crucial.

Figure 5.2. Viewer with Selection Rectangle

5.2. Adding a Second Viewer for the
Subimage
Add the second viewer part, which consists of two modules:

• a SubImage module for cutting out the selected region

• and another View2D module.

The module help of SubImage offers the following purpose and usage tips for the module: “This module
extracts subimages from its input image. [...] Connect an input image, set the coordinate mode and the
size and position of the subimage.”

Defining a Region
of Interest (ROI)

51

On the SubImage module, check the option Auto apply so all changes to the module's parameter take
an immediate effect. Also, set the module's Mode to “Voxel Start & End”, because we will use the start
and end voxel position of the interactively drawn rectangle to define the subimage.

Figure 5.3. Viewer for the Subimage

Just leave X, Y, and Z as Modifyable Output Dimensions; uncheck T here.

We have not yet defined how the world positions of SoView2DRectangle are connected to the subimage,
so the current subimage is rather random, depending on the initial parameter state of the SubImage
module.

5.3. Adding the Interactivity for the Viewers
In the third step, we add the interactivity. The problem in connecting the modules SoView2DRectangle
and SubImage is that the world positions offered by the first modules need to be translated to voxels
positions for the latter.

For such translation tasks, there are several modules that convert values from one type to the other.

1. As we need world and voxel, enter those words in the quick search to find the module:

Defining a Region
of Interest (ROI)

52

Figure 5.4. Searching for World to Voxel Conversion

WorldVoxelConvert converts world into voxel positions (or vice versa), either as vector or as single
float values.

Figure 5.5. WorldVoxelConvert Panel

In our case, we need two conversions, for the start and end positions separately.
2. Add WorldVoxelConvert a second time by selecting the module and duplicating it, either via Edit

→ Duplicate or by pressing the respective keyboard shortcut.

3. Name the instances accordingly, for example “startPos” and “endPos”. For this, select Edit Instance
Name in the module's context menu.

Tip

Alternatively, use the shortcuts F2 (Windows and Linux) or ENTER (Mac OS X). See
the MeVisLab Reference Manual, chapter “Shortcuts”.

4. In both WorldVoxelConvert modules, check the option Integer voxel coordinates.
5. Both WorldVoxelConvert modules need the original image for obtaining the world-to-voxel matrix,

so connect them to LocalImage (the image output can be connected to an unlimited number of
modules).

Defining a Region
of Interest (ROI)

53

Figure 5.6. WorldVoxelConvert Modules Added

6. For the parameter connections, proceed as follows:

a. Connect the SoView2DRectangle Start World Position to the WorldVoxelConvert(startPos)
World Position Vector.

b. Similarly, connect the SoView2DRectangle End World Position to the
WorldVoxelConvert(endPos) World Position Vector.

c. Connect the converted values from WorldVoxelConvert(startPos), that is the Single X,
Single Y, and Single Z values, to the respective Subimage Start X, Start Y, and Start Z values.

d. Similarly, connect the converted values from WorldVoxelConvert(endPos), that is the Single
X, Single Y, and Single Z values, to the respective Subimage End X, End Y, and End Z values.

Defining a Region
of Interest (ROI)

54

Figure 5.7. Adding the Parameter Connections

7. If you have not done that before, check the option Auto apply on the SubImage panel (bottom right
corner), so that any changes of the selected region in the first viewer are updated automatically in
the second viewer.

Now the network is fully functional.

Defining a Region
of Interest (ROI)

55

Figure 5.8. Example Network ROI Selection

This is the end of this example. The full network is delivered with the demos of MeVisLab (available via

Help → Welcome → more... → RoiExample.mlab).

56

Chapter 6. Excursion: Functionality
Overview
In the following chapter, we will list a number of typical modules for typical questions, with brief
information on their main purposes.

Tip

To learn about module details, read the module help and have a look at the example
network.

• Section 6.1, “Image Handling and Processing”

• Section 6.2, “Visualization”

• Section 6.3, “Data Objects”

• Section 6.4, “Miscellaneous”

6.1. Image Handling and Processing

6.1.1. Image Handling
• ImageLoad: opens an image file stored in one of the following formats: DICOM, TIFF, DICOM/TIFF,

RAW, LUMISYS, PNM, Analyze, PNG, JPEG.
• LocalImage: works like ImageLoad, but loads images relative to the network or the local MeVisLab

installation.
• ImageSave: saves an image to file using one of the following image file formats: DICOM, TIFF,

DICOM/TIFF, RAW, LUMISYS, PNM, Analyze, PNG, JPEG.

6.1.2. Image Properties
• Info: shows information about the currently connected input image, like image size, page size, voxel

size, total volume, world matrix, etc.
• MinMaxScan: scans the input and updates the minimum and maximum values of the output image.

The data type can be be adapted, left unchanged or set to an arbitrary one.
• ImagePropertyConvert: allows to freely change page size, minimum or maximum value, data type,

or world matrix of an image.
• ImageStatistics: computes some statistics of the input image voxels (subset of voxels).

6.1.3. Basic Image Processing
• SubImage: extracts subimages from an input image based on either voxel start/size, voxel start/end

or world start/end. Can also be used to create a region larger than the input image.
• Resample3D: resamples an image in 3D on an arbitrary planar parallel grid. 17 filters are available.
• Reformat: can be used to reformat an image to a reference image, or to create reformatted overlays

via SoView2D/SoOrthoView2D.
• Scale: scales the input image to another interval. The source and target scale interval can be defined.
• Arithmetic1: performs arithmetic operations on one image. For example, in case of Add, the constant

value is added to each voxel of the input image.
• Arithmetic2: performs arithmetic operations on two images. For example, in case of Add, the values

of input image 2 are added to each voxel of input image 1.
• Switch: selects one of up to 25 input images depending on an input parameter. The selected image

is passed unchanged to the output.

Excursion: Functionality Overview

57

• Mask: masks the image of input 1 with the mask at input 2. For example, in case of Masked Original
(default), all pixels from the first input are passed unchanged to the output if non-zero values are found
at their positions in the second input image. Otherwise background values are passed to the output.

• TestPattern: generates a test image of a defined size, page size, data type and pattern (stripes,
checkers, ramps, etc.).

• AddNoise: produces noise based on a scalar input image and a chosen distribution, for example
uniform noise, Gaussian noise, Salt&Pepper, etc.

6.1.4. Filter
• Convolution: offers standard kernel-based filters like Average, Gauss, Laplace or Sobel.
• ExtendedConvolution: offers standard convolution filters similar to Convolution but with more flexible

kernel sizes and kernel geometry.
• Rank: offers rank-based kernel filters like Min, Max, Median, Rank or Index.
• Morphology: implements dilation and erosion filters. By using threshold intervals, filtering can be

applied selectively to regions in the image.
• CalculateGradient: computes the slope of image value changes in regions around each voxel in an

image.

6.1.5. Segmentation
• Threshold: transforms the input image into a binary image, in which voxels below the threshold are

set to the image minimum value, and voxels at or above the threshold are set to the image maximum
value. Can be used with a relative threshold.

• IntervalThreshold: processes an image by filtering just those image values that lie in a certain gray
value interval. Voxels outside this range can be set to zero or to a user-defined fill value. This can be
useful for the segmentation of objects that are expected to have gray values in a defined interval.

• RegionGrowing: provides a simple threshold/interval-based 1D/2D/3D/4D region growing algorithm.
A threshold/interval and at least one seed are necessary as start parameters.

• RegionGrowingMacro: extends the options of RegionGrowing by adding a viewer (View2D) and a
marker editor to simplify its usage.

• ComputeConnectedComponents: performs a connected component analysis on 2D / 3D grayscale
images. You need other modules mentioned in the seeAlso of the module to process its output.

6.2. Visualization

6.2.1. 2D Viewing
• View2D: provides a viewer for viewing a 3D image as 2D slices, with the possiblity to scroll through.

Annotations are displayed and the LUT of the displayed image can be changed by dragging the mouse
with the right mouse button pressed.

• View2DExtensions: encapsulates a set of viewer extensions that are commonly used in conjunction
with a 2D viewer, including extensions for navigation (browsing through slices, zoom and pan), level/
window adjustment, and drawing annotations.

• SoView2D: displays a slice (or a slab) of a volume image in a 2D viewer.
• SoRenderArea: provides Open Inventor rendering and event handling inside a MeVisLab window.

To be useful, the connected scene graph must contain a camera and at least one light source (see
the example network).

• SoView2DOverlay: blends a 2D image over another one.
• SoView2DPosition: shows the last clicked position in a 2D viewer. The style of the displayed position

marker can be set to crosshairs, circle and voxel rectangle.
• SoView2DRectangle: allows for a drawing and interactive adjustment of a 2D rectangle in a 2D viewer.

Although this module is called SoView2DRectangle, it actually draws a 3D box.
• SoMouseGrabber: grabs mouse events in an Inventor scene and converts them to x, y float fields.

The mouse coordinates can be filtered and scaled before the x and y fields are set.

Excursion: Functionality Overview

58

• SoKeyGrabber: watches keyboard events in an Inventor scene and triggers Trigger fields depending
on the keys pressed, for example on Last Key, SHIFT, CTRL, ALT, etc.

• OrthoView2D: provides a 2D view displaying the input image in three orthogonal viewing directions.
• SoOrthoView2D: renders orthogonal slices of a volume image in one 2D viewer.
• SynchroView2D: provides two 2D viewers that are synchronized via their world coordinates.

6.2.2. 3D Viewing
• SoGVRVolumeRenderer (also called Giga Voxel Renderer, GVR): an octree-based render that allows

high-quality volume rendering of 3D/4D images. This module is complemented with a set of extension
modules that allow to customize the rendering, all starting with the SoGVR* prefix.

• SoExaminerViewer: provides Open Inventor rendering and event handling inside a MeVisLab window.
Open Inventor rendering attributes such as the background color, transparency type, draw style, etc.
can be set.

• View3D: allows volume rendering of a 3D dataset. It encapsulates the complex features of the
SoGVRVolumeRenderer module and provides access to basic rendering features.

• SoBackground: renders a color ramp in the background of an Open Inventor scene. The ramp can
be flipped and rotated 90 degrees. The module should always be used to give optical depth to an
Open Inventor scene.

6.2.3. Lookup Tables
• ApplyLUT: applies a lookup table (LUT) to an input image. The voxel values of the input image are

used as LUT index values, the LUT entry values are rescaled relative to the Max Entry parameter
and stored in the output image.

• SoLUTEditor: allows to edit a RGBA Lookup Table and output it as a MLLut object. Also offers an
optional histogram display for orientation.

• SoMLLUT: provides an ML lookup table (LUT) object to the Open Inventor scene graph.
• LUTPrimitive: generates a single-channel, parametrized lookup table (LUT) object that can be used

with the ApplyLUT module or within 2D/3D viewers (in conjunction with SoMLLUT).
• LinearLUT: generates a lookup table (LUT) object by interpolating two specified entries. The

interpolation is performed in gray (luminance) or RGB values, with or without alpha channel.The
generated LUT can be used with the ApplyLUT module or within 2D/3D viewers (in conjunction with
SoMLLUT).

• RampLUT: generates an RGB and alpha ramp lookup table (LUT) object. The two ramps for RGB
and alpha channels can be parametrized independently. The generated LUT can be used with the
ApplyLUT module or within 2D/3D viewers (in conjunction with SoMLLUT).

• TableLUT: generates a lookup table (LUT) object from a table of sampling points (as a string), each
consisting of an index value and up to four channel values. The generated LUT can be used with the
ApplyLUT module or within 2D/3D viewers (in conjunction with SoMLLUT).

• LUTCombiner: generates an output lookup table (LUT) by combining up to six input LUTs. For each
of the input LUTs, the parameters Mode (Add, Blend, Subtract, etc.) and Mask (R, G, B, RGB, etc.)
can be set.

• LUTCompose: generates an output lookup table (LUT) by composing up to four input LUTs. The
composition of LUTs can be interpreted as the chained evaluation of the lookup functions.

6.3. Data Objects

6.3.1. Markers
• XMarkerListContainer: stores a list of XMarker objects as an XMarkerList object. The contents can

be displayed, edited and saved. An XMarker object consists of a 6D Position, a 3D Vector, a Type
and a Name property.

• SoView2DMarkerEditor: allows for an interactive placement, editing and showing of markers on a 2D
viewer.

Excursion: Functionality Overview

59

• So3DMarkerEditor: displays markers in 3D and provides some possibilities to interactively edit the
markers.

6.3.2. Curves
• ProfileCurve: extracts a profile curve from an image along any data dimension, by reading voxel

values from its input image at positions along a specified line.
• SoDiagram2D: displays 2D curves, such as time series, gray scale profiles, histograms, etc.

6.3.3. Contours
• CSOManager: allows for editing the setting parameters and default parameters for CSOs and

CSOGroups, as well as for the maintaining of the togetherness of CSOs and CSOGroups.
• SoCSO3DRenderer: enables a visualization of the CSOs of a CSOList in 3D as an Open Inventor

scene. Needs a valid CSOList for input (for example via CSOManager).
• CSOIsoGenerator: allows for a generation of iso contours for a whole image at a fixed iso value.

Needs a CSOList that is to be filled (for example via CSOManager).

• SoView2DCSOExtensibleEditor: allows for editing and drawing CSOs. To be used in combination
with CSOManager, a CSO sub-editor and a 2D viewer for output.

• SoCSOSplineEditor: allows for a freehand or point-by-point generation of CSOs. Those CSOs are
smoothed by a spline interpolation or approximation.

• SoCSOEllipseEditor: allows for generating an ellipse or circle CSO.

6.3.4. Surface objects
• SoWEMRenderer: renders a WEM as an Open Inventor scene.
• WEMIsoSurface: generates the iso surface of a scalar volume image at a certain threshold.
• WEMSmooth: smoothes a WEM by applying either a surface smooth (Laplacian), or a smoothing of

the surface's normals.
• WEMBulgeEditor: interactively bulge a WEM surface in a 2D viewer with SoView2DWEMBulgeEditor

or directly in 3D with SoWEMBulgeEditor.

6.4. Miscellaneous

6.4.1. Fields
• SettingsManager: loads/saves field contents from/to a file or a settings string.
• SoCalculator: calculates by evaluating expressions (with access to input/output fields) and writing the

result to the output fields.
• StringUtils: offers a collection of general purpose operations on strings, for example comparison,

case-conversion, find+replace, etc.
• BoolInt: translates between a Boolean and an integer value.
• BoolString: translates between a Boolean and a string value.
• ComposeVector3: composes a vector from float values x, y, and z.
• DecomposeVector3: decomposes a vector into single float values of x, y, and z.
• ComposeMatrix: composes a matrix from float values or from vectors.
• DecomposeMatrix: decomposes a matrix to float values of components or vectors.
• WorldVoxelConvert: converts between voxel and world coordinates with respect to the image that is

connected to the operator's image input field. All coordinate fields are interconnected, changes in one
field are immediately reflected in the other fields.

• FieldIterator: iterates through a list of field values and successively assigns these values to a collection
of specified fields in a network. Can be used to batch-process a number of images, or to perform an
operation for a list of parameter values and store the results in different output image files.

Excursion: Functionality Overview

60

• FieldShift: saves the last ten field changes of an input field. Can be used to collect the most recently
selected coordinates, text string changes, enum changes etc.

• FieldListener: displays information about a field and logs field changes.

6.4.2. Diagnostic
• SystemInfo: lists information about the computer, the operating system, and the OpenGL driver and

version details.
• StopWatch: measures the time needed for an operation. Three methods are available: Start-Stop,

external duration and image computation.
• SoActionLog: log actions occuring in an OpenInventor scene.

61

Chapter 7. Creating an Open Inventor
Scene
In the following chapter, we will walk through the creation of an Open Inventor scene.

• Section 7.2, “Creating the Applicator”

• Section 7.3, “Creating the Interaction”

• Section 7.4, “Creating the Anatomical Image”

• Section 7.5, “Finishing the Complete Open Inventor Scene”

Here a look at what we want to accomplish: a dynamically definable applicator (needle for minimally
invasive surgeries) shall be placed at a position and an angle relative to the rendering of an anatomical
image.

Figure 7.1. Example Network: Open Inventor Result

Creating an Open Inventor Scene

62

Figure 7.2. Applicator Only

The applicator shall be able to be moved within the viewer (navigation) and also be able to be
repositioned (interaction) with the tip pointing to the body.

The data shall be displayed in 3D mode. In addition, the output shall have the windowing functionality
of the standard Output Inspector.

In the resulting network, modules will be grouped; however, this has no effect on the functionality we
will build.

7.1. Introduction to Open Inventor
Open Inventor is an object-oriented 3D toolkit developed by Silicon Graphics (SGI) offering a
comprehensive solution to interactive graphics programming problems.

Inventor scenes are organized in structures called scene graphs. A scene graph is made up of nodes,
which represent 3D objects to be drawn, properties of the 3D objects, nodes that combine other nodes
and are used for hierarchical grouping, and others (cameras, lights, etc). These nodes are accordingly
called shape nodes, property nodes, group nodes and so on. Each node contains one or more pieces
of information stored in fields. For example, the Sphere node contains only its radius, stored in its radius
field.

The MeVisLab implementation of Open Inventor is based on the original SGI source code that was
released to the public in 2000. It is suited for use with MeVisLab but can also be used independently.
The MeVisLab modules can be used for rendering and viewing both image data and arbitrary Open
Inventor objects as well as for interacting with images. Inventor modules function as Inventor nodes, so
they may have input connectors to add Inventor child nodes (modules) and output connectors to link
themselves to Inventor parent nodes (modules).

Characteristics of an Open Inventor scene graph:

• Scene objects are represented by nodes.

• Size and position is defined by transformation nodes.

• A rendering node represents the root of the scene graph.

• Nodes are rendered in the order of traversal.

• Nodes on the same level are traversed from left to right.

Creating an Open Inventor Scene

63

• All modules that are derived from SoGroup offer a basically infinite number of input connectors (a
new connector is added for every new connection). For more information about connecting to an
Inventor group node, see Section 3.4, “Connecting, Disconnecting, Moving, Copying, and Replacing
Connections”.

In Figure 7.3, “Traversing in Open Inventor”, the red arrow shows the order of traversal, from top to
bottom and left to right. The numbers designate the order in which each module is passed first, from
1 to 8.

Figure 7.3. Traversing in Open Inventor

Typical functions of Open Inventor modules are:

• Draggers and manipulators

• Group nodes

• Light sources

• Transformations

• Cameras

• 3D viewers

• Geometric objects (Spheres, Cones, 3D Text, Nurbs, Triangle Meshes, etc.)

• Object properties (Textures, Colors, Materials, etc.)

The order of traversal is very important, and its effects will be shown in detail in the following example.

Another important point is that field changes in Open Inventor modules are handled differently to ML
modules:

• Field changes in ML modules are executed synchronously: The field change leads to an immediate
execution by calling its handleNotification(Field*) method.

• Field changes in Open Inventor modules are executed asynchronously: The field changes is stored
in a delayed queue. In general, it is not known when this queue will be processed. Processing can
be enforced by calling MLAB.processInventorQueue().

For further information on Open Inventor modules in MeVisLab, please refer to the Open Inventor
Reference and the Inventor Module Help. For general information on Open Inventor, we recommend
the following literature:

• The Inventor Mentor by Josie Wernecke (ISBN 0-201-62495-8: This book provides basic information
on programming with Open Inventor. It includes detailed program examples in C++ and describes

Creating an Open Inventor Scene

64

key aspects of the Open Inventor toolkit, including its 3D scene database, node kits, interactive
manipulators, the Inventor Component Library, which contains editors and viewers, and the Open
Inventor file format.

• The Inventor ToolMaker by Josie Wernecke (ISBN 0-201-62493-1): The Inventor Toolmaker provides
advanced information on extending Open Inventor by creating new C++ classes and customizing
existing classes. Detailed examples and discussion show how to create new nodes, actions, elements,
fields, node kits, draggers, manipulators, engines, and components.

Tip

For online links to these books and other resources, see the MeVisLab website (https://
www.mevislab.de/).

7.2. Creating the Applicator
1. As a first element, we need the shaft of the applicator. For this, start by adding a SoCylinder module.

2. As we want to keep the applicator shaft and tip basically independent, we can already add a
SoSeparator module here which comes with an in-built viewer. Connect the two modules and set
the parameters for the cylinder.

Tip

Several Open Inventor modules come with an in-built viewer, like SoSeparator,
SoGroup, SoRenderArea and more. For a complete viewer experience, use
SoExaminerViewer and its associated macro module SceneInspector.

Note

Each of the viewers have their own persistent settings. So if you copy and paste such
modules into another network, the zoom settings etc. will be those of the previously
used state! If confused, always add fresh modules via the search or the Modules menu.

Figure 7.4. Creating the Applicator Shaft

3. Usually, such Open Inventor objects will be colored. Add the SoMaterial module before the
SoCylinder module and edit the material settings. Feel free to play around with the color settings.

https://www.mevislab.de/
https://www.mevislab.de/

Creating an Open Inventor Scene

65

Figure 7.5. Coloring the Applicator Shaft

4. In a next step, we will create the applicator's tip. For this, add a SoCone module and also another
SoMaterial and SoSeparator module to build a construction similar to the shaft.

Figure 7.6. Adding an Applicator Tip

Creating an Open Inventor Scene

66

To combine the two independent elements (shaft and tip), we have to a) combine them and b)
translate the tip (or shaft) in relation to the other, otherwise the two Open Inventor elements would
be placed at the same position, namely the origin of the Inventor's world coordinate system [0,0,0].
(For more information on coordinate systems, see Chapter 12, Excursion: Image Processing in ML.)

5. For the translation, add a SoTranslation module in front of to the cone, and set the y-translation
to (in this case) “11.5”. The SoGroup module has an in-built viewer, so that you can preview the
resulting applicator. It can be rotated in the viewer.

Figure 7.7. Adding Translation and Grouping

6. For a finishing touch, add a SoExaminerViewer for display and a SoBackground. The latter adds a
gray gradient background that gives a more 3-dimensional impression of the rendered Open Inventor
scene.

7. For easier handling, create a group for the two parts of the applicator. Select the modules that belong
to the applicator, right-click them and select Add to New Group. Enter an appropriate name like
“applicator”. The new group appears in the workspace.

Creating an Open Inventor Scene

67

Figure 7.8. Finishing the Applicator

7.3. Creating the Interaction
Although the applicator created in the last section is complete, it is not yet functional so that you can
easily point the tip to a position. For this, some interactivity must be enabled.

The first module necessary for this is SoCenterballManip. In the Inventor Reference, the following
information can be found for this module:

“SoCenterballManip is derived from SoTransform (by way of SoTransformManip). When its fields
change, nodes following it in the scene graph rotate, scale, and/or translate. [...] On screen, this
manipulator will surround the objects influenced by its motion. This is because it turns on the
surroundScale part of the dragger. ”

Note

When attaching the SoCenterballManip the first time, it might appear very small in the
viewer. Just click on it to trigger a rescaling. Once rescaled, the manipulator will keep its
size.

Creating an Open Inventor Scene

68

This means that once we put an object in the middle of the sphere opened by this module, it can be
moved around with it.

1. To keep the interaction separate from the applicator, add another separator.

2. Then add the modules SoCenterballManip and SoTranslation. The translation module is
necessary to position the centerball (as the latter is foremost intended for rotation and not perfect
for translation).

Figure 7.9. Using SoCenterballManip

To see the actual ball, use the mouse to rotate the view.

Creating an Open Inventor Scene

69

Figure 7.10. SoCenterballManip — Turned

Tip

Press the ALT button to toggle between the view mode (for navigation) and the pick
mode (for interaction, changes the data on the panel of SoCenterballManip).

3. To connect the translation of the modules, a parameter connection has to be established between
the Center field of SoCenterballManip and the Translation field of SoTranslation. This is done
by opening the panels, clicking near the Center field and dragging it onto the other panel until a little
plus sign appears. The parameter connection is drawn as a thin line between the modules, always
starting at the modules' side (never on top or bottom, like data connections do).

Tip

For an overview of all parameter connections, open the Parameter Connections

Inspector via the menu bar, View → Views → Parameter Connection Inspector.

Figure 7.11. Connecting Parameters

4. Now we can combine the interaction part and the applicator. For this, connect the applicator to the
second separator.

Creating an Open Inventor Scene

70

Figure 7.12. Combining Interaction and Applicator

The applicator can now be rotated or dragged into any direction by using the handles on the
manipulation sphere.

7.4. Creating the Anatomical Image
Last not least we need the 3D image at which the applicator shall be positioned.

1. As first step, add a LocalImage module. Select an image from the demo data folder, for example
the liver set at $(DemoDataPath)/Liver1_CT_venous.small.dcm. You can view the result in the
normal Output Inspector.

Figure 7.13. Loading a Local Image

Creating an Open Inventor Scene

71

2. For the 3D display, add a SoGVRVolumeRenderer module. Behind this hides a rather potent module
called GigaVoxel Renderer. It comes with many features — open its panel to have a look at the
options.

Figure 7.14. Adding the GigaVoxel Renderer

For the windowing we use the InteractiveRampLUT module. This modules changes the windowing
values by tracking the mouse while the right mouse button is pressed.

3. Add the module to your applicator network and connect it to the SoGroup module, in front of the
rendering module.

Figure 7.15. Adding the Windowing to the Applicator

The default settings of the InteractiveRampLUT are suitable for our purposes, so we don't need
to change anything.

7.5. Finishing the Complete Open Inventor
Scene
The three elements of the scene — applicator, interaction and anatomical image, preferably grouped,
now have to be combined to result in one Open Inventor scene.

Creating an Open Inventor Scene

72

1. First, connect all three groups to the same SoExaminerViewer. Make sure that the applicator and
its interaction sphere are connected via a separator.

Figure 7.16. Combining the Groups

Note

Because the scene with the anatomical image can be rendered with transparencies,
add it right-most to the viewer so it is rendered last.

Creating an Open Inventor Scene

73

Figure 7.17. Combined Graphic Elements

2. A look at the viewer tells us that the relative sizes of the graphic elements need to be aligned. This
can be done by adding the scaling module SoScale, either to the applicator or the image. In our
case, we will add it to the applicator, that means to the SoSeparator module. A scale factor of 10
in all directions is sufficient.

Figure 7.18. Adding the Applicator Scaling

3. Then take the applicator and move it to the body to point at whatever spot you want to point at.

Looking at the result, it might not be the best idea to have the applicator tip at the edge of the sphere
which is always aligned by its center. It may be sensible to place the tip into the sphere's center
instead.

Creating an Open Inventor Scene

74

4. Add another SoTranslation module. It needs to have an effect on the applicator, so it needs to be
added to the applicator's SoGroup module.

Figure 7.19. Improved Applicator/Interaction Arrangement

This is the end of this example. The full network is delivered with the demos of MeVisLab (available via

Help → Welcome → more... → ApplicatorExample.mlab).

Tip

In the chapter Chapter 10, Developing a Macro Module for an Applicator, the applicator
modules will be used as the starting point for programming a Python macro.

75

Chapter 8. Starting Development with
Package Creation
8.1. What are Packages
Modules and projects come in a package structure, which offers an improved modularity and granularity.

A package is a self-contained directory structure that contains the following components:

• PackageGroup

• PackageName

• Package.def

• Modules

• Sources

• Configuration

• Documentation

• lib

• bin

Figure 8.1. Example for a Package Tree

In this example, we have a PackageGroup "MyPackageGroup". Below it, four packages can be found
(Internal, Playground, Research, YetAnotherPackage). Below each package, the typical folders can be
found. (This example was generated with the Project Wizard in MeVisLab.)

A PackageGroup can contain any number of packages, and of course there can be different
PackageGroups.

The PackageIndentifier is defined by "PackageGroup/PackageName", e.g., the MeVisLab Standard
Package has the identifier "MeVisLab/Standard".

Note

For more detailed information on packages, see the Package Structure documentation.

MeVisLab reads packages in the following order:

• the Packages directory in which MeVisLab was installed

• the directories given in the PackagePaths settings of the mevislab.prefs file

Starting Development
with Package Creation

76

• the UserPackagePath (as set in the MeVisLab Preferences dialog

Scanning is always two levels deep, never deeper. If a package with the same PackageIdentifier is found
more than once, the last package found will overwrite the earlier packages (in the order given above).
This way, your packages given by mevislab.prefs or your user packages can overwrite installed
packages.

You can check your effective package structure in two ways:

• by using the meta-tool ToolRunner. See the ToolRunner documentation for details.

• by checking the MeVisLab Preferences, section “Packages”.

Figure 8.2. Preferences — Packages

In this dialog, the sequence of display is as follows (from top to bottom; higher entries overwrite lower
entries):

• User Packages: packages found in the user path (packages in other paths can be added manually).
These are the default packages for user-defined modules.

• mevislab.prefs: packages resulting from the paths given in the .prefs file.

• Installed Packages: packages resulting from an installation of e.g., MeVisLab SDK.

If a package with the same PackageIdentifier is found more than once, the last package found will
overwrite the previously loaded packages. These will be grayed out and labeled “(Overwritten)”.

You can:

Create New Package: Opens the Package Wizard (see Section 8.2, “Creating a User Package for Your
Project”).

Add Existing User Packages: Opens the default file browser so that you can add a user package.
Folders are read recursively and all packages below them are automatically included.

Starting Development
with Package Creation

77

Remove: Removes the selected user package from the path of MeVisLab. (Installed packages cannot
be removed.) Removed user packages can always be re-added later.

8.2. Creating a User Package for Your Project
When you create new modules with the Wizard, you need to enter their package path. For your own
modules, you always should have your own user package (and path). This is done as follows:

1. Run the Project Wizard (File → Run Project Wizard)

2. Select New Package. The Package Wizard opens.

Figure 8.3. Package Wizard

3. Create a new package with the Package Wizard. Enter the following:

• Package Group: Enter the package group in which your package should be saved. Enter a name,
for example your company or site name. For our example, enter “Example”.

• Package Name: Enter the package name. Select a typical user package name from the list or
enter a new package name. For our example, enter “General”

• Package Owner: Enter a package owner (meta description without actual effect).

• Target Directory: Select the target directory below which this package will be created.

4. Click Create so that the new package “Example/General” is created.

The new package is added to the User Package Path, including all subdirectories and files. The
information entered in the dialog is saved in the Packages.def file. As adding a new package group
alters the user package path, the module database has to be reloaded.

After reloading, your user package “Example/General” is ready for saving modules and projects.

78

Chapter 9. Introduction to Macro
Modules
Macro modules are implemented by means of the MeVisLab Definition Language (MDL) and the
scripting language Python. A macro module behaves like any other elementary module in MeVisLab
(ML or Inventor). However, no C++ has to be coded to implement a macro module.

Like any other module, a macro module has to be declared within the MeVisLab module database in a
module definition file (*.def), which has to be located in the User Package Path.

The MDL script implementation of a macro module, that is its interface definition (input-, output-, and
parameter fields) as well as its GUI definition, usually are written in a *.script file. The scripting is
given in separate *.py files which need to be included in the *.script module definition file.

The definition of a macro module and the creation of all necessary files is supported by the ML Module

Wizard, via File → Run Project Wizard (see the next chapter Chapter 10, Developing a Macro Module
for an Applicator).

What you should know about macro modules:

• In most cases, macro modules encapsulate the “macro behavior” of an image processing and/or
visualization pipeline (realized by a MeVisLab module network). Its functionality is defined by the
macro module interface with inputs, outputs, and parameters (fields). The interface is built as a
combination of the interface elements of the modules in the underlying network, and of eventually
new fields. The encapsulated module network is stored in a <MacroModuleName.mlab> file, which is
also called the macro network of the module.

Why this encapsulation?

• In many cases, a desired module function can be built by connecting some elementary modules
or macros that are already implemented.

• Certain processing pipelines may be of common use in a variety of further applications and it is
convenient to encapsulate them in macro modules which can then be added easily to any network.

• The interface of an encapsulating macro module is more compact than the sum of all interfaces
of the contained modules.

• Macro modules are defined on an abstract level. They can and do exist stand-alone without a
corresponding macro network. In those cases, the module's functionality is implemented with scripting
only. In most cases those macro modules encapsulate dynamic user interfaces without any image
processing or visualization behind it. Examples for those modules are the MDL test modules, for
example TestBoxLayout. They consist only of *.def and *.script files without any internal module
network.

• Macro modules can also be defined locally to a given network document path, called 'Local Macro
Modules'. These are used in complex networks to encapsulate subnetworks as independent functional
units with a defined interface to other network components. Such local macros often carry out an
application specific function which would not be of common use for any other application, and are
therefore not added to the common MeVisLab module database (that is they are not declared in /
do not possess a *.def file).

Local macros are created and added with respect to the current network via the menu bar, File →
Create Local Macro and File → Add Local Macro.

Introduction to Macro Modules

79

Tip

You can also convert a group to a (local) macro via the group's context menu.

80

Chapter 10. Developing a Macro
Module for an Applicator
In the following sections, we will create a macro module based on the applicator we have built in the
Open Inventor example chapter, adding fields and scripting for dynamic control of length and diameter
of the applicator.

• Section 10.1, “Creating a Basic Global Macro”

• Section 10.2, “Adding the Macro Parameters and Panel”

• Section 10.3, “Programming the Python Script”

• Section 10.4, “Addition: Shifting the Whole Tip”

Note

If you have not followed our tutorial, please open the ApplicatorExample.mlab demo

(available via Help → Welcome) and start from there.

10.1. Creating a Basic Global Macro
Our first global macro needs an internal network. We will use the Applicator module group as this
network.

1. For a start, open a new network tab (File → New or a keyboard shortcut) and copy and paste the

applicator modules (Edit → Copy, Edit → Paste or the respective keyboard shortcuts) to the new
network.

Tip

You can select the Applicator group with a double-click on its title bar and just copy
the group.

Figure 10.1. Starting a new Macro from the Existing Applicator

2. Clean the automatic instance names of the modules — as they will be used for a new macro, there
is no need to have names like “SoTranslation2”. Remove all numbers and write all module instance

Developing a Macro
Module for an Applicator

81

names starting with capital letters (if you want to) by right-clicking the module and selecting Edit
Instance Name from the context menu.

In our example, this is the resulting network:

Figure 10.2. Existing Applicator with Clean Instance Names

When the module names are cleaned up, save the network at some convenient location. On creating
the global macro, this network will have to be referenced and is copied to its final destination on
finishing the creation of the global macro.

3. Open the File → Project Wizard and choose Macro Module.

4. Enter the properties for your new module.

Figure 10.3. Macro Module Wizard

Developing a Macro
Module for an Applicator

82

• Name:

The name as entered above is displayed, for example ApplicatorMacro. You can edit the name
here. The module name has to be unique within the MeVisLab module database (including the
SDK module database). Therefore, you may need to change the module name slightly in case
of a collision.

• Author

Enter your name or initials. The author entry is mandatory and will be used in module searches.

• Comment

Enter a short description for the module. The comment entry is mandatory.

• Keywords

The optional keywords should be the terms other users might search for, e.g., “applicator” in this
case.

• See Also

The optional See Also entries should list other, related modules that might be of interest for a user.

• Genre

Enter the genre. Genre entries are mandatory; they define the place of the module in the Modules
menu and the Module Browser. For suggestions, check out similar modules in the database.

Tip

The macro module wizard offers to choose from a tree of available genres:

Figure 10.4. Selecting a Genre

Developing a Macro
Module for an Applicator

83

The genres are not carved in stone but developed over time, so there might be more
than one fitting choice for your module. You may even want to add a new genre in
Genre.def or define an own user genre.

• Add reference to example network:

Each module should be completed by an example network to explain its function and usage in
an exemplary application. Check to create an empty example network ExampleModuleName.mlab
which may be edited later (optional).

• Project:

User defined modules are grouped in projects. Enter a new project name here: “ApplicatorMacro”.
The module will be installed in the Project Path in the subdirectory ProjectName.

• Target Package:

Select a Target Package from the list, for this example “Example/General” as created in
Section 8.2, “Creating a User Package for Your Project”.

Note

Only existing Target Packages can be selected; if you want to use a new one, you
have to create it before creating the module.

Click Next.

5. On this tab, browse to the previously saved network and set it as the Network File Name.

You might leave the option to add Python scripting unchecked as we will add the scripting file later
on manually in this tutorial.

Figure 10.5. Macro Module Properties

Click Create.

Now that the macro module and its necessary files are created, the file browser (depending on
your system) will open and display the folders and files. In our example, we have a package group

Developing a Macro
Module for an Applicator

84

“Example” with the package “General” and in the folder Modules/Macros the new ApplicatorMacro
with the files

• .def: module definition file, for registering the module(s) to the MeVisLab module database.

• .mlab: network file which includes the modules and their settings.

• .script: MDL script file for the panel and from which Python code may get called.

Figure 10.6. File Browser with the New Macro Module Files

On the workspace, the previously visible network is now displayed as one macro module.

Figure 10.7. ApplicatorMacro as Macro Module

6. To display the internal network on a second tab, right-click the module and select Show Internal
Network from the context menu. Alternatively, you can hold Shift and double-click the macro
module.

10.2. Adding the Macro Parameters and Panel
So far, the macro module has no points of interaction. Therefore, the input/output, the parameters/fields
and the scripting need to be added.

1. To edit the panel and its underlying scripting, right-click the ApplicatorMacro module and select

Related Files → ApplicatorMacro.script to open the file in the in-built text editor MATE. Since we
just defined this macro module, the script file is basically empty except for some placeholders.

Developing a Macro
Module for an Applicator

85

Figure 10.8. ApplicatorMacro.script in MATE

Tip

MATE comes with some special features like autocompletion, syntax highlighting,
indentation, etc. for MDL, Python and help files. For an extensive list, see the MeVisLab
Reference Manual, chapter “MATE”.

We want three sections in the .script file:

a. Interface: defines the inputs and outputs of data connections for the macro. In our case, the
macro has no inputs from other modules, but one output which is the Inventor scene.

b. Commands: defines the scripting file to be executed upon the activity of defined fields.

c. Window: defines the panel of the macro to set the parameters. In our case, length and diameter.
This is an optional entry; if not defined, only the automatic panel is available.

Note

The window section of the GUI could also be implemented in the .def file. If you want
to implement an enhanced GUI and add more fields that only exist for scripting, use
the .script file and reference that from your .def file. The advantage of splitting the
GUI definition from the module announcement is a faster MeVisLab startup (because
only the .def file is read). Further information on this subject can be found in the MDL
Reference.

2. First we will define the interface. As no inputs are needed, keep this line as it is. For the output, we
address the output of the SoGroup module named Applicator. The following lines will result in an
output field that will "deliver" the applicator.

Interface {
 Inputs = ""
 Outputs {
 Field Scene { internalName = "Applicator.self" }
 }
 Parameters = ""
}

Enter the lines in MATE and save the script file.

3. Then reload the module by right-clicking the macro module and selecting Reload Definition to apply
the changes. The ApplicatorMacro module now shows an Open Inventor output connector.

Developing a Macro
Module for an Applicator

86

Figure 10.9. ApplicatorMacro Module with Output Connector

The internal network of the macro shows the output placeholder. In the mouse-over, the output field
name is displayed.

Figure 10.10. Internal Network of the ApplicatorMacro Module

4. As next step, we will define the parameters for our interface. In this example, we want to have two
parameters:

• length: this shall be the overall length of the applicator.

• diameter: this shall be the diameter of the applicator.

These two parameters need to be added to the Interface part of the script file. Besides setting the
parameter type (type) and the default value (value), you can also add a minimum and a maximum
value to limit the range to sensible values.

Interface {
 Inputs = ""
 Outputs {
 Field Scene { internalName = "Applicator.self" }
 }

 Parameters {
 Field length {
 type = float
 value = 20
 min = 1
 max = 50

Developing a Macro
Module for an Applicator

87

 }
 Field diameter {
 type = float
 value = 3
 min = 0.1
 max = 10
 }
 }
}

Once again, save the script and reload the macro module.

5. Open the automatic panel, either by double-clicking the module, by holding ALT and double-clicking

the module, or by right-clicking the module and selecting Show Window → Automatic Panel from
the context menu. The new parameters are visible in the automatic panel. They can also be edited
there by clicking on each value field and editing the value.

Figure 10.11. Automatic Panel of the ApplicatorMacro Module

In principle, this would be enough to enter the values. However, usually a more user-friendly panel
should be offered. In the panel, values can be sorted by correlation or importance and distributed
on various tabs. It is also possible to leave rarely used parameters out of the panel to make it
slimmer; as the automatic panel of a module is always available, the user can always view and edit
all parameters there.

6. To create a panel for the two parameters, the new section Window is added at the end of the script
file. Besides defining the fields in Category, you can also add a step value which will regulate how
large the step is when moving through the values with the spin box arrows or the mouse wheel (with
the mouse cursor over the field). As the diameter is smaller than the length, it makes sense to set
a smaller step size here.

Interface {
 Inputs = ""
 Outputs {
 Field Scene { internalName = "Applicator.self" }
 }

 Parameters {
 Field length {
 type = float
 value = 20
 min = 1
 max = 50
 }
 Field diameter {
 type = float
 value = 3
 min = 0.1
 max = 10

Developing a Macro
Module for an Applicator

88

 }
 }
}

Commands {

}

Window {
 Category {
 Field length { step = 1 }
 Field diameter { step = 0.1 }
 }
}

Save the script and reload the macro module.

7. Now open the panel, either by double-clicking the module (because the panel is the new default

panel) or by right-clicking the module and selecting Show Window → Panel from the context menu.
The new parameters are visible in the panel and can be edited manually (or by using the spin arrows
or the mouse wheel).

Figure 10.12. Panel of the ApplicatorMacro Module

All parameters are defined and the panel is ready for entering values — however, we still do not have
any interaction. So the last section Command needs to be added, in which the respective scripting file
(a Python file) and the fields this scripting file should “look at” need to be entered

The source will be a local file which we will add manually, with the name ApplicatorMacro.py by
convention.

To relate to the scripting, we need two field listeners that listen to fields and call the script command
given in the command tag when the field changes. The functions AdjustLength and AdjustDiameter
used in the code do not exist yet but will be defined by us in the Python file.

Interface {
 Inputs = ""
 Outputs {
 Field Scene { internalName = "Applicator.self" }
 }

 Parameters {
 Field length {
 type = float
 value = 20
 min = 1
 max = 50
 }
 Field diameter {
 type = float
 value = 3
 min = 0.1
 max = 10
 }

Developing a Macro
Module for an Applicator

89

 }
}

Commands {
 source = $(LOCAL)/ApplicatorMacro.py

 FieldListener length { command = AdjustLength }
 FieldListener diameter { command = AdjustDiameter }
}

Window {
 Category {
 Field length { step = 1 }
 Field diameter { step = 0.1 }
 }
}

8. Save the script and reload the macro module. If the Python file or the scripting commands do not
exist yet, errors messages will appear in the Debug Output of MATE. Do not be concerned — we
will add everything we need for real interactivity in the next section.

Tip

Panels can have a more complex design; for the possibilities, see the MDL Reference
and the MDL panel example modules in MeVisLab (search for modules starting with
“Test...”).

10.3. Programming the Python Script
1. If not yet existing, create the Python file. For this, select File → New in the MATE menu bar and

save the new file as ApplicatorMacro.py in the same folder as the other module files.

2. Note

In your code, you may need to import some of the global classes like MLAB,
MLABFileDialog or MLABFileManager from the "mevis" module (e.g. from mevis

import MLAB) to get access to some convenience functions. See the scripting reference
for a list of all available helper functions.

Then we need to add two functions, one for each scripting command

def AdjustLength():
 pass

def AdjustDiameter():
 pass

Note

In Python, block structure is defined by indentation. Therefore, it is important to
indent the lines as shown in the code examples. In the MATE editor, this will happen
automatically.

3. Let us have a look at the diameter adjustment. The diameter is given by the diameter field. This
is written as follows:

def AdjustDiameter():
 diameter = ctx.field("diameter").value

Developing a Macro
Module for an Applicator

90

To have both an effect on shaft and tip likewise, the diameter parameter of both must be set to the
value of the diameter field. A look at the automatic panels of SoCone and SoCylinder shows that
both modules offer a radius parameter.

Figure 10.13. Parameters for Diameter Setting

These radius parameters need to be set to diameter:

 ctx.field("SoCone.bottomRadius").value = diameter
 ctx.field("SoCylinder.radius").value = diameter

As the radius is half the diameter, a correcting factor of 0.5 has to be added to the diameter equation.

def AdjustDiameter():
 diameter = ctx.field("diameter").value * 0.5

 ctx.field("SoCone.bottomRadius").value = diameter
 ctx.field("SoCylinder.radius").value = diameter

4. To test if the diameter adjusting works, add a SceneInspector module to the network and connect
its input to the output of your ApplicatorMacro module. Double-click the SceneInspector to open
its viewer. When you change the diameter setting of the macro, the diameter of the applicator is
changed accordingly.

Developing a Macro
Module for an Applicator

91

Figure 10.14. Changing the Diameter of the Applicator

5. Adjusting the length is a bit more complicated. The length change should have the following effects:

• The length parameter gives the overall length.

• Only the shaft should be extended, not the tip.

• The adjustment should be done in a way that the point of the tip is not translated, that is that the
tip points to the same position as before. Therefore, we need to increase the applicator length in
the direction away from the tip.

We can define an overall length, a tip length and a shaft length. They can be calculated as follows:

def AdjustLength():
 overallLength = ctx.field("length").value
 tipLength = ctx.field("SoCone.height").value

 shaftLength = overallLength - tipLength

The original translation factor for the tip (which is the relevant factor) was given by half the shaft
length (“10”) plus half the tip length (“1.5”). This can be written in a general way.

 tipTranslation = shaftLength*0.5 + tipLength*0.5

The shaftLength defines the height of the SoCylinder cone to

 ctx.field("SoCylinder.height").value = shaftLength

The resulting code lines for the length adjustment look as follows:

def AdjustLength():
 overallLength = ctx.field("length").value
 tipLength = ctx.field("SoCone.height").value

 shaftLength = overallLength - tipLength
 tipTranslation = shaftLength * 0.5 + tipLength * 0.5

 ctx.field ("SoCylinder.height").value = shaftLength

Add this code to the Python script, save, and reload the definition. A test shows a funny effect: the
shaft length is changed independently of the tip.

Developing a Macro
Module for an Applicator

92

Figure 10.15. Strange Behavior of the ApplicatorMacro

This is due to not having connected the calculated tipTranslation with the TranslationTip
module yet.

6. To solve this problem, add the SoComposeVec3f module to the internal network of the macro and
assign to its translation in y direction the calculated value tipTranslation. Since SoComposeVec3f
supports an arbitrary number of elements on x,y,z, we have to use setListValue.

 ctx.field("SoComposeVec3f.y").setListValue([tipTranslation])

7. In a last step, this translation needs to be connected to the tip's SoTranslation module via a
parameter connection in the network.

Figure 10.16. Adding the Correct Tip Translation

Here the network and complete Python script of the ApplicatorMacro example:

Developing a Macro
Module for an Applicator

93

Figure 10.17. Complete ApplicatorMacro

def AdjustDiameter():
 diameter = ctx.field("diameter").value * 0.5

 ctx.field("SoCone.bottomRadius").value = diameter
 ctx.field("SoCylinder.radius").value = diameter

def AdjustLength():
 overallLength = ctx.field("length").value
 tipLength = ctx.field("SoCone.height").value

 shaftLength = overallLength - tipLength
 tipTranslation = shaftLength*0.5 + tipLength*0.5

 ctx.field("SoCylinder.height").value = shaftLength
 ctx.field("SoComposeVec3f.y").setListValue([tipTranslation])

10.4. Addition: Shifting the Whole Tip
In the example above, the change in length will be translated into an overall change with the center of
rotation as overall center. However, it might be preferable to keep the tip in place and change the length
of the shaft into the other direction.

Basically, this is the same problem as in the length calculation we made in the Python script. However,
instead of calculating it in the macro scripting, we can also use a module for the calculation.

For this, the following modules need to be added:

• SoCalculator: For calculating the length of the shaft.

Developing a Macro
Module for an Applicator

94

• SoComposeVec3f: For applying the translation of the float value to the vector of the overall translation
in TranslationApplicator.

The SoCalculator module offers input and output of floating values and vectors.

Figure 10.18. Feeding the SoCalculator Module

Some important points:

• In the Expression field, mathematic formulas can be entered; the name of the input values and the
name of the output have to be given.

• More than one expression can be entered. For that, end each line with a semicolon ;

• For the expression to be calculated, you need to click Apply.

For calculating the translation from the input values of cone and shaft height, use the SoCalculator
module and set up parameter connections

1. Connect SoCylinder.height to SoCalculator.a

2. Connect SoCone.height to SoCalculator.b

3. Enter the calculation: oa = - (0.5*a+0.5*b) (a negative sign needs to be added; otherwise, the
end of the applicator is fixed and the tip side grows).

To apply the new translation, we need another SoComposeVec3f module. It allows for converting the float
value y into a vector translation in y direction. For this, it needs to receive the output of SoCalculator
and deliver the input for the SoTranslation module.

1. Connect SoCalculator.oa to SoComposeVec3f1.y

2. Connect SoComposeVec3f1.vector to SoTranslation.translation

Developing a Macro
Module for an Applicator

95

Tip

You can find the names of the connected parameters by right-clicking the parameter
connections. For an overview of all parameter connections in a network, use the Parameter
Connections Inspector View.

The resulting macro network looks as follows:

Figure 10.19. Improved Applicator Macro Module

When to choose calculating values in scripts and when via modules? This is not an easy question.

• The advantage of the script is that it is easily changed and extended. This might be harder with
modules.

The main advantage of using script is that the setting of parameter field values or the triggering of
a (re-)computation is much more controlled. Using parameter field connections can easily lead to
unwanted notification avalanches.

• The advantage of the modules is that the connections between modules are visible as parameter
connections (which can be changed and removed).

In the end, it comes down to your current network and your design decisions which way to choose. Or
you might combine them, like we did in our ApplicatorMacro network.

What else could you do now? You could, for example, make sure that the shaft length cannot be shorter
than the tip length (which looks strange in the Open Inventor scene). You could also make the colors
parametrizable, or add new features for the applicator.

This is the end of this example.

Tip

This example is delivered with MeVisLab (.def file in $(InstallDir)Packages/
MeVisLab/Examples/Modules/GettingStarted/ApplicatorMacroExample, source
files in $(InstallDir)Packages/MeVisLab/Examples/Sources/GettingStarted/

ApplicatorMacroExample). The module can be added via quick search.

96

Chapter 11. GUI Design in MeVisLab
The following chapter introduces the concept and the formatting possibilities of GUI design in MeVisLab.

The panel design is given in detail, from a look at MDL basics and principles down to the implementation
and scripting of controls.

For the visual appearance of panels, two major options are given: MDL styles and Qt style sheets. Both
of them are discussed and illustrated.

1. Panel design with MDL, see Section 11.1, “MeVisLab Definition Language (MDL)”.

2. Panel formatting with styles and prototypes in MDL, see Section 11.3, “MDL Styles”.

3. Adding new MDL controls, see Section 11.3.3, “Creating Custom MDL Controls”.

4. Panel formatting with Qt styles (CSS), see Section 11.4, “Customize GUI Appearance Using Qt Style
Sheets (CSS)”.

The base of every GUI in MeVislab is the panel designed in the MeVisLab Definition Language (MDL).
The MDL is described in detail in the MDL Reference.

Tip

Examples for GUI designs with the MDL are available in MeVisLab, just enter “Test” into
the quick module search (to be able to find the test modules the “Test” module group must

be enabled in Preferences → Module Groups).

The part of the MDL in relation to the GUI is to define the structure of a panel, the included elements and
buttons, and the way those elements are arranged. Available elements are, for example, lists, sliders,
thumb wheels, text fields, check boxes, buttons, and many more. For arranging the elements, group
controls are available, like tables, grids, boxes, and tabs.

Figure 11.1. View3D Panels as Example for GUI Elements

GUI Design in MeVisLab

97

11.1. MeVisLab Definition Language (MDL)
The MDL is more than just a GUI definition language.

• It is a configuration and layout language.

• It is implemented based on the architecture pattern Model-View-Control (MVC) (see the Wikipedia
entry about MVC for the general concept).

• It is a declarative language with a focus on the logic, not the processing (see the Wikipedia entry
about declarative programming for the general concept). It focuses on the hierarchical structure of
the content, and offers a MLABTree node interface that can be addressed from scripting and used
for error reporting.

• It offers a simple preprocessor (#ifdef/#include).

• It is an application-specific language, tailored to the needs of MeVisLab. It adds a strong decoupling
of GUI and C++ modules and provides the basis for extensibility to MeVisLab.

• It is used for GUI layout, calling script methods, installer scripts, .prefs files, and more.

• The GUI part was inspired by HTML/JavaScript, which is mirrored by MDL/Python in MeVisLab. Both
combine a declarative language with an imperative language that adds the actual control flow.

In the following sections, a few interesting and important facts about the MDL are listed that will help
in using its full potential.

Tip

The integrated text editor MATE supports MDL syntax and Python with syntax highlighting
and auto-completion.

11.1.1. MDL Validator
The validation of MDL files is done with an MDL validator.

• An MDL file can contain any content.

• The validator defines what the MDL tree has to look like.

• The validator takes:

• An MDL tree to validate.

• An MDL tree that defines the expected structure (typically MDLValidator.def).

• The MDL style definitions (which can add prototypes, see Section 11.2.9, “Prototypes for Controls”).

• The validator traverses the tree and prints errors/warnings if the tree does not match the expected
structure.

• The tree that defines the expected structure is also written in MDL and is validated by itself.

• The validator file defines what groups are allowed in each group (recursively) and what name/value
pairs are allowed.

• It knows the expected value types and can warn for non-existent files, check Integers, Floats, field
names, etc.

http://en.wikipedia.org/wiki/Model%E2%80%93View%E2%80%93Controller
http://en.wikipedia.org/wiki/Model%E2%80%93View%E2%80%93Controller
http://en.wikipedia.org/wiki/Declarative_programming
http://en.wikipedia.org/wiki/Declarative_programming

GUI Design in MeVisLab

98

Excerpt of the validator for the general module definition:

Group _Module {
 allowTags {
 comment = STRING
 author = AUTHORS
 exampleNetwork = MLABFILE
 ...
 }
 allowChildren {
 Interface = ""
 Commands = ""
 Description = ""
 ...
 }
}

The validators of the specific module types then relate to the general module definition.

Group MLModule {
 value = NAME
 allow = _Module <- allowed groups
 allowTags { <- allowed tags (make sure to use the right data types)
 class = STRING
 DLL = DLLNAME
 }
}

Group InventorModule {
 value = NAME
 allow = _Module
 allowTags {
 class = STRING
 hasGroupInputs = BOOL
 hasViewer = BOOL
 ...
 }
}

For other validators like for fields, panels, etc., the principles work accordingly.

Usually, a developer does not have to deal with the validator aspect of the MDL. However, once a
new control is to be implemented, a validator should be written for that to avoid error messages, see
Section 11.3.3, “Creating Custom MDL Controls”.

11.1.2. MDL Controls
• MDL controls are derived from MLABWidgetControl, a C++ class.

• They create and control their QWidgets (the Qt/C++ base class of widgets).

• They provide a Python scripting interface.

• Are reparented to the QWidget they create, so that the controllers are automatically destroyed when
their QWidget is destroyed.

• Custom MDL controls can be created, see Section 11.3.3, “Creating Custom MDL Controls”.

An important effect of the Model-view-controller pattern is the separation of the interfaces (as fields) and
the actual controls defined in the windows section of an modules GUI definition.

The fields defined in the interface sections are the models.

GUI Design in MeVisLab

99

Figure 11.2. Fields as Model

The controls in the GUI are the view and also the controller.

Figure 11.3. Controls as View/Controller

For a set of fields/models, many different views can be built.

GUI Design in MeVisLab

100

Figure 11.4. Controls as Views/Controller

It is important to keep this Model-view-control design in mind, otherwise it is easy to mix up the definition
of fields (Interface section) with the GUI control of the field (Window section).

1. Model: defines a new field of type Vector3 named vector:

Interface {
 Parameters {
 Field vector { type = Vector3 }
 Field apply { type = Trigger }
 }
}

2. View/Controller: defines a GUI control that shows the value of the existing vector field:

Window {
 Box Example {
 Field vector {}
 Button apply {}
 }
}

Note

Admittedly, it's a bit misleading that the Field is also used in the Window section for the
field controls.

From the point of view of the MDL controls, the View3D panel looks like this:

GUI Design in MeVisLab

101

Figure 11.5. View3D Panel with C++ Class Names of Included MDL Controls for
Scripting

11.1.3. MDL GUI definition

The GUI definition of a module is written into the .script file of a module.

The Interface section is foremost used for Macro modules to declare fields. It is also used to declare
extra fields of C++ modules or fields that should be kept persistent:

• input fields

• output fields

• parameter fields

The fields defined here may also forward existing fields of sub modules (internal fields) instead of
defining new ones.

Declaring parameter fields of a C++ module has the advantage that these fields can be made persistent
to save their values along with the network. (Normally, internal module states are not saved when the
network is saved.)

The Description section is optional and can be used for all module types. It contains definitions for:

• Parameter field ranges (min/max)

• Persistence

• Editability

The Commands section is used to add Python script files and commands. (For details of the module
initialization, see MDL Reference, chapter “Commands”.)

GUI Design in MeVisLab

102

The Window section allows defining the GUI for the available Interface elements. The possible controls
can be split into the following groups:

• Input controls for viewing and editing field values (Field, CheckBox, etc.)

• Layout controls (Vertical, Horizontal, Box, etc.)

• Decoration controls (Label, Image, Separator, etc.)

See the MDL Reference for a complete list of available controls.

The number of Window sections — which is the number of panels for a module — is unlimited. See
View3D as an example for multiple panels.

11.1.4. A Note on Fields in Scripting Interfaces

“Field” has two meanings in MeVisLab:

1. The Field in the Parameters section declares a field for a module.

Interface {

 Parameters {

 Field fieldName { type = String }

 }

}

2. The Field control in the Window section defines a GUI control.

Window {

 Category {

 Field fieldName {}

 }

}

In scripting these objects have different class names:

1. MLABField

2. MLABFieldControl

Fields from a Scripting Perspective

Fields can be accessed from scripting. Take this integer field as an example:

Interface {

 Parameters {

 Field intFieldName { type = Int }

 }

}

Getting and setting the value:

ctx.field("intFieldName").value = 13

Getting and setting the value as a string (typically used for serialization purposes):

ctx.field("intFieldName").stringValue = "13"

To force notification of all field listeners:

ctx.field("intFieldName").touch()

GUI Design in MeVisLab

103

FieldListener

The FieldListener binds scripting commands to a field. The command will always be called when the
field issues a notification to its listeners.

Note

There is an important difference between FieldListeners defined in the Commands section
and the ones defined in the Window section: The former is created when the module is
created, and thus is always available. The latter is only created when the window is created,
and it is destroyed when the window is destroyed. This will be explaind in the examples
below.

Example:

// triggerButton Field is already defined in Interface/Parameter

Interface {

 Parameters {

 Field triggerButton { type = Trigger }

 }

}

Commands {

 source = $(LOCAL)/ExampleToggleButton.py

 FieldListener triggerButton { command = callGlobal }

}

Touching the trigger field in Python will cause a notification and the field listener will call the given
command, which is “callGlobal” in this example:

ctx.field("triggerButton").touch()

When “callGlobal” is called, there is no association to a window. The current window ID is 0, which
means there is no current window. This means if you call ctx.control("controlName") in it, then
MeVisLab will print an error that it cannot find the control.

If the field listener is defined inside of a window, it is only active when the window is actually created.

Window {

 Category {

 FieldListener triggerButton { command = callLocal }

 }

}

When “callLocal” is called, the current window ID is set to the window in which the field listener is defined.
Calling ctx.control("controlName") in it will look inside this window for the control. This also means,
that control names must only be unique inside a window, and can be reused in multiple windows of
the same module.

GUI Design in MeVisLab

104

Figure 11.6. Command Execution Context

Accessing Controls from the Scripting Console

From the scripting console, looking up a control only works when the correct context is set. First, the
module context must be right. The scripting console must be opened from the context menu of a module

to have it as the current context. The scripting console that can be opened from the Scripting → Show
Scripting Console menu has the current network and not the selected module as context. Second, the
window ID is 0 by default. To look up a control the window ID must be set accordingly. For debugging
purposes, the function ctx.controlDebug("controlName") can be used in the scripting console as
an alternative to setting the current window ID. It looks for the control in all open windows.

The following figure demonstrates that the global scripting console is not associated to a selected
module in the network. Although the panel of the TestListBox module is open, the control cannot be
found. It can be found in the scripting console of the module itself.

GUI Design in MeVisLab

105

Figure 11.7. Contexts of the Scripting Console

11.2. Developing the ExampleToggleButton
In the following section, we will create a new Macro module with a simple on/off button. This is a standard
use case for toggling parameters (visible or invisible).

• Section 11.2.1, “Creating the Macro Module”

• Section 11.2.2, “Defining the Interfaces”

• Section 11.2.3, “Programming the Button Action in Python”

• Section 11.2.4, “Referencing the Command in the MDL Script”

• Section 11.2.5, “Persistent Field Values”

11.2.1. Creating the Macro Module
1. First of all, make sure that you have a user package defined as described in Section 8.2, “Creating

a User Package for Your Project” or create it now.

2. Then run the Project Wizard and select the link Macro Module. This starts the Wizard for Macro
Modules. Enter the following:

• Name: ExampleToggleButton

• Keyword: examples

• Target Package: Example/General

• Project: ExampleToggleButton

3. Click Next to proceed.

4. On the dialog Macro Module Properties, click Add Python file to have one created.

GUI Design in MeVisLab

106

5. On the dialog Module Field Interface, the fields of the module can be defined (more fields can be
added later).

a. Click New to create a new field, then enter the following:

• Field Name: triggerButton

• Field Type: Trigger

• Field Comment:

• Field Value:

b. Click again on New to create a second field:

• Field Name: text

• Field Type: String

• Field Comment:

• Field Value:

6. Click Create to create the module.

In the default file browser of your system, the folder {packagePath}/Modules/Macros/

ExampleToggleButton is opened.

7. Click Close to finish the creation of the macro and to reload the module database to make the new
module available. Type “Exam” to have the search deliver a list of available modules, and instanciate
ExampleToggleButton. Double-click the module to open its automatic panel.

Figure 11.8. ExampleToggleButton

11.2.2. Defining the Interfaces

The automatic panel shows all defined fields. In the next step, we will edit the additional panel.

Right-click the module and look at Related Files. Click the script file ExampleToggleButton.script
to open it in the integrated text editor MATE.

The script file looks as follows:

Interface {
 Inputs {}
 Outputs {}
 Parameters {
 Field triggerButton {
 type = trigger
 }

GUI Design in MeVisLab

107

 Field text {
 type = String
 value = ""
 }
 }
}

Commands {
 source = $(LOCAL)/ExampleToggleButton.py
}

In a first step, we add the Window section to create a visible panel.

Window {
 Category {
 Box {
 Button triggerButton { title = "On/Off" }
 }
 }
}

After any changes in the .script, save the file, select the module in MeVisLab, and press F5 to reload
the module. After the first addition of the Windows section, double-click the module to open the new
panel. Panels that are already open are automatically updated upon reload with F5.

The box draws a simple frame around the element, usually with a title. By default, the title is the tag
value of the Box tag.

Box "A button" {
}

It can also be substituted by an explicit title element:

Box "A button" {
 title = "Yes, a button"
}

At this point, the button has no effect yet. The action tied to the button will be added as a the Python
command in the next section. The Label uses the text field for its title.

Window {
 Category {
 Box {
 Button triggerButton { title = "On/Off" }
 Label { titleField = text }
 }
 }
}

11.2.3. Programming the Button Action in Python

In the Python script, the toggling of the button would need to have an effect, in this case it changes
the label text.

Initially, the variable toggleState is False; upon pressing of the button it is toggled. If the toggleState
gets True by pressing the button, then the label text is set to “On”, otherwise it is set to “Off”.

Variable
toggleState = False

Called when button pressed
def buttonPressed():

GUI Design in MeVisLab

108

 global toggleState
 toggleState = not toggleState
 if toggleState:
 ctx.field("text").value = "On"
 else:
 ctx.field("text").value = "Off"

The value of the text field, which is used as the title field of the label, is set depending on the toggleState
variable.

11.2.4. Referencing the Command in the MDL Script

There are two ways to handle the button press. First, it is possible to use a trigger field and a
FieldListener. Note that a FieldListener in the Commands section would not have the required
window context to access any controls in the window. However, since the buttonPressed() function
only accesses a field, this would also work in this case:

Window {
 FieldListener triggerButton {
 command = buttonPressed
 }
 Category {
 Box {
 Button {
 triggerButton { title = "On/Off" }
 title = "On/Off"
 }
 Label { titleField = text }
 }
 }
}

Second, the button press can be directly handled without a field:

Window {
 Category {
 Box {
 Button {
 title = "On/Off"
 command = buttonPressed
 }
 Label { titleField = text }
 }
 }
}

The example works now. However, the toggleState value is not persistent. If the network is closed
and reloaded later, it is again initialized with False. The next section will explain how values can be
made persistent.

GUI Design in MeVisLab

109

Figure 11.9. ExampleToggleButton

11.2.5. Persistent Field Values
Assume that the value of the variable toggleState needs to be persistent, i.e., its last value should be
restored when the network is loaded at another time. We can use a persistent field for this. The fields
current value will be stored when the MeVisLab network is saved. In a first step, a Bool field for it is
added to the Interface section:

Interface {
 Inputs {}
 Outputs {}
 Parameters {
 Field text { type = String value = Off}
 Field toggleState { type = Bool value = false}
 }
}

For the Python script, it would mean a rewrite resulting in:

Called when button pressed
def buttonPressed():
 toggleState = ctx.field("toggleState")
 toggleState.value = not toggleState.value
 if toggleState.value:
 ctx.field("text").value = "On"
 else:
 ctx.field("text").value = "Off"

The value of the toggleState field is now persistent — if ExampleToggleButton would be used in a
network, its last state would be saved with the network.

11.2.6. Implementing a Keyboard Shortcut
For a button, a keyboard shortcut could be implemented by adding an Accel control. In our example,
we add the key combination ALT+Q.

Interface {
 Inputs {}
 Outputs {}
 Parameters {
 Field text { type = String value = "" }

GUI Design in MeVisLab

110

 Field toggleState { type = Bool value = false}
 Field triggerField { type = Trigger }
 }
}

Commands {
 source = $(LOCAL)/ExampleToggleButton.py
}

Window {
 Accel {
 key = ALT+Q
 field = triggerField
 command = buttonPressed
 }
 Category {
 Box {
 Button {
 name = triggerButton
 title = "On/Off"
 command = buttonPressed
 }
 Label { titleField = text }
 }
 }
}

The key has to be defined before the other GUI controls for which it should be used, so it is best entered
in the beginning of the Windows section. The panel has to be active for the shortcut to have an effect.

11.2.7. Arranging Multiple Buttons
In a Box control, the default layouter is a Vertical control:

Box {
 Button {
 name = triggerButton
 title = "On/Off"
 }
 Button {
 name = trigger2Button
 title = "Blue/Green"
 }
 Button {
 name = trigger3Button
 title = "Big/Small"
 }
}

The layouter can be changed, see the MDL Reference for a list of possible layouters. For example, a
grid can be set:

Box {
 layout = grid
 Button {
 name = triggerButton
 title = "On/Off"
 x = 0 y = 0
 }
 Button {
 name = triggerButton
 title = "Blue/Green"
 x = 1 y = 1
 }

GUI Design in MeVisLab

111

 Button {
 name = trigger3Button
 title = "Big/Small"
 x = 2 y = 0
 }
}

Figure 11.10. Buttons in a Grid

11.2.8. Auto Layouting with the AlignGroups Control
Have a look at the module TestLayouter!

11.2.9. Prototypes for Controls
It is possible to define overwrite default values for MDL controls. Prototypes are existing controls with
different default values. For example, if all following occurrences of the Vertical control should by default
expand in horizontal and vertical directions, the prototype declaration would look like this:

Vertical {
 style {
 Prototype Vertical {
 expandX = yes
 expandY = yes
 }
 }

 // the following vertical now has the defaults as given above
 Vertical {
 Label { title = "test" }
 }
}

Prototypes can be defined for all MDL elements.

Prototypes do not inherit from each other, so if you overwrite, e.g., Vertical, you loose all the default
tags that are defined in the default prototype.

Styles inherit the prototypes from the style they are derived from, so you can overwrite individual
prototypes without affecting other prototypes from the default style.

See the module TestPrototypes for an example.

11.2.10. Designing Larger GUIs
On the automatic panel of a module, all parameters are listed. Therefore, there is no necessity to add
all parameters as fields to your GUIs. Focus on those fields that the user needs to set or see.

If the module has a high number of fields, the controls can be arranged on the panel, e.g., by using
tabs or sub-panels.

As modules may have multiple windows, the GUI can be split into various panels. This is recommended
for settings that are possible, but do not relate strongly to other, more important settings of the module.

GUI Design in MeVisLab

112

For sharing parts of the GUI between panels, the Panel control can be used. It clones a defined
subregion of a module's Windows section.

Excerpt from the View3D script file:

Window View3D {
 Vertical {
 expandX = NO
 panelName = Settings
 TabView {
 TabViewItem General {
 Box Viewer {
 Horizontal {
 expandX = no
...

The thus defined panel “Settings” can be reused in a panel of its own.

Window Settings {
 Panel {
 panel = Settings
 }
}

The Panel control also clones all FieldListeners contained in the cloned code, so that a cloned panel
should work like the original one. The window one gets when calling window() in the context of the
cloned script will be the window in which the Panel is, in this case the View3D window.

Figure 11.11. View3D Panels with the Panel Control

11.3. MDL Styles
As every panel needs some kind of style — or visual theme — for display, MeVisLab provides the
concept of styles. Styles are color and font schemes that can be derived from each other, and the base
of all styles is the _default style.

First, it is important to know that there are two modes which affect what style is chosen: the Panel mode
and the Application mode. If you open panels inside of MeVisLab by double clicking on a module, the
panels are created in Panel mode. The Application mode is used when running a macro module as

an application, either via Scripting → Start Network Script or from the commandline.

GUI Design in MeVisLab

113

Two default styles are predefined, one for each mode. Both are directly derived from _default:

• Panel.default is used in Panel mode (gray style).

• Application.default is used in Application mode (blue/green style).

The predefined style names from above consist of a prefix (“Panel”/“Application”) and the actual style
name (“default”). This allows for using the same style name for two different modes. The actual prefix
is detected by MeVisLab, this will be explained below.

11.3.1. How to Use MDL Styles
Styles can be set and locally derived in MDL controls. They affect the current control and also recursively
all its children.

For example, to specify the style for a single Window control the style tag can be used like this:

Window {
 style = ExistingStyleName
 ...
}

To locally derive from an existing style, one can write:

Window {
 style NewLocalStyle {
 derive = Application.default // inherit the default Application style
 colors {
 bg = blue // background color
 fg = yellow // foreground color
 }
 }
 ...
}

The derive tag can be omitted to inherit from the style that is currently active, regardless of which that
is (see also the style stack, which is mentioned below in “How MeVisLab Applies the Styles”). It is also
possible to omit the style prefix, in which case MeVisLab uses the detected one.

A local style can also be anonymous:

Window {
 style {
 colors { bg = blue button = red }
 }
 Box {
 layout = Grid
...

Figure 11.12. Redesigned Panel

Tip

MATE offers auto completion for style attributes. See the figure below.

GUI Design in MeVisLab

114

Figure 11.13. Entering Style Settings

How MeVisLab Applies the Styles

Before a window is created, MeVisLab initializes a stack with the default style. The name of it is “<style
prefix>.default”, e.g., Application.default (see below how MeVisLab determines the style prefix).
Then it recursively creates all MDL controls, beginning with the Window control.

For each control, MeVisLab checks if either a style is specified or if a style is derived locally (local styles
are explained below). If one of both is true, then it pushes this style onto the stack and applies it to the
widgets that are created by the control. This style is also applied to all sub controls, unless they push
another style themselves. After the control is created, the style is popped again.

MeVisLab looks up styles as follows:

1. If the style name does not contain a dot, it prepends the style prefix and uses it if it exists.

2. If the style name does not contain a dot, it prepends the fallback style prefix and uses it if it exists.

3. Use the given style name as it is to look up the style.

How MeVisLab Determines the Style Prefix

In Application mode, the style prefix is the name of the application macro module. The fallback
style prefix is either the value of the MDL preferences variable ApplicationStyle, or “Application” if
ApplicationStyle is not specified.

In Panel mode the style prefix is either the value of the MDL preferences variable PanelStyle, if it is
given, or “Panel”. The fallback style prefix is always “Panel”.

Figure 11.14. ExampleToggleButton with Application Style Panel

To style a window like above for testing, use the style tag as follows:

Window {
 style = Application.default

 Category {
 Box {
 ...
 }
 }
}

11.3.2. Defining Global Styles
How to Define MDL Styles

GUI Design in MeVisLab

115

A style is defined globally using the DefineStyle tag. The style name may include a prefix separated by
a dot from the actual name, but it is not required (see “How MeVisLab Applies the Styles” above on how
MeVisLab looks up styles by name). There are two possibilities to position the definition of a named style:

• if globally defined in any *.def file, this style will be available to all windows of all modules under
the given name.

• if defined inside of a window, this style is only available inside of that window.

11.3.2.1. How to Define a Global Style
DefineStyle AnyStyleName {
 derive = _default
 colors {
 bg = black
 fg = black
 button = black
 }
}

11.3.2.2. How to Define a New Default Style for Application Macro
Modules

It is possible to define new default styles for application macro modules. The style definition does not
have to be in the same .def file. You can have one global .def file where you define your styles. If
you want to use a style as default in multiple application macro modules, you can derive default styles
with the macro module names as prefix:

DefineStyle BaseStyle {
 derive = _default
 ...
}

DefineStyle Macro1.default {
 derive = BaseStyle
}

DefineStyle Macro2.default {
 derive = BaseStyle
}
...

11.3.3. Creating Custom MDL Controls
Custom MDL controls can be created.

The following steps would be necessary to create a MDL control:

1. Define the control in a .def file (MDL) under the Modules directory of a package. This will make the
control available and extend the existing MDL validator.

2. Implement the control, either in C++ (.h, .cpp) or in Python (.py). Put the files under the Sources
directory of a package.

Examples for this are in the MeVisLab/Examples package. It includes the controls

• ColorChooserExampleControl,

• DiagramExampleControl,

• PythonControlExample, and

• DoubleSpinBoxExample

GUI Design in MeVisLab

116

Their definitions exist in Examples/Modules/Controls/, their implementations in
Examples/Sources/Controls/ (C++) and Examples/Modules/Scripts/python/ (Python).
The modules ColorChooserExampleControlTest, DiagramExampleControlTest, and
PythonExampleControlsTest demonstrate using the controls.

For example, the ColorChooserExample files are:

• The WidgetControl definition, which includes a reference to the DLL that contains the compiled C+
+ implementation:

Examples/Modules/Controls/ColorChooserExampleControl.def

• The C++ implementation:

Examples/Sources/Controls/MLABColorChooserExampleControl/

mlabColorChooserExampleControl.h

Examples/Sources/Controls/MLABColorChooserExampleControl/

mlabColorChooserExampleControl.cpp

The PythonControlExample files are:

• The WidgetControl definition, which includes a reference to the implementing Python module:

Examples/Modules/Controls/PythonControlExamples.def

• The Python implementation:

Examples/Modules/Scripts/python/PythonControlExample.py

Figure 11.15. Color Chooser Example Control

11.4. Customize GUI Appearance Using Qt
Style Sheets (CSS)
By referencing Qt Style Sheet files in the MDL, the underlying Qt widgets can be styled from the MDL,
including tab bars, radio buttons, list view items, etc. For a list of available GUI elements, see Qt Widgets.

The method has to major drawbacks:

• The developer needs to learn something about the underlying Qt widgets.

• The solution somewhat depends on the underlying implementation of the MDL, which could change
over time, for example by using different Qt Widgets internally or just by using a newer Qt version.

The styling works for Qt widgets that are derived from QWidget.

http://doc.qt.io/qt-6/qtwidgets-index.html

GUI Design in MeVisLab

117

Note that it does not work for the MDL controls themselves, because they have no own visual
representation, but they aggregate Qt widgets.

Note

Avoid mixing the MDL styles and the CSS styles within the same MDL controls, because
MDL styles manipulate the QPalette of the underlying widgets and the style sheets override
the QPalette.

Let's have a look at the panel we already know from its element and control names.

Figure 11.16. View3D Panel with Qt Widgets

Like for all modules, a module using the CSS style sheets would have a .script in which the elements
of the GUI are defined. In addition, the stylesheet is referenced.

Interface {
 Parameters {
 Field name {
 type = string
 }
 }
}

Window {
 styleSheetFile = $(LOCAL)/TestStyleSheets.css
 Vertical Tab1 {
 expandY = yes
 Box Box {
 Field name { }
 }
 Box Buttons { layout = Horizontal
 Button { title = Something }
 Button { title = Testing }
 }
 Box ListView { layout = Horizontal

GUI Design in MeVisLab

118

 ListView {
 values = "Column1,Column2$Value1,Value2$Value3,Value4"
 columnSeparator = ,
 rowSeparator = $
 }
 }
 SpacerY {}
 }
 Vertical Tab2 { expandY = yes
 }
}

The styling of the elements is then done in the style sheet.

Excerpt from TestStyleSheets.css:

QTabWidget {
 background: white;
}

QStackedWidget {
 background: white;
}

QTabWidget::pane { /* The tab widget frame */
 border-top: 2px solid #C2C7CB;
 }

 QTabWidget::tab-bar {
 left: 5px; /* move to the right by 5px */
 }

 /* Style the tab using the tab sub-control. Note that
 it reads QTabBar _not_ QTabWidget */
 QTabBar::tab {
 border-image: url("$(LOCAL)/style/tab1.png") 10 10 2 10;
 border-top: 10px transparent;
 border-right: 10px transparent;
 border-bottom: 0 transparent;
 border-left: 10px transparent;
 min-width: 8ex;
 padding: 2px;
 }

 QTabBar::tab:selected, QTabBar::tab:hover {
 border-image: url("$(LOCAL)/style/tab2.png") 10 10 2 10;
 }

 QPushButton {
 border-image: url("$(LOCAL)/style/button.png") 6 10 6 10;

 border-top: 6px transparent;
 border-bottom: 6px transparent;
 border-right: 10px transparent;
 border-left: 10px transparent;
 }

To inspect the QWidgets of a panel you can use the Widget Explorer. It shows the widget hierarchy of all
windows and displays some information about the widgets, for example if the widget is directly owned
by a control. The Widget Explorer also allows for dynamically altering the style sheets.

Note that you cannot use the control names for CSS ID selector, because it does not set the object
name on the widget, but on the control. You can set the object name of the widget with the MDL tag
widgetName.

http://doc.qt.io/qt-6/stylesheet-syntax.html#selector-types

119

Chapter 12. Excursion: Image
Processing in ML

12.1. Some Advanced Information on Image
Processing
In this chapter you will find a brief survey of some more advanced image processing concepts used in
MeVisLab. Many of them are also discussed in the ML Guide, chapter “Image Processing Concepts”.
Please refer to this document for further information.

12.2. Structure of MeVisLab
In the following figure, the basic structure MeVisLab is shown:

Figure 12.1. MeVisLab Structure

MeVisLab is based on C++ objects called modules which either belong to the ML type system developed
at MeVis or to the Open Inventor type system from SGI. Both module types offer a generic parameter
field system for parametrization and change notification. Open Inventor modules together form a scene
graph for interaction and rendering in OpenGL, while the ML modules can be connected to form an
image processing pipeline.

Image processing in the ML is demand-driven (in that only the required parts of an image output are
calculated) and tile-based (this is used for caching of results). As an additional benefit, many classes

Excursion: Image
Processing in ML

120

from the ITK and VTK libraries are provided in the ML type system through code-generated wrapper
modules.

Mixed modules belong to either system but can take input from the other system, thereby serving as
a bridge between systems.

MeVisLab unifies these two module systems with another internal layer that abstracts away the
differences between these systems. Stacked upon that layer is

• a system to turn whole module networks into new macro modules with an interface of their own. Macro
modules may be built upon other macro modules.

• a GUI system where the elements are generated from a hierarchical description file, automatically
providing access to the parameter fields of the modules if desired.

• an interface to the scripting language Python with full access to the modules and GUI widgets,
including the ability to generate new modules or widgets.

Based on these functionality one can build, test and evaluate own applications with the integrated
development environment and — with the proper license — generate own installers with standalone
applications.

12.3. Coordinate Systems
In MeVisLab, three coordinate systems exist next to each other:

• World coordinates

• Voxel coordinates

• Device coordinates

Figure 12.2. Coordinate Systems

The blue rectangle shows the same region in the three coordinate systems.

World coordinates are:

• Global: Combine several objects in a view

• Absolute: Measure distances and angles

• Isotropic: All directions are equivalent

• Orthogonal: Coordinate axes are orthogonal to each other

Voxel coordinates are:

Excursion: Image
Processing in ML

121

• Relative to an image

• Dependent on voxel spacing

• Continuous from [0..x,0..y,0..z], voxel center at 0.5

• Often non-isotropic, sometimes non-orthogonal

• Direct relation to voxel location in memory

Device coordinates are:

• 2D coordinates in OpenGL viewport

• Measured in pixel

• Have their origin (0,0) in the top left corner of the device (with x-coordinates increasing to the right
and y-coordinates increasing downwards)

12.4. Affine Transformations
For mapping e.g., world to voxel coordinates, or device to world coordinates, affine transformations have
to be applied. This is done with homogeneous coordinates:

• Extend the (x,y,z) triple by an artificial coordinate with a fixed value 1.

• Affine transforms can then be represented by a single matrix multiplication.

Why not a 3x3 matrix? Two reasons:

1. One cannot construct a 3x3 matrix that will translate the point (0,0,0). The zeroes in the coordinate
vector cancel out all the coefficients.

2. Transformations could not be combined by multiplying the matrices.

Affine transformations have these elementary transforms:

• Translation (moves an object along a direction vector)

• Rotation (rotates the object around an axis vector)

• Scaling (shrinks/grows the object size)

• Shearing (deforms the object; rare in medical image data)

Figure 12.3. Matrix Multiplication

Excursion: Image
Processing in ML

122

Tip

Look at the example Chapter 5, Defining a Region of Interest (ROI) for the module
WorldToVoxel in action.

The voxel coordinate system is a continuous coordinate system. Voxel boundaries are at integer values,
voxel centers are 0.5 off. To transform integer voxel indices to voxel centers in world coordinates, either
add the value “0.5” to voxel indices or check the option Integer Voxel Coordinates in the modules
WorldVoxelConvert, SoMLTransform, and others.

Common pitfalls

• Computing the voxel volume: getVoxelSize() returns voxel spacing in x, y and z. The product of these
values is not the voxel volume if the voxel-to-world-matrix is not orthogonal. Solution: Use the absolute
value of the matrix determinant instead.

• Inventor using row vector conventions: ML and MeVisLab use the widespread column vector
conventions, that is vectors are written as columns and matrices are applied by left-multiplication.
Open Inventor, in contrast, uses row vector conventions, that is vectors are written as rows and
matrices are applied by right-multiplication. Solution: Use the matrix transposition to convert a matrix
from one convention to the other.

12.5. DICOM Data and Coordinates
A mixed type are DICOM "coordinates". They are mostly world coordinates but refer to the patient axes.

• Based on the patient's main body axes (axial/transverse, coronal, sagittal)

• Measured as 1 coordinate unit = 1 millimeter

• Right-handed

• Not standardized regarding their origin

Figure 12.4. World Coordinates in Context of the Human Body

The DICOM (Digital Imaging and Communications in Medicine) standard is a data format that groups
information into data sets. This way, the image data is always kept together with all meta information like
patient ID, study time, series time, acquisition data etc. The image slice itself is essentially just another
tag with pixel information.

DICOM tags have unique numbers, encoded as 2x4 numbers in hexadecimal notation (0000,0000). The
first four numbers are the data group, the second four numbers the data set/tag.

Excursion: Image
Processing in ML

123

Note

Although DICOM is a standard, often the data that is received / recorded does not follow
the standard. Wrongly used tags or missing mandatory tags may cause problems in data
processing.

Some typical modules for DICOM handling:

• DirectDicomImport is a module for DICOM import that reads images directly from slices, without
an intermediate representation.

It has a lot of options to control the import process, which can, e.g., determine which slices are
combined into an image stack.

• DicomImport is a new module for DICOM import. The new implementation does not yet provide all
known functionalities from DirectDicomImport, most of them will be added in future releases. Its
main advantage is that the import process is faster and happens asynchronously.

• You can view the image-wide DICOM tags with the module DicomTagBrowser.

• You can view and cut out frame-specific tags with the module DicomFrameSelect.

• You can modify DICOM tags with the module DicomTagModify.

• You can also create a new DICOM header for an image file with the ImageSave module, tab Options,
Save DICOM header file only.

• Saving of loaded DICOM data to the filesystem or sending to a PACS (Picture Archiving and
Communication System) is possible with the DicomTool macro module.

• Basic support for querying and receiving DICOM data from a PACS is available through the
DicomQuery and DicomReceiver modules.

Tip

For handling and manipulating DICOM data, the DICOM toolkit “DCMTK” (DICOM@offis)
is recommended. Parts of this toolkit are also used in MeVisLab.

Figure 12.5. The DICOM Tag Browser

Excursion: Image
Processing in ML

124

12.6. Coordinate Systems in the MeVisLab
GUI
You can find information about the voxel and world matrix in the image properties on the Output
Inspector View.

The easiest (ideal) image is when the world and the voxel matrix correspond, so that one voxel is one
world unit, and the world matrix is coronal (not tilted in any way). In case of an image taken in the sagittal
position, voxel sizes may be different and the world matrix may be tilted.

Figure 12.6. Image Properties for an Ideal Image

Figure 12.7. Image Properties for a Sagittal Image

Note

In DICOM, the voxel thickness does not necessarily correspond to the distance between
slices. In MeVisLab however, the calculated voxels close the slice distance.

Excursion: Image
Processing in ML

125

Tip

Also see the Info module and its help for further information on the displayed data,
especially the calculation of the slice thickness z.

Figure 12.8. Image Properties in the Info Module

12.7. Data Types for DICOM and TIFF
The DICOM standard does not support pixel data types other than signed and unsigned integer, and
the maximum bit depth is 16. This is the reason why in MeVisLab, the data is saved as float and (u)int32
data in DCM/TIFF format. This data type is correctly encoded in the TIFF format, and the DICOM file
is written as if it was an (u)int16 image.

The data is saved as follows:

• The TIFF file stored as part of a DCM/TIFF pair is a fairly standard TIFF file. For storing 3D images,
the SGI 3D TIFF extension is used. 4D images are stored as 3D, the time dimension being unfold
into the z-dimension.

• The DCM file in a DCM/TIFF pair is a fairly standard DICOM file, except that it does not contain the
pixel data tag. The contents of such a file can be read with the dcmdump tool by DICOM@offis, for
example. Some information gathered during the original DICOM import, such as the individual time
points in a 4D data set and the values of frame specific tags, are stored in private DICOM tags. There
is no official documentation of these private tags.

In MeVisLab, the libraries libtiff and dcmtk (by DICOM@offis) are used to read these files. The
following applies:

• When opening such a DCM/TIFF pair, the data type stored in the TIFF file has precedence over the
one in the DCM file. This mechanism is described in the help pages of the ImageSave and ImageLoad
modules.

• If a DICOM file contains illegal values, the data is not regarded as valid DICOM and is completely
ignored. The TIFF file is handled as if the DICOM file did not exist.

The MeVisLab binding (for example as used in ImageSave and ImageLoad) does not support the double
image data type for TIFF.

Excursion: Image
Processing in ML

126

As consequence, images with data of the type double cannot be saved as TIFF by ImageSave.
As a workaround, you can either convert the data type to float or use MLImageFormatSave and
MLImageFormatLoad.

However, the images can be saved as RAW images with double data type.

Tip

For loading several TIFF files, use the module ImageLoadMulti. This should not be
confused with loading a multi-page TIFF file (in which several images are saved); that format
is not supported by MeVisLab.

Tip

The page size delivered by the ImageLoad module is actually not determined by the
pageSizeHint field, but by the file format module reading the image data. Only if the
file format allows reading the image data in different (or even arbitrary) pages, the
pageSizeHint is used. (That is why it is called page size hint and not page size.) For the
TIFF format, the page size is fixed by the size of the tiles in the TIFF file holding the image
data. To change the page size for successive modules, ImagePropertyConvert needs to
be used. For RAW images, the page size hint can be set.

12.8. Image Processing Concepts: Pages,
Slices, VirtualVolumes, and More
In MeVisLab, a variety of image processing concepts is available. They differ in scope:

Page-based approaches:

• Page-based

• Voxel-based

• Slice-based

• Kernel-based

Semi-global approaches:

• Random Access (Tile requesting)

• Sequential Image Processing

• Virtual Volume

Global approaches:

• Temporary Global

• Global

• Memory Image

All those concepts are discussed in detail in the ML Guide, chapter “Image Processing Concepts”.

When choosing your approach, keep in mind that some of the concepts are not scaling well for larger
images. For example, the page-based approach can only be beneficial if the pages are of a size so
that they actually fit into memory, or can be administered by the internal ML host / cache. Always

Excursion: Image
Processing in ML

127

try to set the page sizes to some reasonable values, like 128x128x1x1x1x1. You can do this with
ImagePropertyConvert modules (insert them right after the loading modules in your network).

Tip

The ITK modules frequently produce memory allocation problems for large images because
they try to load the entire image at once. You can find out about the memory management
in the ITK module help. Look for something like PageExt=ImgExt or global “memory
management”. If you find these, the module cannot work page-based.

128

Chapter 13. Introduction to C++
Modules
There are different types of modules that may be developed by the user of MeVisLab:

• Macro modules

• Image processing (ML) modules

• Open Inventor modules

There are several noticeable characteristics for all these modules types, and it is not always easy to
choose the best way of implementing a new project. In the following chapter, you will find information on:

• Section 13.1, “Module and Connection Specifics on the C++ Level”

• Section 13.2, “Some Tips for Module Design”

• Section 13.3, “Programming Examples”

13.1. Module and Connection Specifics on
the C++ Level
ML modules on the C++-level:

• Image processing modules are objects derived from class Module defined in the ML library and
therefore are also called ML modules.

• Image inputs and outputs are connectors to objects of class PagedImage, which are defined in the
ML library.

• Inputs and outputs for abstract data structures are connectors to pointers of objects derived from
class Base and are called Base objects.

Inventor modules on the C++-level:

• Most Inventor modules are objects derived from class SoNode defined in the Open Inventor library.

• Inventor inputs and outputs are connectors to objects derived from class SoNode defined in the Open
Inventor library. Many Inventor modules will return themselves as outputs (“self”). On inputs, they may
have connectors to child Inventor modules.

• Some Inventor modules are objects derived from class SoEngine. They are used for calculations and
return their output not via output connectors but via fields.

• Inventor modules may also have input and output connectors to Base objects and Image objects.

• All standard Inventor nodes defined in the Open Inventor library are available in MeVisLab as Inventor
modules.

Modules

In Section 2.3, “MeVisLab Modules”, we introduced modules by their functions and looks. Here a brief
look at their programming basis:

1 Inventor Modules: green. Objects derived from class SoNode or SoEngine defined in the Open
Inventor library.

Introduction to C++ Modules

129

2 ML Modules: blue. Objects derived from class Module defined in the ML library.

3 Macro Modules: brown. MeVisLab intern objects of the type MLABMacroModule.

There is no special module type for MLBase objects.

Module Inputs/Outputs

1 Inventor: Inputs/Outputs: half-circles. Connectors from/to objects derived from class SoNode defined
in the Open Inventor library .

2 Image: Inputs/Outputs: triangles. Connectors from/to Image objects of type PagedImage defined in
the ML library.

3 Base: Inputs/Outputs: squares. Connectors from/to objects derived from class Base defined in the
ML library.

13.2. Some Tips for Module Design

13.2.1. Macro Modules or C++ Modules?
Advantages of macros:

1. Macros are useful for creating a layer of abstraction by hierarchical grouping of existing modules.

2. Scripts can be edited on the fly:

• no compilation and reload of the module database necessary

• scripting possible on the module or network level

• scripting supported by the Scripting Assistant View (basically a recorder for actions performed
on the network)

Disadvantages:

With macros, only existing functionalities and algorithms can be used.

Conclusion:

• For rapid prototyping based on existing image processing algorithms, use macros.

• For implementing new image processing, write new ML or Open Inventor modules.

13.2.2. Combining Functionalities
It is possible to have ML and Open Inventor connectors in the same module. Two cases are possible:

• Type 1: ML -> visualization: Image data or properties are displayed by a visualization module. Usually
a SoSFXVImage field gets random access to an ML image by getTile(). Examples: SoView2D,
GlobalStatistics.

• Type 2: visualization -> ML: Modules generate an ML image from an Inventor scene. Examples:
VoxelizeInventorScene, SoExaminerViewer (hidden functionality).

Generally, however, it is not always a good solution to combine that, as the processes of image
processing and image visualization are usually separated.

Therefore, rather separate the ML and Open Inventor functionalities into two modules. This way,

Introduction to C++ Modules

130

• functionality is encapsulated and can be reused as module

• modules for the single steps may already be available in MeVisLab and spare you a new development

13.2.3. Tips for Module Testing
First, test your modules and networks with the MeVisLab TestCenter, see Chapter 16, Using the
TestCenter for an introduction and the TestCenter Reference for further information.

After being done with the module and macro tests, make sure to stress your network's algorithms and
processing speed by testing with

• large data sets

• images with anisotropic voxels

• images with non-trivial world matrix (translated or rotated)

Many of the possible problems will only occur with these kinds of data.

In addition, keep in mind that modules

• need to run platform-independent

• should offer a well-designed panel for future users

• should come with a useful help and example network

13.3. Programming Examples
Besides the examples in the next chapters, several programming examples are available in the
MeVisLab software development kit.

For these modules to be available, the module group “Module Examples” has to be enabled, see

Preferences → Module Groups.

The module data can be found at

• Sources: Packages/MeVisLab/Examples/Sources/Examples/ML/...

• Modules: Packages/MeVisLab/Examples/Modules/Examples/ML/...

Some modules are combined in one DLL, like the MLExample modules.

Tip

See the chapter Section 14.3, “Combining Two Modules in One Project” on how to combine
modules into one DLL.

Here is an overview of the most important example modules, listed by module name.

• AddImagesExample (Class: AddImagesExample; DLL: AddImagesExample)

Startup example for ML module programming.

• ProcessAllPagesExample (Class: ProcessAllPagesExample; DLL: ProcessAllPagesExample)

Shows how to process all pages using multi-threading and the TypedOutputHandler.

• GlobalPagedImageExample (Class: mlGlobalPagedImageExample; DLL: MLExample)

Introduction to C++ Modules

131

This module demonstrates how a VirtualVolume and/or a TVirtualVolume instance can be used
to get a random read/write access to an input image during page-based processing and to demand
driven image processing.

• AsyncProcessAllPagesExample (Class: mlAsyncProcessAllPagesExample; DLL:
MLBackgroundTasksExamples)

This module (like some others in the same DLL) demonstrates how image processing tasks can be
performed in the background of the main process so that the GUI stays responsive.

• ReadDICOMTagExample (Class: mlReadDICOMTagExample; DLL: MLReadDICOMTagExample)

Shows how to read DICOM tags from the internal image representation.

• Kernel3In2OutExample (Class: mlKernel3In2OutExample; DLL: MLKernelExamples)

Example class to demonstrate the implementation of a kernel-based algorithm with three inputs and
two outputs in the ML.

• KernelExample (Class: mlKernelExample; DLL: MLKernelExamples)

Example class to demonstrate the implementation of a kernel-based algorithm in the ML.

• SeparableKernelExample (Class: mlSeparableKernelExample; DLL: MLKernelExamples)

Example class of the implementation of a kernel-based algorithm in the ML which implements
separable kernel filtering.

Tip

Similar examples are available for MDL panels; for those, search for modules starting with
“Test...”.

132

Chapter 14. Developing ML Modules
In the following chapter, the development of ML modules will be shown in three examples.

1. An ML module that allows adding a user-defined constant value to image voxels, see Section 14.1,
“Creating a New ML Module for Adding Values”.

2. A more complex ML module that calculates a simple average over voxel values of an entire image,
see Section 14.2, “Creating an ML Module For Simple Average”.

3. Combining the two ML modules in one project (which results in one DLL), with a discussion of the
pros and cons of such combinations, see Section 14.3, “Combining Two Modules in One Project”.

The following examples are developed very explicitly to give you some insight into the ML, the MeVis
image processing library. Another useful way to start with module development is to copy the source
code of an existing module that might already have some of the wanted functionality and adapt it to your
needs. For further information, please refer to the ML Guide.

Note

Developing C++ modules requires a C++ development environment being available on your
computer, for example Visual C++ on Windows or Xcode on Mac OS X.

Note

It is recommended to open and compile the debug versions for development.

14.1. Creating a New ML Module for Adding
Values
In the following chapter, we will create a new ML module with the functionality of adding a value to all
voxels, in the following steps:

• Section 14.1.1, “Creating the Basic ML Module with the Project Wizard”

• Section 14.1.2, “Preparing the Project”

• Section 14.1.3, “Programming the Functions of the ML Module”

• Section 14.1.4, “GUI Creation/Optimizing”

• Section 14.1.5, “Creating an Example Network and Help File”

Tip

This example is delivered with MeVisLab (.def file in $(InstallDir)Packages/
MeVisLab/Examples/Modules/GettingStarted/MLSimpleAddExample, source files in
$(InstallDir)Packages/Examples/Sources/GettingStarted/MLSimpleAddExample).
The module can be added via quick search.

14.1.1. Creating the Basic ML Module with the Project
Wizard
1. First of all, make sure that you have a user package defined as described in Section 8.2, “Creating

a User Package for Your Project” or create it now.

Developing ML Modules

133

2. Then run the Project Wizard and select the link ML Module. This starts the Wizard for C++/ML
Modules. Enter the following:

• Name: SimpleAdd

• Comment: Adds a constant double value to each voxel.

• See Also: Arithmetic1

• Target Package: Example/General

• Project: SimpleAdd

Click Next to proceed.

Figure 14.1. Entering the ML Module Properties

3. On the dialog Imaging Module Properties, the inputs and outputs as well as possible sample code
can be added to the ML module.

Developing ML Modules

134

Figure 14.2. Entering the Imaging Module Properties

Select the Module Type Classic ML Module. For information on the differences, see the MeVisLab
Reference Manual, chapter “ML Wizard”.

Enter the following settings:

• Inputs: 1

• Outputs: 1

• Check Add calculateOutputSubImage() template.

• Check Add voxel loop to calculateOutputSubImage().

4. On the dialog Additional Module Properties, the inputs and outputs as well as possible sample
code can be added to the ML module.

Developing ML Modules

135

Figure 14.3. Additional Module Properties

Make the following settings:

• Check Auto-update output images on field changes (adds handleNotification).

• Check Add activateAttachments().

• Check Add ML window with fields.

5. On the dialog Module Field Interface, the fields of the module can be defined (more fields can be
added later but this is the easiest way to add fields).

Developing ML Modules

136

Figure 14.4. Entering the ML Module Properties — Fields

Click New to create a new field, then enter the following:

• Field Name: constantValue

• Field Type: Double

• Field Comment: This constant value is added to each voxel.

• Field Value: 0.

6. Click Create to create the module.

In the default file browser of your system, two folders are opened:

• folder with the source code: {packagePath}/Sources/ML/MLSimpleAdd

• folder with the module's GUI definition: {packagePath}/Modules/ML/MLSimpleAdd

Note

For a full list of all created files and their contents, refer to the MeVisLab Reference
Manual, chapter “ML Module — Created Files”.

The foundation of the module has been created with the Wizard. From here on, the programming starts.

Tip

The Wizard will not close automatically. This way, you can change settings or fields and
create the module once more.

After module creation, the module database needs to be reloaded.

Developing ML Modules

137

14.1.2. Preparing the Project
The Project Wizard creates a CMakeLists.txt file that describes the typical projects settings and used
source files. This file can be translated manually with the CMake tool into a project file for your preferred
C++ development tool. But most Integrated Development Environments (IDEs) nowadays can open
CMake files directly.

Just make sure that the MLAB_ROOT environment variable is set on your system and points to the
Packages directory of your MeVisLab installation, because this is used to resolve the reference to the
'MeVisLab' project.

For further documentation about our use of CMake see: CMake for MeVisLab - Documentation.

14.1.3. Programming the Functions of the ML Module
Open the file mlSimpleAdd.cpp.

Note

In the following code examples, the comment lines already available in the created .cpp
file are added for better overview.

14.1.3.1. Implementing calculateOutputImageProperties

As we add a constant value to each voxel, we need to adjust the value range of the output image, which
results in:

 outMin = inMin + constValue
 outMax = inMax + constValue

In code, this is:

//--
//! Sets properties of the output image at output outIndex.
//--
void SimpleAdd::calculateOutputImageProperties (int outIndex, PagedImage* outImage)
{

 // get the constant add value
 const MLdouble constantValue = _constantValueFld->getDoubleValue();

 // get input image's min and max values
 const MLdouble inMinValue = getInputImage(0)->getMinVoxelValue();
 const MLdouble inMaxValue = getInputImage(0)->getMaxVoxelValue();

 // set the output image's min and max values
 outputImage->setMinVoxelValue(inMinValue + constantValue);
 outputImage->setMaxVoxelValue(inMaxValue + constantValue);
}

Note

outIndex is the index number of the output connector.

14.1.3.2. Implementing calculateOutputSubImage

1. Loop over all voxels of the output page and add the constant value. The loop is already generated
by the wizard, so only the following line has to be added at the start of the method, to obtain the
constant value in the correct data type:

https://cmake.org/

Developing ML Modules

138

 // Compute subimage of output image outIndex from input subimages.
 const T constantValue = static_cast<T>(_constantValueFld->getDoubleValue());

That is the datatype of the output image which is the data type of the input image.

2. Then change the inner line of the following loop from *outVoxel = *inVoxel0; to *outVoxel =
*inVoxel0 + constantValue; so that the constant value is added to the value of the input voxel:

 // Process all row voxels.
 for (; p.x <= rowEnd; ++p.x, ++outVoxel, ++inVoxel0)
 {
 *outVoxel = *inVoxel0 + constantValue;
 }

3. Compile the project (this includes all module files) in the development environment.

4. (Re)start MeVisLab.

Note

If the module was edited in the debug version, MeVisLab must be run in the debug mode.

The restart is necessary

• so that the ModuleName.def file can be found and parsed by MeVisLab.

• so that the module DLL is copied to the correct location, from a temporary source folder to the lib
folder. (If a .def file exists but no DLL is found, the module is displayed in red in MeVisLab.)

The module is now available in the (quick) search. Add it to the network.

14.1.4. GUI Creation/Optimizing
1. For optimizing the GUI of the module — that is the panel — open the .def file. You can do that

in two ways:

• Open the .def file in your development environment. The downside is that the development
environment does not support the MDL language of the .def file.

• Open the .def file in the inbuilt text editor MATE, by right-clicking the module in MeVisLab and

selecting Related Files → MLSimpleAdd.def from the context menu. The advantage is that
MATE supports MDL (and Python). Therefore, it is recommended to edit MDL files primarily with
MATE. (More information on MATE can be found in the MeVisLab Reference Manual, chapter
“MATE”.)

2. Add the line step = 100 to the definition of the field constantValue in order to adjust the constant
value conveniently. (Smaller steps are barely visible in the output.)

Window {
 Vertical {
 margin = 3
 Field constantValue {
 tooltip = "This constant value is added to each voxel."
 step = 100 // big change for big effect
 }
 }
}

3. Reload the module definition by right-clicking the module and selecting Reload Definition from the
context menu. This will only reload the GUI definition, not the module DLL.

Developing ML Modules

139

4. To check if everything worked, double-click the module to open the panel and test

Congratulations, you have now implemented your first page-based and demand-driven ML image
processing module!

As last step, we will create a little example network.

14.1.5. Creating an Example Network and Help File

1. Load the example network of the module via File → Open. Its name is automatically constructed as
<ModuleName>Example.mlab. So far, the example network only includes the module itself.

2. Add two modules to the network, namely LocalImage and View2D. Connect the image input to the
bottom connector and the image output to the top connector of SimpleAdd.

3. Double-click SimpleAdd to open its panel and View2D to open the viewer. When you now change
the steps, the image display changes.

Figure 14.5. Example Network for SimpleAdd

4. To create the help, right-click the new module and select Edit Help from the context menu. This
opens the integrated text editor MATE in a mode to edit a module's help file. See Section 27.9,
“Module Help Editor” for more information.

Now the module is ready for usage.

The module including the example network and help file are delivered with the examples of MeVisLab,
so feel free to check it out and play around with it.

14.2. Creating an ML Module For Simple
Average
In the following chapter, we will create a new ML module that calculates an average over voxel values,
in the following steps:

• Section 14.2.1, “Creating the Basic ML Module with the Project Wizard”

Developing ML Modules

140

• Section 14.2.2, “Editing the Header File of SimpleAverage”

• Section 14.2.3, “Editing the CPP File of SimpleAverage”

Tip

This example is delivered with MeVisLab (.def file in $(InstallDir)Packages/
MeVisLab/Examples/Modules/GettingStarted/MLSimpleAverageExample, source
files in $(InstallDir)Packages/MeVisLab/Examples/Sources/GettingStarted/

MLSimpleAverage). The module can be added via quick search.

14.2.1. Creating the Basic ML Module with the Project
Wizard
For the following example, we expect the user package Example/General to be available, see
Section 14.1.1, “Creating the Basic ML Module with the Project Wizard”.

1. Run the Project Wizard and select the link ML Module. This starts the Wizard for C++/ML Modules.
Enter the following:

a. Name: SimpleAverage

b. Comment: Computes the average voxel value of an image.

c. Keywords: Statistics Average

d. See Also: ImageStatistics

e. Target Package: Example/General

f. Project: SimpleAverage

Click Next to proceed.

2. On the dialog Imaging Module Properties, the inputs and outputs as well as possible sample code
can be added to the ML module.

Select the Module Type Classic ML Module. For information on the differences, see the MeVisLab
Reference Manual, chapter “ML Wizard”.

Enter the following settings:

• Inputs: 1

• Outputs: 1

• Check Add calculateOutputSubImage() template.

• Check Add voxel loop to calculateOutputSubImage().

Note

Although we will have no real "output" of the module, it is helpful to create an output
here, as this will add some of the ML methods necessary for the module functionality.
It is easier to exchange or delete some code than to add new code sections manually.

Click Next to proceed.

3. On the dialog Additional Module Properties, check Add MDL window with fields.

Click Next to proceed.

Developing ML Modules

141

4. On the dialog Module Field Interface, create two new fields:

One field to keep the calculated value:

• Field Name: voxelValueAverage

• Field Type: Double

• Field Value: 0.

One field that will function as Update button:

• Field Name: update

• Field Type: Notify

5. Click Create to create the module.

In the default file browser of your system, two folders are opened:

• folder with the source code: {packagePath}/Sources/ML/MLSimpleAverage

• folder with the module's GUI definition: {packagePath}/Modules/ML/MLSimpleAverage

Note

For a full list of all created files and their contents, refer to the MeVisLab Reference
Manual, chapter “ML Module — Created Files”.

6. Reload the module database.

7. Prepare the project, as described in Section 14.1.2, “Preparing the Project”.

14.2.2. Editing the Header File of SimpleAverage
1. Open the file mlSimpleAverage.h.

2. Add the following two lines to the private section

 //!
 NotifyField* _updateFld;

 size_t _numVoxels;
 MLdouble _sumVoxelValues;

They will be used as follows: All voxel values are added (_sumVoxelValues) and divided by the
number of counted voxels (_numVoxels).

3. Remove the following lines.

 //! Sets properties of the output image at output outIndex.
 virtual void calculateOutputImageProperties(int outputIndex,
 PagedImage* outputImage);

The virtual function calling calculateOutputImageProperties has to be removed because there
will be no image output. If the line is not removed, a warning will be generated by the compiler.
(However, the calculateOutputSubImage template is necessary.)

14.2.3. Editing the CPP File of SimpleAverage
Open the file mlSimpleAverage.cpp.

Developing ML Modules

142

Note

In the following code examples, the comment lines already available in the created .cpp
file are added for better overview, when necessary.

1. Change the constructor call of the superclass from Module(1,1) to Module(1,0).

SimpleAverage::SimpleAverage () : Module(1, 0)

This leaves our module with one input and no output image.

2. Add the following code in the method handleNotification(Field* field).

 // Handle changes of module parameters and input image fields here.
 if (field == _updateFld)
 {
 _numVoxels = 0;
 _sumVoxelValues = 0;

 processAllPages(-1);

 MLdouble result = 0;

 if (_numVoxels > 0)
 {
 result = _sumVoxelValues / static_cast<MLdouble>(_numVoxels);
 }
 _voxelValueAverageFld->setDoubleValue(result);
 }

The code includes the important ML Module method processAllPages(). This method can be
used in algorithms that only extract information from an image (but do not modify it). As the
extraction of information is not driven by demand, the loop over all pages has to be implemented
with processAllPages(). The provided parameter '-1' causes the input image to be read-only for
optimization reasons. For further information, see the ML Guide.

3. Remove the following lines, as no image will be output by this module.

//--

void SimpleAverage::calculateOutputImageProperties(int /*outputIndex*/,
 PagedImage* outputImage)
{
 // Change properties of output image outputImage here whose
 // defaults are inherited from the input image 0 (if there is one).
}

4. In the method calculateOutputSubImage(...), remove outputSubImage and outputIndex from
the method's signature. Result:

template <typename T>
void SimpleAverage::calculateOutputSubImage (TSubImage<T>* ,
 int ,
 TSubImage<T>* inputSubImage0
)

outIndex would reference an output image of the module which we do not have.

5. Replace the line:

 const SubImageBox validOutBox = outputSubImage->getValidRegion()

with the line:

Developing ML Modules

143

 const SubImageBox inBox = inputSubImage0->getValidRegion();

Resulting in:

 // Compute subimage of output image outIndex from input subimages.
 const SubImageBox inBox = inputSubImage0->getValidRegion();

6. Remove the line

 T *outVoxel = outputSubImage->getImagePointer(p);

7. Replace all occurrences of validOutBox with inBox.

8. Replace the line

 *outVoxel = *inVoxel0;

with the lines:

 _sumVoxelValues += static_cast<MLdouble>(*inVoxel0);
 ++_numVoxels;

Remove the ++outVoxel, from the inner for-loop over the voxel row.

Resulting in:

 // Process all row voxels.
 for (; p.x <= rowEnd; ++p.x, ++in0Voxel) {
 _sumVoxelValues += static_cast<MLdouble>(*in0Voxel);
 ++_numVoxels;
 }

9. At last, compile the project. Then restart MeVisLab so that the new module is registered and added
to the module database.

10. In MeVisLab, instantiate the new module, right-click it and open the module's .script file.

In the .script file, enter the following lines before the Window section:

Description {
 Field voxelValueAverage { editable = No }
}

Setting the editable of a field to No (or False or 0) has two consequences: firstly, the field is not
editable by the user which makes sense, because the field should be set from the C++ code only,
and secondly, the value of the field is not saved with the .mlab file which makes sense, because the
value needs to be calculated in a live network.

14.2.4. Testing the Module
Now you can use the new module in MeVisLab.

1. Add your new module SimpleAverage and a LocalImage module to a new network. Connect them
and load an image.

2. Then double-click SimpleAverage to open its automatic panel and click the Update button on the
module panel. The calculated output of SimpleAverage is displayed.

A module with a similar functionality is available in MeVisLab, called ImageStatistics.

Add ImageStatistics via the quick search and compare its mean value with the displayed value of
SimpleAverage. You will find that the results are almost the same apart from the rounding error in the
display.

Developing ML Modules

144

Tip

This test network is delivered as the example network for SimpleAverageExample.

14.3. Combining Two Modules in One Project
In the following chapter, we will merge our two modules (SimpleAdd and SimpleAverage) into one
project, in the following steps:

• Section 14.3.1, “Copying the Source Files”

• Section 14.3.2, “Editing and Recompiling the CMakeLists.txt File”

• Section 14.3.3, “Editing the Project in the Development Environment”

• Section 14.3.4, “Editing the Module Definition (.def)”

• Section 14.3.1, “Copying the Source Files”

Per project, one DLL (.DLL/.dynlib/.so) file is created and transferred, and the modules might share
common includes etc. within one project.

Therefore, this example is a showcase on how to build a larger library by augmenting an existing project.

In this example, we will merge the SimpleAverage module into the SimpleAdd project. For two modules,
this is an arbitrary decision; for larger projects, always merge into the existing project.

Note

The source code of this example is not delivered with MeVisLab, as it would lead to module
name collisions with the examples above. If you want to implement this example, make sure
to change the module names or to move the original modules to another folder.

14.3.1. Copying the Source Files

Copy the mlSimpleAverage.cpp and mlSimpleAverage.h files to the source folder of SimpleAdd.

14.3.2. Editing and Recompiling the CMakeLists.txt
File

1. Open the CMakeLists.txt of your project in any text editor.

2. Add mlSimpleAverage.h and mlSimpleAverage.cpp to the target_sources statement.

3. Resulting code (excerpt):

target_sources(MLSimpleAddExample PRIVATE
 mlSimpleAddExample.cpp
 mlSimpleAddExample.h
 mlSimpleAverage.cpp
 mlSimpleAverage.h
 MLSimpleAddExampleInit.cpp
 MLSimpleAddExampleInit.h
 MLSimpleAddExampleSystem.h
)

Developing ML Modules

145

4. Re-translate the CMakeLists.txt file.

14.3.3. Editing the Project in the Development
Environment
Open the SimpleAdd project in your development environment.

14.3.3.1. Editing SimpleAverage.h

1. Open SimpleAverage.h.

2. Exchange the line

#include "MLSimpleAverageSystem.h"

by

#include "MLSimpleAddSystem.h"

Resulting in:

// Local includes
#include "MLSimpleAddSystem.h"

3. Exchange the macro in the class definition (this handles exporting symbols under Windows)

MLSIMPLEAVERAGE_EXPORT

by

MLSIMPLEADD_EXPORT

Resulting in:

//! Computes the average voxel value of an image.
class MLSIMPLEADD_EXPORT SimpleAverage : public Module

The new module in this project (i.e., SimpleAdd) needs to be initialized for the runtime-type system.

14.3.3.2. Editing MLSimpleAddInit.cpp

1. Open MLSimpleAddInit.cpp.

2. Add the line

#include "mlSimpleAverage.h"

below the line

#include "mlSimpleAdd.h"

Resulting in:

// Include all module headers ...
#include "mlSimpleAdd.h"
#include "mlSimpleAverage.h"

3. Add the line

 SimpleAverage::initClass();

below the line

Developing ML Modules

146

 SimpleAdd::initClass();

Resulting in:

 SimpleAdd::initClass();
 SimpleAverage::initClass();

This registers the classes to the ML runtime type system.

4. Recompile the project.

Note

mlSimpleAverage.cpp does not have to be edited.

14.3.4. Editing the Module Definition (.def)
1. Copy the file SimpleAverage.script to the folder containing the file SimpleAdd.def.

2. Open the file MLSimpleAverage.def in MATE.

Copy the definition of the module SimpleAverage into the clipboard (this is at least from the line

MLModule SimpleAverage {

to the last closing curly bracket (})

3. Open the file MLSimpleAdd.def.

Paste the definition of the SimpleAverage module below the definition of the SimpleAdd module.

Exchange the line in the definition of the SimpleAverage module

DLL = "MLSimpleAverage"

by the line

DLL = "MLSimpleAdd"

Resulting code:

MLModule SimpleAdd {
 DLL = MLSimpleAdd
 genre = ""
 author = "JDoe"
 comment = "Adds a constant double value to each voxel."
 keywords = ""
 seeAlso = Arithmetic1
 exampleNetwork = $(LOCAL)/networks/SimpleAddExample.mlab
 externalDefinition = $(LOCAL)/SimpleAdd.script
}

MLModule SimpleAverage {
 DLL = MLSimpleAdd
 genre = ""
 author = "JDoe"
 comment = "Computes the average voxel value of an image."
 keywords = "Statistics Average"
 seeAlso = ""
 exampleNetwork = $(LOCAL)/networks/SimpleAverageExample.mlab
 externalDefinition = $(LOCAL)/SimpleAverage.script
}

Developing ML Modules

147

14.3.5. Cleaning up Folders and Example Networks
1. Copy the example network and HTML documentation of the SimpleAverage module to the according

folders of the SimpleAdd module. The paths to those files should be relative, so they are still correct.

2. (Re)move the old files and folders of the SimpleAverage module from the folders /Sources and /
Modules so that no conflicts arise.

3. (Re)start MeVisLab.

Both modules can now be added, for example via a quick search. However, you will find that in the
About information, the same DLL will appear for both modules.

148

Chapter 15. Developing a Base
Communication
In the following chapter, we will develop an ML module owning a Base object in combination with an
Open Inventor module that will display the contents of the Base object.

Purpose of this example:

• shows how to implement an ML module without any image processing functionality (no input/output
image, hence no calculateOutputSubImage etc.).

• shows the use of an object derived from Base for communication between two modules.

• shows how to use an object derived from Base in an ML module and in an Open Inventor module.

The class Base is briefly referred to in the ML Guide, chapter “Base Objects”.

This will be our resulting network:

Figure 15.1. Example Network for ML Module and an Open Inventor Module

The data processing works as follows:

• The ML module offers fields for parameterizing a simple scene.

• The parameters are 'transported' by a Base object to another module.

• The receiving Open Inventor module renders a simple scene on base of the parameters set in the
module with fields.

The example will be implemented with these elements:

• an MLBaseOwner module

• a BaseMessenger class

• a SoBaseReceiver module

Developing a Base
Communication

149

Why this way of implementation?

• Separating the owner module from the receiver/visualization module is a lot more flexible than
integrating the functionality — this way, it is possible to use several receivers/visualization modules
with one messenger.

• The separation also means that the receiver does not have to know anything about the owner.

• Having an class derived from Base enables wrapping it as a scripting object so it can be used in
Python directly. Have a look at the scripting example for wrapping the BaseMessenger.

The example is created in the following chapters:

• Section 15.2, “Developing the MLBaseOwner Module and the BaseMessenger Class”

• Section 15.3, “Developing the SoBaseReceiver Module”

15.1. A Note on Base Types Checks

15.1.1. Base Connectors and Field Types
When drawing a connection in MeVisLab, it is checked whether the basic connector type fits (MLImage,
Base, Open Inventor). If not, a “blocked” sign appears.

As Base objects can be of different derived types, it is possible to connect Base fields with incompatible
types, which might result in errors. To prevent this, the allowed Base object type(s) can be added to the
Base field in the C++ source of the module. The allowed Base types are then displayed in the mouse-
over information of a Base connector. This is especially helpful in cases where more than one Base
connector is available.

Figure 15.2. Mouse-over Information for Base Connectors

Figure 15.3. Mouse-over Information for Different Base Connectors in One
Module

When connecting Base fields, the allowed types are checked and the connection is only possible for
types in the allowed-list. This check also happens when connecting fields across macro modules, as
the input/output fields of a macro “inherit” the allowed-list of the connected module fields.

While drawing a connection, the incompatible connectors are grayed out; if the connection is about to
be dropped on an incompatible connector, the intermediate connection rendering is displayed in red.

Developing a Base
Communication

150

Figure 15.4. Base Field Connection Checked for Type Compatibility

15.1.2. Overriding Base Type Checks
Sometimes it is useful to establish a connection although the Base field types are not compatible. For
example, if the allowed types are set incorrectly in C++ when the module is still in development.

Three override methods are available:

• In scripting: Drawing the Base connection in scripting always works. However, scripting
functions are available to check whether the types match: allowedTypesByString() and
matchesTypes(MLABMLBaseField *field), see the MLABMLBaseField Class Reference.

• In the .mlab file: Base connections can always be created by editing the .mlab file manually.

15.1.3. Implementing Base Type Checks
Implementing the Base typ check is done in the C++ source.

To add an allowed type to a Base field, add the following C++ template method:

_myBaseField->addAllowedType<CSOList>();

There is a convenience template function available to set the initial value and the allowed type at the
same time, especially if the initial value is not NULL:

_myBaseField->setBaseValueAndAddAllowedType(&_myOutputValue);

This derives the allowed type from the argument, but the type can also be defined specifically:

_myBaseField->setBaseValueAndAddAllowedType<lutFunction>(&_mySpecialOutputLUT);

It is possible to write

_myBaseField->setBaseValueAndAddAllowedType<lutFunction>(NULL);

but this is basically the same as

_myBaseField->addAllowedType<lutFunction>();

To add an allowed type to a Base field of an Inventor module, add the following C++ template method:

_myBaseField.addAllowedType<CSOList>();

The addition of checks for allowed Base types is demonstrated in the following example, see
Section 15.2.8.1, “Adding the construction of a new BaseMessenger Object” and Section 15.3.4, “Editing
SoBaseReceiver.cpp”.

Developing a Base
Communication

151

15.2. Developing the MLBaseOwner Module and
the BaseMessenger Class
The ML module is of the class Module which is the base class from which all C++-based image
processing modules are derived. Usually, it is used to implement new algorithms for processing voxel
images. In our example, it will only offer the fields to parameterize the simple scene.

The class Module is explained in more detail in the ML Guide, chapter “Deriving Your Own Module from
Module”.

Technically, this module owns the object derived from Base we will implement later:

• it constructs and deconstructs the Base object in its constructor and destructor, respectively.

• it holds the pointer to the Base object.

• it parameterizes the Base object according to the values of its fields and touches the BaseField in
order to notify the receiving module(s) that the scene needs to be updated.

15.2.1. Creating the BaseCommunication Project in the
Wizard

To create the MLBaseOwner module in the BaseCommunication project, use the wizard.

First of all, make sure that you have a user package defined as described in Section 8.2, “Creating a
User Package for Your Project” or create it now. Then run the Project Wizard and select the option ML
Module. This starts the Wizard for C++/ML Modules.

1. On the dialog Module Properties, enter the following:

• Name: BaseOwner

• Comment: Module for setting parameters of a Base object via fields

• Keyword: Example

• See Also: SoBaseReceiver

• Target Package: your package, for example “Example/General”

• Project: BaseCommunication

Developing a Base
Communication

152

Figure 15.5. Project Wizard — Module Properties

The project name is different to the module name here because the project will later include the
module MLBaseOwner and the additional class BaseMessenger.

Click Next to proceed.

2. On the dialog Imaging Module Properties, all settings have to be removed as the module has no
image input/outputs.

• Keep New Style ML Module, as the setting is irrelevant for our example.

• Change the settings to 0 inputs and 0 outputs.

• Uncheck all options (Add calculateInputSubImageBox and Add voxel loop to
calculateOutputSubImage).

Developing a Base
Communication

153

Figure 15.6. Project Wizard — Imaging Module Properties

Click Next.

3. On the dialog Additional Module Properties, the following settings are necessary:

• Check Add activateAttachements().

• Check Add MDL window with fields.

• Uncheck everything else.

Developing a Base
Communication

154

Figure 15.7. Project Wizard — Additional Module Properties

Click Next.

4. On the dialog Module Field Interface, add the following five fields (their sequence is not important):

• Enter field:

• Field Name: outputMessenger

• Field Type: Base

• Field Comment: Output of the Base object holding the parameters for the Inventor scene.

• Enter field:

• Field Name: shapeType

• Field Type: Enum

• Field Comment: Selects the type of the rendered shape.

• Field Value: 0

• Enum Values: Cube, Sphere

• New field:

• Field Name: translation

• Field Type: Vector3

• Field Comment: The translation of the rendered shape.

Developing a Base
Communication

155

• New field:

• Field Name: color

• Field Type: Color

• Field Comment: The color of the rendered shape.

• New field:

• Field Name: diameter

• Field Type: Double

• Field Comment: The diameter of the rendered shape.

• Field Value: 1

Figure 15.8. Project Wizard — Module Field Interface

5. Click Create to create the project.

In the default file browser of your system, two folders are opened:

• folder with the source code: {packagePath}\Sources\ML\MLBaseCommunication

• folder with the module's GUI definition: {packagePath}\Modules\ML\MLBaseCommunication

Note

For a full list of all created files and their contents, see the MeVisLab Reference Manual,
chapter “ML Module (Wizard)”.

Developing a Base
Communication

156

6. Close the Wizard.

The code resulting from the wizard is:

//--

//! The ML module class BaseOwner.

//

// Module for setting parameters of a Base object via fields.

//--

#include "mlBaseOwner.h"

ML_START_NAMESPACE

//! Implements code for the runtime type system of the ML

ML_MODULE_CLASS_SOURCE(BaseOwner, Module);

//--

BaseOwner::BaseOwner() : Module(0, 0)

{

 // Suppress calls of handleNotification on field changes to

 // avoid side effects during initialization phase.

 handleNotificationOff();

 // Add fields to the module and set their values.

 _outputMessengerFld = addBase("outputMessenger", NULL);

 static const char * const shapeTypeValues[] = { "Cube", "Sphere" };

 _shapeTypeFld = addEnum("shapeType", shapeTypeValues, 2);

 _shapeTypeFld->setEnumValue(0);

 _translationFld = addVector3("translation", Vector3());

 _colorFld = addColor("color", 1,1,1);

 _diameterFld = addDouble("diameter", 1);

 // Reactivate calls of handleNotification on field changes.

 handleNotificationOn();

}

//--

void BaseOwner::handleNotification(Field* field)

{

 // Handle changes of module parameters and input image fields here.

}

//--

void BaseOwner::activateAttachments()

{

 // Update members to new field state here.

 // Call super class functionality to enable notification handling again.

 Module::activateAttachments();

}

ML_END_NAMESPACE

15.2.2. Adding New Files
Open your folder {packagePath}/Sources/ML/MLBaseCommunication and add two empty files:

• BaseMessenger.h

• BaseMessenger.cpp

Developing a Base
Communication

157

These will be used for the BaseMessenger class that transmits the field values from the ML module to
the Open Inventor module.

15.2.3. Adding References to the new Files in
CMakeLists.txt

1. Open CMakeLists.txt of the project in a text editor.

2. Add references to the new files. Result:

target_sources(MLBaseCommunication PRIVATE
 BaseMessenger.cpp
 BaseMessenger.h
 MLBaseCommunicationInit.cpp
 MLBaseCommunicationInit.h
 MLBaseCommunicationSystem.h
 mlBaseOwner.cpp
 mlBaseOwner.h
)

3. Add the include paths for Base objects (MLBase) to the configuration:

find_package(MeVisLab COMPONENTS ML MLBase HINTS "$ENV{MLAB_ROOT}" REQUIRED)

target_link_libraries(MLBaseCommunication
 PUBLIC
 MeVisLab::ML
 MeVisLab::MLBase
)

4. Compile the CMakeLists.txt file and open the project in your development environment.

15.2.4. Adding Contents to BaseMessenger.h
Open BaseMessenger.h and enter the following code:

//--
//! This class defines merely a parameter container for
//! visualization attributes and a shape enumeration.
//--

#pragma once

#include <mlModuleIncludes.h>
#include <mlBase.h>
#include <mlLinearAlgebra.h>

// Local includes
#include "MLBaseCommunicationSystem.h"

ML_START_NAMESPACE

//--

//! This enumeration lists all possible
//! shape types used in the owner and receiver modules.
enum MessengerShapeType
{
 ShapeTypeCube = 0,
 ShapeTypeSphere = 1
};

Developing a Base
Communication

158

//--

//! This class defines merely a parameter container for
//! visualization attributes and a shape enumeration.
class MLBASECOMMUNICATION_EXPORT BaseMessenger : public Base
{
public:

 //! Constructor.
 BaseMessenger();

 //! Copy constructor.
 BaseMessenger(const BaseMessenger& baseMessenger);

 //! Standard destructor.
 virtual ~BaseMessenger();

 //! \name Methods to retrieve attributes.
 //@{
 inline const Vector3& getPosition() const { return _position; }
 inline const Vector3& getColor() const { return _color; }
 inline MLdouble getDiameter() const { return _diameter; }
 inline MessengerShapeType getShapeType() const { return _shapeType; }
 //@}

 //! \name Methods to set attributes.
 //@{
 inline void setPosition(const Vector3& newPosition) { _position = newPosition; }
 inline void setColor(const Vector3& newColor) { _color = newColor; }
 inline void setDiameter(MLdouble newDiameter) { _diameter = newDiameter; }
 inline void setShapeType(MessengerShapeType newType) { _shapeType = newType; }
 //@}

private:

 //! \name Member variables.
 //@{
 Vector3 _position;
 Vector3 _color;
 MLdouble _diameter;
 MessengerShapeType _shapeType;
 //@}

 //! Implements interface for the runtime type system of the ML.
 ML_CLASS_HEADER(BaseMessenger)
};

//--

ML_END_NAMESPACE

15.2.5. Add Contents to BaseMessenger.cpp
Open BaseMessenger.cpp and enter the following code:

// Local includes
#include "BaseMessenger.h"

ML_START_NAMESPACE

//! Implements code for the runtime type system of the ML

Developing a Base
Communication

159

ML_MODULE_CLASS_SOURCE(BaseMessenger, Base);

//--

BaseMessenger::BaseMessenger() : Base()
{
 // Set default values.

 _position.assign(0.0, 0.0, 0.0);
 _color.assign(1.0, 0.0, 0.0); // red
 _diameter = 1.0;
}

//--

BaseMessenger::BaseMessenger(const BaseMessenger& baseMessenger) : Base()
{
 // Just copy values of the given object.

 _position = baseMessenger.getPosition();
 _color = baseMessenger.getColor();
 _diameter = baseMessenger.getDiameter();
}

//--

BaseMessenger::~BaseMessenger()
{
 // Not needed.
}

//--

ML_END_NAMESPACE

15.2.6. Editing MLBaseCommunicationInit.cpp
Add the initialization of the BaseMessenger class (runtime type system).

1. Open MLBaseCommunicationInit.cpp.

2. Add the include of BaseMessenger.h. Result:

// Include all module headers
#include "mlBaseOwner.h"
#include "BaseMessenger.h"

3. Add the initialization of BaseMessenger.h. Result:

int MLBaseCommunicationInit ()
{
 // Add initClass calls from all other modules here...
 BaseOwner::initClass();
 BaseMessenger::initClass();

 return 1;
}

At this point, the project should be compilable.

15.2.7. Editing mlBaseOwner.h
Open mlBaseOwner.h.

Developing a Base
Communication

160

1. Add the include of BaseMessenger.h. Result:

// Local includes
#include "MLBaseCommunicationSystem.h"
#include "BaseMessenger.h"

2. Add a destructor to the class:

 //! Constructor.
 BaseOwner();

 //! Destructor.
 ~BaseOwner();

3. Add a private member variable of type BaseMessenger pointer since this module is the owner of
the Base object. Result:

private:

 //! \name Member variables.
 //@{
 BaseMessenger* _baseMessenger;
 //@}

4. Add a private method to set the value in the Messenger object to the module's field values:

 // Implements interface for the runtime type system of the ML.
 ML_MODULE_CLASS_HEADER(BaseOwner)

 //! Set the field values to the output messenger.
 void _setFieldValuesToMessenger();

15.2.8. Editing mlBaseOwner.cpp

15.2.8.1. Adding the construction of a new BaseMessenger Object

Open mlBaseOwner.cpp and add the construction of a new BaseMessenger object and its
parameterization to the constructor of the BaseOwner module. Use setBaseValueAndAddAllowed to
ensure that the base type will be checked when drawing connetions in the user interface.

Also, add the destruction of the _baseMessenger object to the destructor.

Result:

BaseOwner::BaseOwner () : Module(0, 0)
{
 // Suppress calls of handleNotification on field changes to
 // avoid side effects during initialization phase.
 handleNotificationOff();

 // Allocate memory for the BaseMessenger object.
 // Delete the object in this module's destructor.
 ML_CHECK_NEW(_baseMessenger, BaseMessenger());

 // Add fields for the interface.
 // Set the pointer to the BaseMessenger object to the output field.
 _outputMessengerFld = addBase("outputMessenger");

 _outputMessengerFld->setBaseValueAndAddAllowedType(_baseMessenger);;

 static const char * const shapeTypeValues[] = { "Cube", "Sphere" };
 _shapeTypeFld = addEnum("shapeType", shapeTypeValues, 2);

Developing a Base
Communication

161

 _shapeTypeFld->setEnumValue(0);
 _translationFld = addVector3("translation");
 _translationFld->setVector3Value(Vector3());
 _colorFld = addColor("color");
 _colorFld->setColorValue(1,1,1);
 _diameterFld = addDouble("diameter");
 _diameterFld->setDoubleValue(1);

 _setFieldValuesToMessenger();

 // Reactivate calls of handleNotification on field changes.
 handleNotificationOn();
}

// ...

BaseOwner::~BaseOwner()
{
 ML_DELETE(_baseMessenger);
}

15.2.8.2. Editing handleNotification

Change handleNotification so that it touches the output Base field after setting the module's field
values to the BaseMessenger object. Result:

void BaseOwner::handleNotification(Field* field)
{
 // Handle changes of module parameters and input image fields here.
 bool touchOutputs = false;

 if ((field == _shapeTypeFld) ||
 (field == _translationFld) ||
 (field == _colorFld) ||
 (field == _diameterFld))
 {
 touchOutputs = true;
 }

 if (touchOutputs)
 {
 // Set the current parameter values to the messenger object
 // and touch the output field so the receiver generates its
 // scene anew.

 _setFieldValuesToMessenger();

 _outputMessengerFld->touch();
 }
}

15.2.8.3. Editing activateAttachments

After a saved network has been loaded and all the modules and their connection have been regenerated,
the activateAttachements methods are called. We use this to regenerate the Base object with the
saved parameters of the BaseOwner module.

Result:

void BaseOwner::activateAttachments()
{
 // Update members to new field state here.
 _setFieldValuesToMessenger();

Developing a Base
Communication

162

 _outputMessengerFld->touch();

 // Call super class functionality to enable notification handling again.
 Module::activateAttachments();
}

15.2.8.4. Implementing Setting the Parameters in BaseMessenger

Implement the setting of the parameters in the BaseMessenger according to the module's fields after
the module has been loaded in a network (with restored field values) in activateAttachments(). Result:

void BaseOwner::activateAttachments ()
{
 // Update members to new field state here.
 _setFieldValuesToMessenger();

 // Call super class functionality to enable notification handling again.
 Module::activateAttachments ();
}

15.2.8.5. Implementing the method
_setFieldValuesToMessenger()

void BaseOwner::_setFieldValuesToMessenger()
{
 _baseMessenger->setPosition(_translationFld->getVector3Value());
 _baseMessenger->setColor(_colorFld->getVector3Value());
 _baseMessenger->setDiameter(_diameterFld->getDoubleValue());
 _baseMessenger->setShapeType(
 static_cast<MessengerShapeType>(
 _shapeTypeFld->getEnumValue()
)
);
}

ML_END_NAMESPACE

Save the file mlBaseOwner.cpp.

15.2.9. Making MLBaseCommunication classes known

Make the classes of the project MLBaseCommunication (and with it, the BaseMessenger) known to
other projects:

1. Open the file CMakeLists.txt of the project in a text editor.

2. Change the last lines of the file, from:

mlab_install(MLBaseCommunication NS MeVisLab)

to

mlab_install(MLBaseCommunication NS MeVisLab EXPORT)
mlab_install_headers(MLBaseCommunication)

Compile the project and restart MeVisLab. To check the final module, enter BaseOwner in the quick
search and add it.

Developing a Base
Communication

163

Figure 15.9. Resulting BaseOwner Module

Tip

This example is delivered with MeVisLab (.def file in $(InstallDir)Packages/
MeVisLab/Examples/Modules/GettingStarted/MLBaseCommunicationExample, source
files in $(InstallDir)Packages/MeVisLab/Examples/Sources/GettingStarted/

MLBaseCommunicationExample). The module can be added via quick search.

15.2.10. Adding an object wrapper for
MLBaseCommunication objects
To use the MLBaseCommunication in scripting, an object wrapper can be implemented. How this is done
is explained here.

15.3. Developing the SoBaseReceiver Module
In this section, we will develop the Open Inventor module that is necessary to display the output of
MLBaseOwner.

Technically, this module receives the Base object and constructs a simple Open Inventor scene
internally on base of the parameter and attribute values in the received Base object.

Tip

For information on Open Inventor, see the Inventor Modules Help (for an introduction on
Open Inventor and module-related help) and the Inventor Reference (converted from the
original man pages).

The internal scene graph of this module could also be built as a network in MeVisLab:

Figure 15.10. SoBaseReceiver Module Alternative

Developing a Base
Communication

164

As you can see, SoBaseReceiver is essentially an Open Inventor separator module which has the
advantage that it comes with its own viewer. The other modules deliver the translation, the color and
the actual shape.

15.3.1. Creating the New Open Inventor Module with
the Wizard

1. First of all, make sure that you have a user package defined as described in Section 8.2, “Creating
a User Package for Your Project” or create it now.

2. Then run the Project Wizard and select the link Inventor Module. On the dialog Module Properties,
enter the following:

• Name: (So)BaseReceiver

• Comment: Module renders an inventor scene that is parameterized by a BaseOwner module.

• Keyword: Example

• See Also: BaseOwner

• Target Package: your package, for example “Example/General”

• Project: BaseReceiver (“So” is added automatically)

Figure 15.11. Project Wizard — General Module Properties

Click Next to proceed.

3. On the dialog Module Type, select SoSeparator and check the option Add Node Sensor.

Developing a Base
Communication

165

Figure 15.12. Project Wizard — Module Type

4. On the dialog Module Field Interface, enter one field:

• Field Name: inputMessenger

• Field Type: ML Base Object

• Field Comment: Input Base object holds the parameters for the inventor scene.

Figure 15.13. Project Wizard — Module Field Interface

Developing a Base
Communication

166

Tip

Why using a node sensor instead of a field sensor? In our example, it would make no
difference as we only have one input field. Usually, however, there will be more than
one field, and as each field sensor will add redundant code to the module, using a node
sensor that will react to any changes of the Open Inventor node is usually recommended.

5. Click Create to create the module.

In the default file browser of your system, two folders are opened:

• folder with the source code: {packagePath}\Sources\So\SoBaseReceiver

• folder with the module's .def file definition: {packagePath}\Modules\So\SoBaseReceiver.

Note

For a full list of all created files and their contents, see MeVisLab Reference Manual,
chapter “ML Module (Wizard)”.

6. Close the Wizard.

The code resulting from the wizard is:

//--
//! The Inventor module class SoBaseReceiver
//
// Module renders an Inventor scene that is parametrized by a BaseOwner module.
//--

#include "SoBaseReceiver.h"

#include <Inventor/elements/SoCacheElement.h>

SO_NODE_SOURCE(SoBaseReceiver)

void SoBaseReceiver::initClass()
{
 SO_NODE_INIT_CLASS(SoBaseReceiver, SoSeparator, "Separator");
}

SoBaseReceiver::SoBaseReceiver()
{
 // Execute Inventor internal code for node construction.
 SO_NODE_CONSTRUCTOR(SoBaseReceiver);

 SO_NODE_ADD_FIELD(inputMessenger, (NULL));
 // Create a sensor calling _nodeChangedCB if any field changes. Use a priority 0
 // sensor to be sure that changes are not delayed or collected.
 _nodeSensor = new SoNodeSensor(SoBaseReceiver::nodeChangedCB, this);
 _nodeSensor->setPriority(0);
 _nodeSensor->attach(this);
}

SoBaseReceiver::~SoBaseReceiver()
{
 // Remove the node sensor.
 delete _nodeSensor;

Developing a Base
Communication

167

}

void SoBaseReceiver::nodeChangedCB(void* data, SoSensor* sensor)
{
 static_cast<SoBaseReceiver*>(data)->nodeChanged(
 static_cast<SoNodeSensor*>(sensor)
);
}

void SoBaseReceiver::nodeChanged(SoNodeSensor* sensor)
{
 // Get the field which caused the notification.
 SoField* field = sensor->getTriggerField();
 // Handle changed fields here
}

As the module is already of type SoSeparator, no additional include has to be made for that.

15.3.2. Editing CMakeLists.txt of SoBaseReceiver
1. Open the CMakeLists.txt of the SoBaseReceiver project in a text editor.

2. Add the inclusion of the MLBaseCommunication project to the find_package and
target_link_libraries calls. Result:

find_package(MeVisLab COMPONENTS ML MLABBase OpenGL InventorBinding MLBaseCommunication HINTS "$ENV{MLAB_ROOT}" REQUIRED)

target_link_libraries(SoBaseReceiver
 PUBLIC
 MeVisLab::MLBaseCommunication

 MeVisLab::ML
 MeVisLab::MLBase
 MeVisLab::OpenGL
 MeVisLab::InventorBinding
 OpenInventor::OpenInventor
)

3. Create a project file for your development environment out of the CMakeLists.txt file.

15.3.3. Edit SoBaseReceiver.h
1. Open SoBaseReceiver.h.

2. Add a forward declaration (in a doxygen comment group) between the includes and the class
declaration. Forward declarations are used here because in the header file, it is not necessary to
know the actual classes because only pointer are declared here. The definition of the classes is
used in the .cpp file where the according header files of the used classes must be included.

#include "mlAPI.h"

//! \name Forward declarations
//@{
class SoMaterial;
class SoTranslation;
class SoSwitch;
class SoSphere;
class SoCube;
//@}

3. Add private member variables to reference parts of the internal scene graph:

Developing a Base
Communication

168

private:

 //! \name Member variables
 //@{
 //! The node providing the color properties to the output scene.
 SoMaterial* _material;
 //! The node providing the translation of the output scene.
 SoTranslation* _translation;
 //! A node to switch between the shapes 'cube' and 'sphere' as
 //! well as to turn off any output shape.
 SoSwitch* _shapeSwitch;
 //! The output shape: cube.
 SoCube* _cube;
 //! The output shape: sphere.
 SoSphere* _sphere;
 //@}

4. Add a private method to set the received parameters to the output scene graph:

 //! Parameterizes the internal scene graph.
 void _parameterizeSceneGraph();
};

15.3.4. Editing SoBaseReceiver.cpp
1. Open SoBaseReceiver.cpp.

2. Add includes. Result:

#include <Inventor/elements/SoCacheElement.h>
#include <Inventor/nodes/SoMaterial.h>
#include <Inventor/nodes/SoTranslation.h>
#include <Inventor/nodes/SoSwitch.h>
#include <Inventor/nodes/SoSphere.h>
#include <Inventor/nodes/SoCube.h>

#include <BaseMessenger.h>

3. Change the constructor to generate the scene graph here. Set the allowed Base type to the input
Base field.

Result:

// --
//! Constructor, creates fields and scene graph
// --
SoBaseReceiver::SoBaseReceiver()
{
 // Execute inventor internal stuff for node construction.
 SO_NODE_CONSTRUCTOR(SoBaseReceiver);
 SO_NODE_ADD_FIELD(inputMessenger, (NULL));
 inputMessenger.addAllowedType<ml::BaseMessenger>();
 // Create scene graph

 // Add nodes that influence the whole scene
 // independent on the actual shape
 _translation = new SoTranslation();
 addChild(_translation);

 _material = new SoMaterial();
 addChild(_material);

 // Create subgraph to switch the shapes

Developing a Base
Communication

169

 _shapeSwitch = new SoSwitch();
 addChild(_shapeSwitch);

 _cube = new SoCube();
 _shapeSwitch->addChild(_cube);

 _sphere = new SoSphere();
 _shapeSwitch->addChild(_sphere);

 // Create a sensor calling _nodeChangedCB if any field changes.
 // Use a priority 0 sensor to be sure that changes are not
 // delayed or collected.
 _nodeSensor = new SoNodeSensor(SoBaseReceiver::nodeChangedCB, this);
 _nodeSensor->setPriority(0);
 _nodeSensor->attach(this);

 // Update the parameters of the internal scene graph
 // according to the connected BaseMessenger
 _parameterizeSceneGraph();
}

4. Call the updating of the internal scene graph if the input field has changed. Result:

//---
//! Called on any change on the node, field might by also NULL
//---
void SoBaseReceiver::nodeChanged(SoNodeSensor* sensor)
{
 // Get the field which caused the notification.
 SoField* field = sensor->getTriggerField();

 // Handle changed fields here
 if (field == &inputMessenger)
 {
 _parameterizeSceneGraph();
 }
}

5. Implement the method that sets the parameters of the output scene according to the
BaseMessenger's parameters. Result:

void SoBaseReceiver::_parameterizeSceneGraph()
{
 // check if the BaseMessenger is valid
 ml::BaseMessenger* baseMessenger =
 mlbase_cast<ml::BaseMessenger*>(inputMessenger.getValue());

 if (baseMessenger)
 {
 // set parameters for all shapes
 ml::Vector3 position = baseMessenger->getPosition();
 _translation->translation.setValue(position[0], position[1], position[2]);

 ml::Vector3 color = baseMessenger->getColor();
 _material->diffuseColor.setValue(SbVec3f(color[0], color[1], color[2]));

 const double diameter = baseMessenger->getDiameter();

 _cube->width = diameter;
 _cube->height = diameter;
 _cube->depth = diameter;

 _sphere->radius = diameter * 0.5;

 switch (baseMessenger->getShapeType())

Developing a Base
Communication

170

 {
 case ml::ShapeTypeCube:
 _shapeSwitch->whichChild.setValue(0);
 break;
 case ml::ShapeTypeSphere:
 _shapeSwitch->whichChild.setValue(1);
 break;
 default:
 _shapeSwitch->whichChild.setValue(-1);
 break;
 }
 }
 else
 {
 // no output scene
 _shapeSwitch->whichChild.setValue(-1);
 }
}

The project should compile now, and both modules can be used in a network. The BaseOwner can
parameterize a shape and the SoBaseReceiver renders a shape with that parameterization.

Tip

This example is delivered with MeVisLab (.def file in $(InstallDir)Packages/
MeVisLab/Examples/Modules/GettingStarted/SoBaseReceiverExample, source
files in $(InstallDir)Packages/MeVisLab/Examples/Sources/GettingStarted/

SoBaseReceiverExample). The module can be added via quick search.

171

Chapter 16. Using the TestCenter
In the following chapter, we will introduce you to using the MeVisLab TestCenter.

• Section 16.1, “Introduction to Testing in MeVisLab”

• Section 16.2, “Developing a Test Case”

16.1. Introduction to Testing in MeVisLab
Note

In the following section, we only have a brief look at the concepts of the TestCenter. For
detailed information and references, see the TestCenter Reference and the TestCenter
Manual.

The testing of macro modules, networks, applications and scriptable functionality in MeVisLab is done
with the TestCenter.

Tip

On the C++ level, GoogleTest can be used.

What makes a test? Possible definitions:

• A test compares results against expectations.
• A test uses a parameterized algorithm to generate data that is compared to expected results.
• A test is a specification that can easily be verified.

Two main categories of test cases can be created with the TestCenter:

• Generic test cases: Tests a larger set of modules by applying a test case generically.
• Functional test cases: Tests specific functionalities of a single module or network.

A test case in MeVisLab consists of

• a set of test functions
• input data
• (optional) a network

Tip

A network provides the context for a module to be tested, such as inputs/outputs/other
modules for comparison. A network might be unnecessary for testing scripting functionality
only, but might still be useful if you want to add a module, connect it to another module,
and then remove again, etc.

TestCases are similar to macro modules, with two differences:

• They are not handled by the general module database but by a specific test case database, the
MLABTestCaseDatabase.

• The TestCase database must be initialized explicitly.

TestCases are located in the TestCases directories of the packages, parallel to the folders “Modules”
and “Sources”.

Using the TestCenter

172

The test case creation and management is supported by the special macro module (TestCaseManager)
which is implemented in the MeVisLab GUI and will be used in our example.

Note

Test cases cannot be deleted in the TestCaseManager. To delete a test case, delete the
folder of the test case on your system and click Reload All in the TestCaseManager.

The name of a test function consists of three parts:

• One of the following predefined keywords to define the test type:
• TEST: a function that is executed once.
• FIELDVALUETEST: a test based on interactively predefined settings of fields and comparison of

computed field values with expected results.
• ITERATIVETEST: a test based on a list of given parameter and a function that is executed for each

parameter.
• An arbitrary string used for sorting.
• An arbitrary name of the function for display purposes.

16.2. Developing a Test Case
In this section, we will develop a test case for the Threshold module. The Threshold module transforms
the input image to a binary image with:

• voxel values below the threshold being set to the minimum image value.
• voxel values at or above the threshold being set to the maximum image value.

The TestPattern module will be used for the input image.

The ImageStatistics module will be used for verifying the test results.

16.2.1. Creating a New Test Case

1. Open the TestCaseManager via the menu bar, File → Run Test Case Manager.
2. Select the Test Creation tab.
3. Enter the following:

• Name: MyThresholdTest
• Type: the type of your module, this selects a sub-directory in the test directory.
• Package: your package, for example “Example/General” (this is the example user package

created in Section 8.2, “Creating a User Package for Your Project”)
• Comment: Tests the Threshold module.

Note

As we will build the network in the next step, start with an empty network here. If you
already had a network that could be used as test case, you could import it here.

Using the TestCenter

173

Figure 16.1. Creating a New Test Case

4. Click Create to create the test case.

The test case is created and the Test Selection tab is opened, where you can now find the new test
case.

Using the TestCenter

174

Figure 16.2. New Test Case in Test Selection

In your package path, a new folder Testcases/FunctionalTests/MyThresholdTest is created.
MyThresholdTest contains the necessary files for the test case:

• MyThresholdTest.def: for the test case definition, similar to the MeVisLab module definition files.
Contains the keyword “FunctionalTestCase”, a timeout parameter and the reference to the script file,
in this case MyThresholdTest.py.

• MyThresholdTest.mlab: the example network, empty so far
• MyThresholdTest.py: the Python scripting for the test case

Using the TestCenter

175

Figure 16.3. New Test Case in the Package Path

16.2.2. Populating the Test Network
Our test case is associated with a test network, so in the next step, we need to add the necessary
modules to the so far empty network.

1. In the TestCaseManager, select the new test case and click Open Network File. The empty network
opens in MeVisLab.

2. Add the three required modules:
• Threshold

• TestPattern

• ImageStatistics

3. Connect the modules as can be seen in Figure 16.4, “Basic Test Case Setup”.
4. Save the network.

16.2.3. Editing the Module Settings
For the test case, a setup is necessary with which the function of the Threshold can be tested. This
can easily be done when the voxel values in the image correspond to the position on the x-axis that is
determined by the threshold value n.

1. Modify the TestPattern parameters:
• ImageSize: X = 256 and Y = Z = 1. This draws a horizontal line.
• Pattern: XRamp. This creates a gradient from voxel value 0 to 255.
• Auto: check this option to generate an output image automatically.

2. Modify the Threshold parameters:

• Comparison: set this to < (less than).

• Then - Write: set this to ImgMin.

• Else - Write: set this to ImgMax.
3. Modify the ImageStatistics parameters, so that the Inner Interval is Min = Max = 255. This way,

all voxels with the value = 255 will count as inner voxels. (Min and Max could also be set to 0; in this

Using the TestCenter

176

case the voxels with value = 0 would count as inner voxels — the decision between inner and outer
here is arbitrary and irrelevant as long as the correct fields are compared later.)

4. Save the network again.

With this setup, the voxel values in the created image are equal to the position on the x-axis. Voxels
below the threshold are set to value = 0, voxels above the threshold are set to value = 255. For example,
for a threshold of 75, 75 voxels are set to 0 (counting as outer Voxels) and 181 voxels above the threshold
are set to 255 (counting as inner voxels), as can be seen in the results on the ImageStatistics panel.

Figure 16.4. Basic Test Case Setup

16.2.4. Creating a First Test Script with Manual
Threshold Setting
In the next step, the actual test script needs to be programmed. In our case, the threshold needs to be
set and the results have to be verified.

1. In the TestCaseManager, select the test case and click Edit Files. The files open in the integrated
text editor MATE. The generated file MyThresholdTest.py looks like this:

#from TestSupport import Fields
 #from TestSupport.Macros import *

 #def TEST_exampleFunction():

Using the TestCenter

177

 # """ Testing foobar """
 # Fields.setValue("MyModule.foo", 1)
 # EXPECT_EQ(2, Fields.getValue("MyModule.bar"))

2. Remove the comment symbol # from the lines.

3. Rename exampleFunction to something recognizable, for example “TEST_ManualTest_75”. The
tests are executed in alphabetic order. If you need to execute them in a certain order, you can add
numbers to the tests, e.g. TEST001_, TEST002, etc. Note that this is generally considered bad
practice - test cases should be independent of each other.

4. Add the actual function. Three actions are needed:

a. The threshold has to be set to a value, for example “75”.

b. The ImageStatistics module has to be updated.

c. It has to be verified that the value for the outer voxels corresponds to the entered threshold value.

This is done with the following Python code:

 Fields.setValue("Threshold.threshold", 75)
 EXPECT_EQ(Fields.getValue("ImageStatistics.outerVoxels"), 75)

Tip

The function EXPECT_EQ checks whether two given values are equal. It is a Python
function modeled after the macro of the same name in the GoogleTest library. For quick
help, right-click the name in MATE and select Show Help for 'EXPECT_EQ'. Further
information on the TestCenter macros and functions can be found in the TestCenter
Reference.

5. Save the script. The resulting code for this manual (static) test is:

from TestSupport import Fields
 from TestSupport.Macros import *

 def TEST_ManualTest_75 ():
 """ -- Basic test for threshold values -- """
 Fields.setValue("Threshold.threshold", 75)
 EXPECT_EQ(Fields.getValue("ImageStatistics.outerVoxels"), 75)

Note

TestSupport.Macros provides a number of functions of the form EXPECT_xxx and
ASSERT_xxx. Importing them using wildcard import is a convenient way to provide auto
completion for all these functions. To avoid complains from your linter, you may want
to import only the needed functions instead.

6. In the TestCaseManager, select the test case and click Reload to reload the test case. The new
test function will be listed on the right.

Using the TestCenter

178

Figure 16.5. Test Functions in the TestCaseManager

Tip

When hovering over the test function with the mouse, the function's comment is
displayed as a tool tip.

7. Finally, click on Run to run the test function. The option Secure Testing defines that the test case
is run in another instance of MeVisLab; you might want to keep it checked.

The report should look as follows:

Using the TestCenter

179

Figure 16.6. Report for ManualTest_75

Tip

For defining the test functions status, the MeVisLab debug console is used (OK, Error,
Warning), see also “ExampleTestCase1” in the test cases for the MeVisLab/Standard
package.

Excursion: About Context and Fields

When using the Scripting Assistant (see MeVisLab Reference Manual, chapter “Scripting
Assistant”), the following scripting line would be offered when setting the threshold value:
ctx.field("Threshold.threshold").value = 75. The context “ctx” is the context from which the
scripting is called up. When called up in an ML module, the context would be the ML module. If called
up in a macro module, the context would be the macro module. The context also defines which context-
sensitive help link is offered in the integrated text editor MATE.

For testing, however, using “ctx.field” is not the sensible approach because this way, the value for the
field is directly set and will remain as set even after the closure of the test function and the start of the
next test function. This might result in undefined conditions of the test case. The better solution here
is to set the value with Fields.setValue("Threshold.threshold", 75). This sets the value only for
the currently running function and then sets it back to the saved value the field had before calling the
function.

16.2.5. Automating the Test Case with the
FieldValueTestCaseEditor
One possibility to automate our example test is to use the FieldValueTestCaseEditor module. With
it, field-value test cases can be created.

Tip

Aside of the module described in the following chapter, other modules are available to
handle field-value test cases, for example FieldValueTestCaseGenerator for the fully
automated generation of test cases based on parameters and their permutations. Use the
Quick Search to find more FieldValueTestCase modules.

Using the TestCenter

180

Add the module FieldValueTestCaseEditor to your test network and save the network.

Figure 16.7. The FieldValueTestCaseEditor Panel

The user interface is split into three main parts:

• The FieldValue (FV) Test Cases list is on the left. There are three buttons to add (+), remove (-) and
duplicate (*) test cases.

• The FV test case editing is done on the right. Here, test cases can be (re)named and parameterized.
• The listed FV test cases are saved as one set in an XML file, which is handled on the bottom of the

window.

Note

To save the FV test case set later, a data folder has to exist below the test case, for example
MyThresholdTest/data. If no data folder exists yet, create it now.

To create a small set of three FV test cases for different threshold values, proceed as follows:

1. Click on the + button beneath the FV TestCases list to add a new test case.
2. Enter the FV TestCase name, for example “Threshold_75” and press RETURN.
3. Add the necessary parameters, in our case the threshold value of the module Threshold. To do

this, drag the field from the module's panel onto the Parametrization tab.

Using the TestCenter

181

Figure 16.8. Dragging Fields into the Parameter List

4. Click on the Expected Results tab to enter the expected result. In our case, it is a value of “75” for
the outerVoxels parameter, so drag this parameter into the list and edit the value, if necessary.

Using the TestCenter

182

Figure 16.9. Dragging Fields into the Expected Results List

5. Select your FV test case and click the * button twice to duplicate the entry, as we need two further
test cases for threshold = 125 and threshold = 175.

6. Edit each new FV test case by adapting the name of the function, the used threshold value, and
the expected result value.

Note

The processing order is alphabetically, so for sorting the order of your test cases, enter
the test case names accordingly.

7. In the field on bottom, enter the path and file name as $(NETWORK)/data/thresholdData.xml, then
click Save.

Using the TestCenter

183

Figure 16.10. The Resulting Panel

8. For integrating the new FV test cases, add the following two things to your scripting code:

• Add import os so that your function can use the Python functions for handling platform-dependent
strings.

• Add the new test function beneath the first:

def FIELDVALUETEST_AutomaticTest_1():
 return os.path.join(Base.getDataDirectory(), "thresholdData.xml")

The return path expects the test case data file we just created.
9. In the TestCaseManager, reload the test case.

Using the TestCenter

184

Figure 16.11. Our Automatic FieldValue Tests Added

10. Select “AutomaticTest_1” and run it. The report should look as follows:

Figure 16.12. Report for AutomaticTest_1

Using the TestCenter

185

Tip

If you want to use only a subset of the field-value test cases, explicitly add the relevant
subset at the end of the line, for example:

 return os.path.join(Base.getDataDirectory(), "thresholdData.xml"), \
 ['Threshold_075', 'Threshold_175']

This way, only the test cases for threshold values of 75 and 175 would be run, while the
test case for value 125 would be omitted.

Tip

For another field-test example, see “ExampleTestCase5” in the test cases for the
MeVisLab/Standard package.

16.2.6. Automating the Test Case with an Iterative Test

For this, the test function we implemented first will be used with a parameter instead of a fixed threshold
value, and the parameter is changed in the test function.

1. Add the new test function:

def ITERATIVETEST_AutomaticTest_2():
 return {'075':075,'125':125,'175':175}, computeVoxels

Instead of a simple list, we use the Python's dictionary class here to have a nicer listing.

Note

The processing order is alphabetically (and not given by the dictionary's order!), so for
setting the order of your test cases here, enter the dictionary names accordingly.

2. Add the actual test:

def computeVoxels(threshold):
 Fields.setValue("Threshold.threshold", threshold)
 EXPECT_EQ(Fields.getValue("ImageStatistics.outerVoxels"), threshold)

The computeVoxels function is essentially the same function as entered for the manual test case,
but now using the parameter threshold. The function is called for every entry in the dictionary.

3. In the TestCaseManager, reload the test case.

Using the TestCenter

186

Figure 16.13. Our Iterative Test in the Test Center

4. select “AutomaticTest_2” and click on Run to run the test function. The report should look as follows:

Using the TestCenter

187

Figure 16.14. Report for AutomaticTest_2

16.2.7. Grouping Test Functions

TEST functions can be grouped. This is useful for grouping tests in the Test function list.

1. For a quick example, simply copy “ManualTest_75” and change the “75” in name and value to
“125”. (In reality, nobody would want to group such redundant test cases but would make use of
the automation approaches as described above.) Make sure to give the test a new number, so the
resulting test function name might be “TEST004_ManualTest_125”.

2. Add the group definition:

def GROUP_ThresholdGroup():
 return (TEST_ManualTest_75, TEST_ManualTest_125)

3. Save the scripting.

4. In the TestCaseManager, reload the test case. The new “ThresholdGroup” appears in the test
functions list. It looks and works similar to the automatic tests.

Using the TestCenter

188

Figure 16.15. Grouped Test Functions

16.2.8. Enhancing Test Reports with ScreenShots
Screenshots can easily be created with the ScreenShot method.

Here a quick example:

1. Create a new test case called “MyScreenShotTest”.

2. To the example network, add the modules LocalImage and View2D and connect them. Save the
network.

3. Then edit the scripting:

• Configure the LocalImage module by setting the image path:

Fields.setValue("LocalImage.name", "$(DemoDataPath)/Bone.tiff")

• Configure the View2D module, for example by setting the slice:

Fields.setValue("View2D.startSlice", 0)

• Add the screenshot method and store the result in a variable:

result = ScreenShot.createOffscreenScreenShot("View2D.self", "screentest.png")

• Add two lines that make the result available in the report:

 Logging.showImage("My screenshot", result)
 Logging.showFile("Link to screenshot file", result)

The full code is:

from TestSupport import Fields, Logging, ScreenShot
from TestSupport.Macros import *

def TEST_Create_ScreenShot ():
 """ -- Creates a single screenshot -- """
 Fields.setValue("LocalImage.name", "$(DemoDataPath)/Bone.tiff")
 Fields.setValue("View2D.startSlice", 0)
 result = ScreenShot.createOffscreenScreenShot("View2D.self", "screentest.png")
 Logging.showImage("My screenshot", result)
 Logging.showFile("Link to screenshot file", result)

4. Save it all and run the test function.

Using the TestCenter

189

The report should look as follows:

Figure 16.16. Report for ScreenShot Example

Tip

For a more complex screenshot example, see “ExampleTestCase4” in the test cases for
the MeVisLab/Standard package.

This was a short, practical introduction to the MeVisLab TestCenter. For further information, see the
TestCenter Reference.

16.2.9. Disabling Test Functions
It may be desired to disable test functions when they always fail because of a known bug. To do so
append the prefix "DISABLED_" to the function name.

Test functions can also be disabled depending on a condition using the
disableTestFunctionIf(condition) decorator. condition can be a truth value or a callable.

from TestSupport.Base import disableTestFunctionIf
from TestSupport.Macros import *

Using the TestCenter

190

def canCreateScreenShots():
 if [...]:
 return True
 else:
 return False

Disable this test function if screenshots cannot be created:
@disableTestFunctionIf(not canCreateScreenShots())
def TEST_Create_ScreenShot():
 [...]

Disable this test function if the platform is unix:
@disableTestFunctionIf(MLAB.isUnix)
def TEST_TestWithWin32API():
 [...]

	Getting Started
	Table of Contents
	Chapter 1. Before We Start
	1.1. Welcome to MeVisLab
	1.2. Coverage of the Document
	1.3. Intended Audience
	1.4. Conventions Used in This Document
	1.4.1. Activities
	1.4.2. Formatting

	1.5. How to Read This Document
	1.6. Related MeVisLab Documents
	1.7. Glossary (abbreviated)
	ML, MDL, Open Inventor — Some Important Terms Explained

	Chapter 2. The Nuts and Bolts of MeVisLab
	2.1. MeVisLab Basics
	2.2. Development in MeVisLab
	2.3. MeVisLab Modules
	2.4. Fields
	2.5. Networks
	2.6. Overview of Important Files
	2.7. User Interfaces Controls
	2.8. Scripting
	2.9. How to Find More Information on Networks and Modules

	Chapter 3. Loading and Viewing Images
	3.1. The MeVisLab GUI
	3.2. Searching and Adding Modules
	3.3. Using the ImageLoad Module
	3.4. Adding Viewers to ImageLoad
	3.4.1. Adding the View2D Module
	3.4.2. Adding the View3D Module

	3.5. Alternative Ways to Load Images
	3.5.1. Dragging Images onto the Workspace
	3.5.2. Using the LocalImage Module

	3.6. A Note on Importing DICOM Images

	Chapter 4. Implementing a Contour Filter
	4.1. Loading the Input Image
	4.2. Implementing the Contour Filter
	4.3. Parameter Connection for Synchronization

	Chapter 5. Defining a Region of Interest (ROI)
	5.1. Creating a Viewer with a Selection Rectangle
	5.2. Adding a Second Viewer for the Subimage
	5.3. Adding the Interactivity for the Viewers

	Chapter 6. Excursion: Functionality Overview
	6.1. Image Handling and Processing
	6.1.1. Image Handling
	6.1.2. Image Properties
	6.1.3. Basic Image Processing
	6.1.4. Filter
	6.1.5. Segmentation

	6.2. Visualization
	6.2.1. 2D Viewing
	6.2.2. 3D Viewing
	6.2.3. Lookup Tables

	6.3. Data Objects
	6.3.1. Markers
	6.3.2. Curves
	6.3.3. Contours
	6.3.4. Surface objects

	6.4. Miscellaneous
	6.4.1. Fields
	6.4.2. Diagnostic

	Chapter 7. Creating an Open Inventor Scene
	7.1. Introduction to Open Inventor
	7.2. Creating the Applicator
	7.3. Creating the Interaction
	7.4. Creating the Anatomical Image
	7.5. Finishing the Complete Open Inventor Scene

	Chapter 8. Starting Development with Package Creation
	8.1. What are Packages
	8.2. Creating a User Package for Your Project

	Chapter 9. Introduction to Macro Modules
	Chapter 10. Developing a Macro Module for an Applicator
	10.1. Creating a Basic Global Macro
	10.2. Adding the Macro Parameters and Panel
	10.3. Programming the Python Script
	10.4. Addition: Shifting the Whole Tip

	Chapter 11. GUI Design in MeVisLab
	11.1. MeVisLab Definition Language (MDL)
	11.1.1. MDL Validator
	11.1.2. MDL Controls
	11.1.3. MDL GUI definition
	11.1.4. A Note on Fields in Scripting Interfaces

	11.2. Developing the ExampleToggleButton
	11.2.1. Creating the Macro Module
	11.2.2. Defining the Interfaces
	11.2.3. Programming the Button Action in Python
	11.2.4. Referencing the Command in the MDL Script
	11.2.5. Persistent Field Values
	11.2.6. Implementing a Keyboard Shortcut
	11.2.7. Arranging Multiple Buttons
	11.2.8. Auto Layouting with the AlignGroups Control
	11.2.9. Prototypes for Controls
	11.2.10. Designing Larger GUIs

	11.3. MDL Styles
	11.3.1. How to Use MDL Styles
	11.3.2. Defining Global Styles
	11.3.2.1. How to Define a Global Style
	11.3.2.2. How to Define a New Default Style for Application Macro Modules

	11.3.3. Creating Custom MDL Controls

	11.4. Customize GUI Appearance Using Qt Style Sheets (CSS)

	Chapter 12. Excursion: Image Processing in ML
	12.1. Some Advanced Information on Image Processing
	12.2. Structure of MeVisLab
	12.3. Coordinate Systems
	12.4. Affine Transformations
	12.5. DICOM Data and Coordinates
	12.6. Coordinate Systems in the MeVisLab GUI
	12.7. Data Types for DICOM and TIFF
	12.8. Image Processing Concepts: Pages, Slices, VirtualVolumes, and More

	Chapter 13. Introduction to C++ Modules
	13.1. Module and Connection Specifics on the C++ Level
	13.2. Some Tips for Module Design
	13.2.1. Macro Modules or C++ Modules?
	13.2.2. Combining Functionalities
	13.2.3. Tips for Module Testing

	13.3. Programming Examples

	Chapter 14. Developing ML Modules
	14.1. Creating a New ML Module for Adding Values
	14.1.1. Creating the Basic ML Module with the Project Wizard
	14.1.2. Preparing the Project
	14.1.3. Programming the Functions of the ML Module
	14.1.3.1. Implementing calculateOutputImageProperties
	14.1.3.2. Implementing calculateOutputSubImage

	14.1.4. GUI Creation/Optimizing
	14.1.5. Creating an Example Network and Help File

	14.2. Creating an ML Module For Simple Average
	14.2.1. Creating the Basic ML Module with the Project Wizard
	14.2.2. Editing the Header File of SimpleAverage
	14.2.3. Editing the CPP File of SimpleAverage
	14.2.4. Testing the Module

	14.3. Combining Two Modules in One Project
	14.3.1. Copying the Source Files
	14.3.2. Editing and Recompiling the CMakeLists.txt File
	14.3.3. Editing the Project in the Development Environment
	14.3.3.1. Editing SimpleAverage.h
	14.3.3.2. Editing MLSimpleAddInit.cpp

	14.3.4. Editing the Module Definition (.def)
	14.3.5. Cleaning up Folders and Example Networks

	Chapter 15. Developing a Base Communication
	15.1. A Note on Base Types Checks
	15.1.1. Base Connectors and Field Types
	15.1.2. Overriding Base Type Checks
	15.1.3. Implementing Base Type Checks

	15.2. Developing the MLBaseOwner Module and the BaseMessenger Class
	15.2.1. Creating the BaseCommunication Project in the Wizard
	15.2.2. Adding New Files
	15.2.3. Adding References to the new Files in CMakeLists.txt
	15.2.4. Adding Contents to BaseMessenger.h
	15.2.5. Add Contents to BaseMessenger.cpp
	15.2.6. Editing MLBaseCommunicationInit.cpp
	15.2.7. Editing mlBaseOwner.h
	15.2.8. Editing mlBaseOwner.cpp
	15.2.8.1. Adding the construction of a new BaseMessenger Object
	15.2.8.2. Editing handleNotification
	15.2.8.3. Editing activateAttachments
	15.2.8.4. Implementing Setting the Parameters in BaseMessenger
	15.2.8.5. Implementing the method _setFieldValuesToMessenger()

	15.2.9. Making MLBaseCommunication classes known
	15.2.10. Adding an object wrapper for MLBaseCommunication objects

	15.3. Developing the SoBaseReceiver Module
	15.3.1. Creating the New Open Inventor Module with the Wizard
	15.3.2. Editing CMakeLists.txt of SoBaseReceiver
	15.3.3. Edit SoBaseReceiver.h
	15.3.4. Editing SoBaseReceiver.cpp

	Chapter 16. Using the TestCenter
	16.1. Introduction to Testing in MeVisLab
	16.2. Developing a Test Case
	16.2.1. Creating a New Test Case
	16.2.2. Populating the Test Network
	16.2.3. Editing the Module Settings
	16.2.4. Creating a First Test Script with Manual Threshold Setting
	16.2.5. Automating the Test Case with the FieldValueTestCaseEditor
	16.2.6. Automating the Test Case with an Iterative Test
	16.2.7. Grouping Test Functions
	16.2.8. Enhancing Test Reports with ScreenShots
	16.2.9. Disabling Test Functions

