Getting Started
First Steps with MeVisLab

Getting Started

Getting Started

Copyright © 2003-2025 MeVis Medical Solutions
Published 2025-06-26

Table of Contents

1. BEfOre W STAI ..ottt et e e et e et e e e 10
1.1. Welcome t0 MEVISLADiiiiiiiiiii e 10

1.2. Coverage of the DOCUMENTiiiiiiiiei it eenens 10

1.3, INteNded AUIENCEcoviiiiiiiii ettt e e 11

1.4. Conventions Used in ThiS DOCUMENTuiiiiiiiiiiiiiiiie e 11
L4 0. ACHVITIES .oeeeeieeii ettt ettt ettt 11

1.4.2. FOIMMALIING ..eeietieeeii ettt et e et et e e e e e e 11

1.5. How to Read ThiS DOCUMENTcccuuuiiiiitiee ettt ettt et e e e eeneas 12

1.6. Related MeVisLab DOCUMENTSccoiuiiiiiiiiiie it 12

1.7. Glossary (ADDreviated)uu i 13

2. The Nuts and BoIts Of MEVISLADoiiiiiiiiii e 15
2.1, MEVISLAD BASICSuiiiiitiiiiiii et 15

2.2. Development in MeViSLal ... 16

2.3. MEViSLah MOAUIES ... et 17

2.4, FIRIUS e e et 18

2.5, INBIWOIKS .ttt ettt e e s 19

2.6. Overview of IMpOortant Files ... e 20

2.7. User INterfaces CONMIOISciiiieieiiiii ettt e et e e et e e eeb e eenes 21

R S S Tox 1 1] o [T PP PUPPPTTRSPPIN 22

2.9. How to Find More Information on Networks and Modulesc.ccooeiiiiiiiiiiinieiiinnnnen. 22

3. Loading and VIieWINg IMAGESuuiiiiiiiieiiiiie ettt ettt e e e e e e aa e eeneas 24
3.1. The MeVISLAD GUIccouiiii et e 24

3.2. Searching and Adding MOAUIESccoouiiiiiiii e 25

3.3. Using the ImageLoad MOTUIEooiiiiiiiii e 28

3.4. Adding Viewers t0 IMageloadoooiiiiiiiiiiii e 33
3.4.1. Adding the VIEW2D MOGUIEiiiiiiiiieii e 33

3.4.2. Adding the VIEW3D MOAUIEiiiiiiiiieiii e 37

3.5. Alternative Ways 10 LOad IMAGESuuiiiiiiiiiiiiii et e e 37
3.5.1. Dragging Images onto the WOrkSPaceccoouuiieiiiiiiieiiiiie e 37

3.5.2. Using the Locallmage ModUIEooiuiiiiiii e 38

3.6. A Note on Importing DICOM IMAGESuuuiiiiiiiieiiiiiiet ettt et eenens 39

4. Implementing & CoNtOUr FIlLEru.iiiii e 41
4.1. Loading the INPUL IMEGE ... cooeriiiiii et et enaans 41

4.2. Implementing the Contour Filter e 42

4.3. Parameter Connection for Synchronization ... 46

5. Defining a Region of INterest (ROI)uuiiiiiiii e 49
5.1. Creating a Viewer with a Selection Rectangleocoouiiiiiiiiiiiiii e 50

5.2. Adding a Second Viewer for the SUDIMAgEcooiiiiiiiiiiii e 50

5.3. Adding the Interactivity for the VIEWEISccoouiiiiiiiiiiiii e 51

6. Excursion: FUNCLONANY OVEIVIEWcoiutiiiiiiiieeeeit ettt ettt e e 56
6.1. Image Handling and ProCESSINGccouuuuiiiiiiiieiiiii ettt 56
6.1.1. IMmage HanNAIiNgooiiiiiiiiiiii e e 56

6.1.2. IMAGE PrOPEITIES ...euiiiiii ettt ettt e e et et e e e eni e eeens 56

6.1.3. BasSiC IMage PrOCESSINGueiieiiieiiiiiieeeii ettt e e e 56

B. 1.4, FIIOT oot e 57

6.1.5. SEOMENTALIONuiiiiit et 57

6.2, VISUALIZALIONotiiiiiii ettt et e e et e e e e e eea 57
B.2.1. 2D VIBWING iiiiiiieiiiii ettt ettt et et 57

B.2.2. 3D VIBWING .oiiiiiieiiiiii ettt ettt 58

6.2.3. LOOKUPD TaDIES ...ttt 58

6.3, DALA ODJECIS ...iiitiieiiii ettt 58
B.3.1. IMAIKEIS ..ttt 58

B.3.2. CUINVES ..ottt ettt 59

SR IR N @7] {0 11] £ PP 59

6.3.4. SUIMACE ODJECES ...ceiveiiiiii e e e 59

Getting Started

B.4. MISCEIIANEOUSciiiiiiieii e e et e et e e e e e et e e e e et e e eenans 59
L I T o PRSPPI 59

L I T - Vo [T 1= 1o 60

7. Creating an Open INVENTOT SCENEiiiiiieiii e et e e e e e e e e e e e e e aaeees 61
7.1. Introduction t0 OPEN INVENTOTcivuniii e e e e e e e e eanes 62

7.2. Creating the APPHCALOrcoveiiiii e e e e e e e e ees 64

7.3. Creating the INTEracCtionccouiiiiiii e e r e eanas 67

7.4. Creating the Anatomical IMAQEccuuiiiiii i e e s 70

7.5. Finishing the Complete Open INVENIOr SCENEccvvviiiiiiiiii e 71

8. Starting Development with Package Creationc.co.iiiiiiiiiiiiiii e e 75
8.1. WHaAt @re PACKAGESuiiiiiiiiiiieii ettt e et e e e e e e e e et e e et e e et e e et e e et e eeanaaees 75

8.2. Creating a User Package for YOUr ProjECTccuuiviiieiii e e e 77

9. Introduction t0 MACrO MOUUIEScoieiiiiiii et e e e e eeeens 78
10. Developing a Macro Module for an ApplICAtOrooviiiiiiii e 80
10.1. Creating a BasiC Global MACIOcccuiiiiiieiiii e e e e e e aens 80
10.2. Adding the Macro Parameters and Panelcc.cooovuiiiiiiiiiie e 84
10.3. Programming the Python SCriptoooiiiiii e e 89
10.4. Addition: Shifting the WhOoIe Tip ..cceuiiiiiii e 93

11. GUI DeSIgN iN MEVISLADciiiiii i e e aaeas 96
11.1. MeVisLab Definition Language (MDL)cccuioiiiiiiii e e e e e 97
O O T Y [Y = 1T F- (o) PSP 97

11.2.2. MDL CONLIOIS ...uueiiiiiieeei et e e e et e e e e s 98

11.1.3. MDL GUI defiNItiONiiieiiieiiii e eaeens 101

11.1.4. A Note on Fields in Scripting INterfacesccooveviieiiieiiii e 102

11.2. Developing the ExampleToggleButtoncooiiiiiiii e 105
11.2.1. Creating the Macro Moduleccouiiiiiiiiiiii e 105

11.2.2. Defining the INTErfaCeSociviiiiii e 106

11.2.3. Programming the Button Action in Pythonccoooiiiiiiii e, 107

11.2.4. Referencing the Command in the MDL SCriptc.coovviiiiiiiiiiiin e 108

11.2.5. Persistent Field ValUESooiiiiiiiiiiii e 109

11.2.6. Implementing a Keyboard ShOrCULccooeviiiiiiiiii e, 109

11.2.7. Arranging MUltiple BUtONScoouuiiiiici e e 110

11.2.8. Auto Layouting with the AlignGroups Controlccoeeviiiiiiiiiii e, 111

11.2.9. Prototypes for CONIIOIScvvuiiiii e e e e aeas 111

11.2.10. Designing Larger GUISccuuiiiiiiiiiii e e e e 111

IO T /1 s 4V 1= PP 112
11.3.1. HOW t0 USE MDL StYIES . couuiiiiiiii e e e 113

11.3.2. Defining Global StYIESiiii e 114

11.3.3. Creating Custom MDL CONtrOlSccuuiiiiiiiiiiieiie e e e 115

11.4. Customize GUI Appearance Using Qt Style Sheets (CSS)cooevvivviiiiiviiiiecieeeieee, 116

12. Excursion: Image Processing iN MLuiiiiiiiiii e 119
12.1. Some Advanced Information on Image ProCesSiNgcccccuvveiiiieiiiieeiiieeiiieeeiieeeaieens 119
12.2. Structure of MEVISLADiiiiiiiiii e 119
12.3. CoOrdiNAte SYSEIMS ...uuiiiiiiiii it e e e e e e e e e e et e e e e e aaeeaenas 120
12.4. Affine TransforMatioNSiiiiiiiiii e e e et e e et eeeees 121
12.5. DICOM Data and COOIAINALESuuiiiiiiiiieiiii ettt e e et e eeeain e eene 122
12.6. Coordinate Systems in the MeVisLab GUIcocoiiiiiiiiii e 124
12.7. Data Types for DICOM and TIFF ..o e e e 125
12.8. Image Processing Concepts: Pages, Slices, VirtualVolumes, and More 126

13. INtroduction t0 CH+ MOAUIEScoeuenieiiiii e e e e e e e s 128
13.1. Module and Connection Specifics on the C++ Levelccoooeviiiiiiiiiinciicceeeee, 128
13.2. Some Tips for Module DESIONuueiiiiiii e e e e e 129
13.2.1. Macro Modules or C++ MOUIES?cccuuiiiiiiiiiie e 129

13.2.2. Combining FUNCHONANItIEScvveiiiiice e 129

13.2.3. Tips for Module TEeSHNG ..ovuuiiiiiii e e e r e e eeas 130

13.3. Programming EXAMPIESiiiniiiiieii et 130

14. Developing ML MOGUIESuuiiiiiii e e e e e e e et e e e e aaaees 132
14.1. Creating a New ML Module for Adding Valuesccocoviiiiiiiiiiiiiineeeece e 132

Getting Started

14.1.1. Creating the Basic ML Module with the Project Wizardcccoevevvneennnnn. 132
14.1.2. Preparing the PrOJECTcoouiiiiiiiii et e e 137
14.1.3. Programming the Functions of the ML Moduleccccoccoiiiiiiiiiiiiii e, 137
14.1.4. GUI Creation/OpPtiMiZINgcouueieii e e e e e e e e e e e e e e eaes 138
14.1.5. Creating an Example Network and Help Fileccooooiiiiiiiiii i 139
14.2. Creating an ML Module For Simple AVEIageoveeuiiiiiiieiieee e e 139
14.2.1. Creating the Basic ML Module with the Project Wizardcccoevvvvneennnnn. 140
14.2.2. Editing the Header File of Si npl @AVEr ageccovvveviiiiiiieiiiieiie e 141
14.2.3. Editing the CPP File of Si mpl EAVEr g€cccvuiieiiiiiiieeiii e 141
14.2.4. Testing the MOUIEoiiiiiii e e 143
14.3. Combining Two Modules iN ONE PrOJECTcccuiiiiiieiii e 144
14.3.1. Copying the SOUICE FilES ...cc.uiiiiiieie e 144
14.3.2. Editing and Recompiling the CvakeLi sts. txt Fileccoooeviiiiiiiiiinns 144
14.3.3. Editing the Project in the Development Environmentccccoeeiveviieiinneennn. 145
14.3.4. Editing the Module Definition (.def)ccoooviiiiiiiii 146
14.3.5. Cleaning up Folders and Example NetWOrksccooeeiiviiiieiiineeiii e, 147

15. Developing a Base COMMUNICALIONuiiutiiiiiieiieeeiier e e e e e e e e e et e e e et e e e e eaennas 148
15.1. A Note on Base Types CheECKSoiiiiiiiii e 149
15.1.1. Base Connectors and Field TYPEeSccovuiiiiiiiiiiii e, 149
15.1.2. Overriding Base TYPe CheCKSiiiiiiiiii e 150
15.1.3. Implementing Base Type ChecCksScooviiiiiiiiiiiii e, 150
15.2. Developing the M_BaseOwmer Module and the BaseMessenger Classccceeeeennnnns 151
15.2.1. Creating the BaseCommunication Project in the Wizardcccooeeenennn. 151
15.2.2. AddING NEW FlES ...uuiiiiiii e 156
15.2.3. Adding References to the new Files in CVakeLi Sts. t Xtcoccvvveviiiiriinieennns 157
15.2.4. Adding Contents t0 BaseMeSSENQEer . N coovuieiiiiiiiiieiiii e e e e 157
15.2.5. Add Contents t0 BaSEMESSENUET . CPP vevurrrrrrrrnerreetieetieetierteerteererraerraerneeenns 158
15.2.6. Editing M_.BaseCommuni cat i 0Nl Nit. CPP oeeerrrerriieriiieeiieeeiire e e e eeieeeaneeeees 159
15.2.7. Editing m Bas@OMIET . N ..uuiiie i ieii e 159
15.2.8. EditiNg M BaSE@OMIET . CPP «uuerrueirniereteeiiieeeteeeeeestniesaneeateestneeseaestneerneennns 160
15.2.9. Making M_BaseComuni cat i on classes KNOWNc.ccceevviviiiieiiiiciiiieciieennn, 162
15.2.10. Adding an object wrapper for M.BaseCommuni cat i on objects 163
15.3. Developing the SoBaseRecei ver MOAUIEcoovviiiiiiiiii e 163
15.3.1. Creating the New Open Inventor Module with the Wizardoec. 164
15.3.2. Editing CMVakeLi sts. t xt of SOBASERECEIVESccevvvviiiiiieiiiieciieeeeeieee, 167
15.3.3. Edit SOBAaSERECEI VEI . N covuiiiiiiiiiii e e e e e e 167
15.3.4. Editing SOBASERECEI VEI . CPP wuuerrrneiiinieetiietitietsteeeteesieeeanaeeanaeestnaeeraesnnaeenes 168

G U ST T g LT = (=T g1 (=] 171
16.1. Introduction to Testing in MEVISLabc..ccoiiiiiiiiiii e 171
16.2. DEVEIOPING @ TESE CASE ..civvuiiiiiieii ettt e e et e e e e e e e e e et e e a e et e e st e aatnaees 172
16.2.1. Creating @ NEW TeSE CaASEucvvuiiiiieiiii e e e e e e e 172
16.2.2. Populating the Test NetWOrkcooiiiiiiiiiii e 175
16.2.3. Editing the Module Settingscoeeviiiiiiiiii e 175
16.2.4. Creating a First Test Script with Manual Threshold Settingccccocevvneee. 176
16.2.5. Automating the Test Case with the FieldValueTestCaseEditor 179
16.2.6. Automating the Test Case with an Iterative Testcccooeviiiiiiiiiiiiiciie e, 185
16.2.7. Grouping TeSt FUNCLIONSc.uiiiiiiiii e e e e e 187
16.2.8. Enhancing Test Reports with ScreenShotsccoooeiiiiiiiiiinic e, 188
16.2.9. Disabling TeSt FUNCLIONSiiiiiiiii e e e e e 189

List of Figures

1.1. Welcome Screen and Documentation LiNKScooouuiiiiiiiiioiiiieeee e 13
2.1. Image Processing PIPEIINEcoouuiiiiiiiei e 17
2.2, NEIWOTK LAYOUL ..ottt ettt e e e e e e ena e e eenenns 20
2.3. Module Context Menu: SNOW HEIPcooiiiiiiiii e 22
3.1. MeVisLabh USEr INEITACEuiiiiii it e e 24
3.2, VIBW SEIBCHION ..ottt et e et et e 25
3.3. Modules Menu and MOAUIE BIOWSETiiieuuuieiiiiiee ettt e e eaanas 26
3.4, QUICK SEAICH OPLIONSciiiiiieeeii ettt e ettt e et e e e e 27
3.5. QUICK SEArCh RESUILS ...t et e e e e et e e e aeees 27
3.6. IMAageload MOAUIE ... et e e e e e e et eean e ees 27
3.7. ImageLoad Panel and OULPUL INSPECLOTuuuiiiiiiieiiii ettt 29
3.8. Adjusting the WINAOW/LEVEIcooiiii et e 29
3.9. Output Inspector With IMage PrOPEITIESc.uuuiiiiiiiiiiiiiiie e 30
3.10. Output Inspector with Additional Information DiSplayoveiiiiiiiiiiiiii e 31
3.11. 3D OULPUL INSPECTOL ...ttt ettt et et e e et e e et e et e et e e ta e et e et e eaaenns 31
3.12. Connector Details in the Edit MENUiiiiiiii e e 32
3.13. Connector Details in the PreferenCes ... 32
3.14. Connector Details Depending 0N ZOOIMiiiieuuueieiiie et eri e eeanns 33
3.15. Setting Up the CONNECTIONcoiutiieiiii et e e e e e e 34
3.16. PANEl Of VIBW2D ...ttt ettt ettt 34
3.17. Opening the Settings Panel of VIEW2Diiiiiiiiiiiiiiee e 35
3.18. Settings Panel Of VIBW2Dooouuiiiiiii et e 35
3.19. Automatic and Settings Panel of VIEW2Dccouuiiiiiiiiiiiiii et 36
3.20. Connecting the VIeW3D MOAUIEuiiiiiii ittt 37
3.21. The VIEW3D PANEI ...t ettt e et e et e e et e eeees 37
3.22. LoCAllMAGE MOGUIEeeiiii ettt e e e e 38
3.23. Show the Internal NetWOIK ... e 38
3.24. Internal Network of the Locallmage MOdUIEooiiiiiiiiiii e 39
A ST B (oo 111 101 ¢ o AT PP OPPPTPRTPPPPTN 39
4.1. Example Network Contour FIlLr ... 41
4.2. Viewing the Input Image for the Contour Filter ..o 42
4.3. AdJUSE Filter PAramMeLEIS ittt ettt e et et et e e e enba e eeens 43
4.4, Constructing the Filter Pipeline — Convolution OUIPULcooeviiiiiiiiiieii e 44
4.5. Constructing the Filter Pipeline — Morphology OUIPULvveiiiiiiiiiiiiiie e 44
4.6. Constructing the Filter Pipeline — Arithmetic2 OUIPULoviiiiiiiiii e 44
o O == 1 To = W VL=V] o 18 | o ISP 45
4.8. Resulting Contour Filter NEIWOTKc.uuuiiiiiiiieii e 45
4.9. Establishing the Parameter CONNECIIONSccouuuiiiiiiiiieiiiii e 47
4.10. ReSUIING NEWOTK ..ottt et e e e e e 47
5.1. Example Network ROISEIECHONuuiiiiiiii e 49
5.2. Viewer with Selection ReCtANGIeiiiiiiiiiii e 50
5.3. Viewer for the SUDIMAGEcooiiiiii e 51
5.4. Searching for World to VOXel CONVEISIONccouuuiiiiiiiiiiiiie et 52
5.5. WOrldVOXeICONVEIt PANEIcoouuiiiiiii et e et 52
5.6. WorldVoxelConvert Modules AUEdooiiiiiiiiiiiii e 53
5.7. Adding the Parameter CONNECHIONSuuiiiiriieiiiii ettt e e eenees 54
5.8. Example Network ROI SEIECHONccouuuiiiiiiiie et 55
7.1. Example Network: Open INVeNtor RESUILooiiiiiiiiiii e 61
7.2, APPHCALOT ONIY ..oeeiei e ettt e et et e 62
7.3. Traversing iN OPEN INVENTOTiiiiiii ettt ettt e e et e et e e e e e e eeens 63
7.4. Creating the Applicator SNaftcoouuiiiiii e 64
7.5. Coloring the Applicator SNAftiiiii e 65
A Ao Lo o To =T Y o] o] [fo=1 (o] G T o J PSR 65
7.7. Adding Translation and GrOUPINGcceuuuueieutueieii ettt e et e et e e e e eera s 66
7.8. Finishing the APPICALOLcooii e e 67

Getting Started

7.9. Using SOCeNnterballManipoiiiiii e 68
7.10. SoCenterballManip — TUINEAcouuiiii e e e e e e e aaens 69
7.11. CONNECLING PAr@QmMELEIScovuiiiiieii e et e et e e e e e et e et e et e e e e e aan e ernees 69
7.12. Combining Interaction and APPICALOruiiiiii e e 70
4% S T I - Vo [10 To I W o Tox= | I [0 T Vo 1= 70
7.14. Adding the GIgaVoXel RENUEIETiiiiiiii e 71
7.15. Adding the Windowing to the APPlICALOrcouuiiiiiii e 71
7.16. ComMbINING the GrOUPSuiiiiiiii et e e e e e e e e e e et e e e e et e e ean s 72
7.17. Combined GraphiC EIEMENLSuiiiiiiiii e e 73
7.18. Adding the ApPlICAtor SCAlINGcc.uiiiiiei e e 73
7.19. Improved Applicator/Interaction ArrangemeENtvcviuiiiiiiieiii e ee e 74
8.1. Example for @ PACKAgE TrEEcioiiiiiiie et e e e e e e e e e e e et e e e e eeen 75
8.2. PreferenCes — PaACKAQESccouuiiiiiiiii e 76
8.3. PACKAGE WIZAIUoeeiiiiiii ettt e e e 77
10.1. Starting a new Macro from the Existing AppliCatorcoovviiiiiiiciie e, 80
10.2. Existing Applicator with Clean INStance NamMEeSccoovviiiiiiieiiii e 81
10.3. MACIO MOAUIE WIZAIUuiiiiiii e e e e et e e e e et r e e e et e e e eeaaaeeeee 81
O =T o = B =T (Y 82
10.5. MAcCro ModUIE PrOPEIIESciveeiiiieiii et e e e e e e e e e e e e et s e et eeaaeees 83
10.6. File Browser with the New Macro Module Filesccoooiiiiiiiiiiiiiiei e 84
10.7. ApplicatorMacro as Macro MOAUIEoiiiiiiiii e e e 84
10.8. ApplicatorMacro.SCrPt iIN MATEiiiiei e e e e e e e e e e e e e eaaeees 85
10.9. ApplicatorMacro Module with Output CONNECTONc..iviiiiiiii e 86
10.10. Internal Network of the ApplicatorMacro Modulecoeeiiiiiiiiiiiii e 86
10.11. Automatic Panel of the ApplicatorMacro Modulecoeeiiiiiiiiiiiiii e 87
10.12. Panel of the ApplicatorMacro MOdUIEcc.uiiiiniiiiii e 88
10.13. Parameters for Diameter SEtHNQocvveiiiiii i e e e e 90
10.14. Changing the Diameter of the APPlICALOrccevuiiiiii e 91
10.15. Strange Behavior of the ApPlICAtOrMACIOuiviiniiiiii e e 92
10.16. Adding the Correct Tip TranSIationcc.iiiiiiiiii e e e e e e 92
10.17. Complete APPHCALOIMACTOiiiiiiii e e e e e e e e e e e e ean s 93
10.18. Feeding the SoCalculator MOAUIEcoouniiiiiei e e 94
10.19. Improved Applicator Macro MOAUIEcoouiiiiiei e e 95
11.1. View3D Panels as Example for GUI EIEMENTScccuiiiiiiiiiiiiii e 96
O T [[T Vo To = PP 99
11.3. Controls as VIEW/CONITOIETc.uuniiiiii et e et eeeaa e 99
11.4. Controls as VIEWS/CONIIOIETuiiiiii e e s 100
11.5. View3D Panel with C++ Class Names of Included MDL Controls for Scripting 101
11.6. Command EXECULION CONEEXLuuuiiiiiiieieiii et e et e et e et e et s e e eet e e eaeaaeeeenes 104
11.7. Contexts of the Scripting CONSOIEciiiiiiii e 105
I S e Ty g o] L= oo [0][] =0 1 (o o P 106
11.9. EXampleToggleBULIONcoun e e e e e e e e e aaas 109
IO I O T = 10 1 (o T T = N 1 T SRR 111
11.11. View3D Panels with the Panel CONtroloooiiiiiiiiiiiiiei e 112
11.12. REAESIGNEA PANEI ... et e 113
11.13. ENtering StYle SEtINGS . oovuiiiiieiiie e 114
11.14. ExampleToggleButton with Application Style Panelccoooviiiiiiiiiicee e, 114
11.15. Color Chooser EXample CONIOlcccuuiiiiiiiiiie e e e e e 116
11.16. View3D Panel with Qt WIdQELScviiniiiiiii e e 117
12.1. MEVISLAD SHIUCIUIE ...iiiiiiiiei et e et e e et e e e et e e e e aa e 119
12.2. COOrdiNAtE SYSIEIMSiiiiiiiiiie et e e e e e e e e e e et e e et e e et e et e e et e e eaneeeens 120
12.3. Matrix MUIIPIHCALIONiiie i e e e e e e e e e e et e e et e e eanaeees 121
12.4. World Coordinates in Context of the Human Bodycccoeiiiiiiiiiiiiiiiiie e 122
12.5. The DICOM TaQ BIrOWSETiiviieiiiieiii e e et e e e et e e e e et e e e et e e e e e e e et e e ean e eenaas 123
12.6. Image Properties for an Ideal IMageco.viiiiiiiiii e 124
12.7. Image Properties for a Sagittal IMageooeeiiiiiii i 124
12.8. Image Properties in the 1nfo MOAUIEcoooiiiiii e 125
14.1. Entering the ML Module Propertiesccuiiiiiiiiiii e e e e 133

Getting Started

14.2. Entering the Imaging Module Propertie€scccuiiiiiiiiiiieiie e 134
14.3. Additional Module Properti€Sc.uiiiiiiii e e e e e 135
14.4. Entering the ML Module Properties — FieldScoooiiiiiiiiiii e 136
14.5. Example Network for SImpIeAddc.uiiiiiiii e 139
15.1. Example Network for ML Module and an Open Inventor Modulecocoeiiiiiiiiiineiinen, 148
15.2. Mouse-over Information for Base CONNECIOISuuiiiiiuiiieiiiii et e e 149
15.3. Mouse-over Information for Different Base Connectors in One Moduleccoovvvviierennnn. 149
15.4. Base Field Connection Checked for Type Compatibilitycccooovviiiiiiiiiiiii e, 150
15.5. Project Wizard — ModUlE PrOPEITIESc.uiiiiiiiiii et e e e 152
15.6. Project Wizard — Imaging Module Propertiesccoevuieiiiiiiiiiiiie e 153
15.7. Project Wizard — Additional Module Propertiesc..oeevuiiiiiiieiiiieiiie e ee e e 154
15.8. Project Wizard — Module Field Interfaceccoiiiiiiiiiiiiiiic e 155
15.9. Resulting BaseOmer MOAUIEoooiniiiiiiii e e e e 163
15.10. SoBaseRecei ver Module AREINALIVEiiiiiiii e 163
15.11. Project Wizard — General Module Propertiesooeeeiiiiiiieiie e eea e 164
15.12. Project Wizard — MOAUIE TYPE ...iiiniiiiiiii et e e e e e e e e e e eaa e 165
15.13. Project Wizard — Module Field INterfaceccoviiiiiiiii i 165
16.1. Creating @ NEW TESE CaASE ..ccuuiiiiiiieii et et e e e eeanaas 173
16.2. New Test Case IN TeSt SEIECHONuiiiiiiiie e 174
16.3. New Test Case in the Package Path ..o 175
16.4. BASIC TESt CASE SEIUP ..ueivineiiiiiiii e et e e e et e e e e e e e e et e e et e e et e e et e e et eeaaeeeens 176
16.5. Test Functions in the TeStCASEMANAGETc..oeiuuieiiiieeiii et e e e e e e e eaes 178
16.6. Report for ManUAITESE 75iiiiiiiiii e e e e e e e e e e e e e e aaaees 179
16.7. The Fi el dval ueTest CaseEdi t or Panelccooouiiiiiiiiiii e 180
16.8. Dragging Fields into the Parameter LiStcccouiiiiiiiiiii i 181
16.9. Dragging Fields into the Expected ReSUIS LiStccoeviiiiiiiiiiiiiie e, 182
16.10. The RESUIING PANEIcoeeii e e e e eaa s 183
16.11. Our Automatic FieldValue Tests Addedcoouuiiiiiiiiiiiiiii e 184
16.12. Report for AULOMALICTEST Lciiiiiiii e e e e e e e e e e e aaes 184
16.13. Our Iterative Test in the TeSt CENETuiiiiiii e 186
16.14. Report for AULOMALICTEST 2iiiiiiiiii e e e e e e e e e e 187
16.15. Grouped TeSt FUNCHIONSccuuuiiiii e e e e e e e e e e e e e et e e e e eaanas 188
16.16. Report for ScreenShot EXamPIeccouniiiiiiiii e e 189

List of Tables

1.1.
2.1
2.2.
2.3.
2.4,

List Of MeVisSLabh DOCUMENEScviiiiiiiiii e 12
MOTUIE TYPES ettt ettt ettt e et e e ettt e e et et e e et et e e e eena e eeees 17
[070] 01 1 [=To1 (o] £ T PPNt 18
(000] 4] aT=To1 110 1 PSP 18
IMPOIANT FIlES ..t e ettt ettt e e ettt e ettt e e e et e e e ena e eeees 21

Chapter 1. Before We Start
1.1. Welcome to MeVisLab

MeVisLab is a rapid prototyping and development platform for medical image processing and
visualization. With its image processing library, it fulfills the following requirements:

» Able to handle large, six-dimensional images (x, y, z, color, time, user-defined).

» Offers easy ways to develop new algorithms or changing/improving existing ones in a modular C++
interface, perfect for a fast-developing research area.

» Offers easy ways of combining algorithms to algorithm pipelines and networks.
» Fastand easy integration into clinical environments due to standard interfaces, for example to DICOM.

» Fair performance for clinical routine due to a page-based, demand-driven approach in the image
processing.

Beside general image processing algorithms and visualization tools, MeVisLab includes advanced
medical imaging modules for segmentation, registration, volumetry and quantitative morphological, and
functional analysis.

Based on MeVisLab, several clinical prototypes have been developed, including software assistants for
neuro-imaging, dynamic image analysis, surgery planning, and vessel analysis.

The implementation of MeVisLab makes use of a number of well known third-party libraries and
technologies, most importantly the application framework Qt, the visualization and interaction toolkit

Open Inventor, the scripting language Python, and the graphics standard OpenGL. In addition, modules
based on the Insight ToolKit (ITK) and the Visualization ToolKit (VTK) are available.

1.2. Coverage of the Document

Reading this document you will become familiar with the basic features of MeVisLab and how to
use them. The chapters are going from the easy to the complex, from the visual programming over
assembling macro modules and programming modules in C++ to writing tests on a network level for
modules. You will get an idea of how to

» work with the graphical module/network interface concept of MeVisLab

* load and view 2D, 3D and 4D images of various formats

» prototype your specific image processing, image visualization, or image interaction tasks with a
standard set of modules provided by the SDK distribution

* let your own image processing C++-algorithms run in MeVisLab as self-defined module plug-ins

» create compact graphical user interface representations of your image processing and image
visualization pipelines, functioning as quasi-applications

 write tests for a manual and automatic testing of modules and networks

. Note
Depending on your software license, not all features of MeVisLab may be available. For
licensing information, please refer to the MeVisLab website (https://www.mevislab.de/).

10

https://www.mevislab.de/

Before We Start

1.3. Intended Audience

Getting Started is aimed at people new to MeVisLab and those who want to explore more of its options.
The necessary prior knowledge depends on the MeVisLab usage:
» For pure network creation, no programming knowledge is required.

» For macro creation, basic knowledge of Python is required. The examples in this document will also
make use of the MDL (MeVisLab Definition Language).

» For developing modules, basic C++ knowledge is required.

» For using the visualization options to their best advantage, some knowledge of image processing and
computer graphics is required.

1.4. Conventions Used in This Document
1.4.1. Activities

Select: Click an object with the left mouse button.
Right-click: Click an object with the right mouse button, usually to open the context menu.

Double-click: Click the object twice in fast repetition. Starts the default action of the object (e.g., for a
module, opens the default panel).

Drag: Click the object with the mouse and keep the mouse button pressed while moving the object to
another position. Place/stop by releasing the mouse button.

Right-drag: Click the object with the right mouse button and keep it pressed while moving (as described
for drag).

Mouse-over: Move the mouse pointer to the object to display additional information in a tool tip, for
example on panels and connectors.

CTRL+N: Press the keys CTRL and N at the same time.

ALT + double-click: Press the ALT key and double-click the object.

Menuitem — Submenuitem: Open the menu and select the submenu item.

1.4.2. Formatting

Views: Parameter Connections Inspector
MeVisLab modules: | nageLoad:
Parameters: Di anet er

Programming code: * out Voxel = *i nVoxel 0

and also
outMn = inMn + const Val ue
out Max = i nMax + const Val ue

11

Before We Start

1.5. How to Read This Document

If these are your first steps with MeVisLab, start with Chapter 2, The Nuts and Bolts of MeVisLab and
proceed to the first network example Chapter 3, Loading and Viewing Images.

If you have basic experience with image processing and want to learn more about visualization and
scenes in Open Inventor, read Chapter 7, Creating an Open Inventor Scene.

If you have basic experience with all module types in MeVisLab and think about extending your networks
with scripting, read Chapter 10, Developing a Macro Module for an Applicator.

If you have basic experience with the possibilities of MeVisLab networks and think about programming
your own modules in C++, start with Chapter 13, Introduction to C++ Modules.

In addition, the following sections might be of help:

» Chapter 12, Excursion: Image Processing in ML for some background on coordinate systems and
how they are used in MeVisLab.

» Chapter 8, Starting Development with Package Creation for the package structure of the module
database and how to create your own packages for development.

1.6. Related MeVisLab Documents

Besides the document at hand, the following documents are available:

Table 1.1. List of MeVisLab Documents

Title Contents

How to Get Help? Overview over available help in MeVisLab

MeVisLab Reference Manual Reference for the MeVisLab user interface

The ML Guide MeVis Image Processing Library — Programming
Guide

ML Reference MeVis Image Processing Library — API
description

MDL Reference MeVisLab Definition Language (MDL) Panel/GUI
Reference

Open Inventor Overview Help for Open Inventor Modules

Open Inventor Reference Reference for all implemented Open Inventor
classes (converted from the original manpages)

Scripting Reference (Python) Scripting Reference for Python in MeVisLab

Toolbox Reference MeVisLab Toolbox Class Reference for various
API libraries

TestCenter Reference Class Reference for the TestCenter

Package Structure Information about the package structure in
MeVisLab

ToolRunner Manual for ToolRunner, a stand-alone program for
building projects and help files

CMake CMake in the MeVisLab context, including

explanations for how to use CvakelLi st s. t xt files

To search in the online documentation, use Help - Search in Documentation, see the MeVisLab
Reference Manual, “Search in Documentation”.

12

Before We Start

The full list of available documents and resources is available on the Welcome Screen (which can also
be opened via Help — Welcome). While the Getting Started tab offers links to some important resources

and demos, the Documentation tab links to all documentation (HTML and PDF, if available).

Figure 1.1. Welcome Screen and Documentation Links

7 Welcome To MeVisLab

O | B ||

Getting Started | Documentation
Basics
How to Get Hel
Shows how to get help in MeVisLab
Getting Started Tutoril

first steps

MeVisLab Reference Manual
Explains how to use the MeVisLab IDE

www.MeVistab.de
Visit the MeVisLab home site

[.../networks RegionGrowingMacroExample miab
01 ../networks Niew2DExample.misb

[1 ../networks/SoGVRVolumeR enderer.miab

Neve Network| Open Network...

Gives an introduction to the MeVisLab User Interface and explains

Giga Voxel Renderer

Demos

Use different lookp tables to seperate objects in the volume rendering visuslly

OpenGL Shading Language (GLSL)

Use the graphics processing Lnit to create exdting visuslzations

ITK image registration

‘A registration example using the Insight Segmentation and Registration Tookit

VTK Visualzation

‘An example of the Visualization T
Winged Edge Mesh IsoSurfas
Four subnetworks, each shawing]
Contour Segmentation Obje
Create CS0s and convert them

Open Computing Lanquage (}
Use OpenCL toleverage the powd
processing (driver required)

The Parameter Connections
and create parameter connecti

< Prev | Next > ‘

i Welcome To MeVisLab

5 ||

Getting Started Documentation |

Using MeVisLab

MeVisLab Reference Manual por
Getting Started poF

Scripting Reference (Python)

Tool Runner poF

Package Structure PoF

TestCenter Manual poF

TestCenter Reference

AlgorithmModule Python Reference ppe

I~ Don't show this at MeVisLab launch

Igor Reference PDF

Open Inventor

Open Inventor Overview
Open Inventor Reference

SoView2D Extensions

Giga Voxel Renderer

GLSL Post-Frocessing Effect Framework

This Version

Release Notes poF
New in MevisLab 2.3 poF

more ...
How to Get Help poF News in MeVisLab 2.2 poF
New Mevislab 2.1 poF
News in MeVisLab 2.0 eoF
Recently Opened Networks SDK General Help SDK C++ Help and References
[0 ... MMERTT/MLMERIT _example_network.miab 1 . -
Tips + Tricks 1 MDL (Panel/GUI) Reference poF The ML Guide roF

Kernel Programming por

ML Reference

MeVisLab Resolution Independence AP
ToolBox Reference

QMake por

MLAlgorithmModule Reference por

External Library References
o+

Python 2.7.9

NumPy 1.6.2

Ttk

Vik

GLSL Shader Pipeline Qt4.8
GLSL Shader Framework

I~ Don't show this at MeVisLab launch

Tip

On the Documentation tab, you can also find the help files for all installed packages and
your user packages listed. This is possible because the documentation links are created
dynamically for your installation. For more information on packages, see Chapter 8, Starting
Development with Package Creation.

For all questions related to programming that are not covered by the documentation, please refer to the
MeVisLab forum where you can search old topics or post new questions.

1.7. Glossary (abbreviated)

For an extensive glossary, see the ML Guide.

ML, MDL, Open Inventor — Some Important Terms
Explained

Base Base fields/objects, for example the connectors for base objects. Base
connectors handle pointers to an abstract data object defined by the
user. How the Base object is handled depends on how it is integrated
in the module.

Module The base class (superclass) of all ML modules (page-based, demand-
driven). Not to be confused with the Base object described above.

WEM and CSO modules are also derived from Module.

ITK™ The I nsi ght Segment ation and Regi stration Tool kit ™. Alarge,
well known, open source image processing library which has been

13

Before We Start

ML

MDL

MeVisLab IDE

Open Inventor

VTK™

wrapped in many parts for MeVisLab to work seamlessly with other
ML modules. See http://www.itk.org/ and https://www.mevislab.de/ for
details.

MeVis Image Processing Library, also called MeVis Library at times.

MeVis Description Language, the language in which user interfaces of
modules and applications are written.

The Integrated Development Environment.

Object-oriented 3D toolkit on top of OpenGL, a library of objects and
methods used for interactive 3D graphics

The Visualization Tool kit ™. A large, well known, open source
visualization library which has been wrapped in many parts to work also
in MeVisLab. See http://www.vtk.org/ and https://www.mevislab.de/
for detalils.

14

http://www.itk.org/
https://www.mevislab.de/
http://www.vtk.org/
https://www.mevislab.de/

Chapter 2. The Nuts and Bolts of
MeVisLab

In the following chapter, we give you a brief (and dry) introduction into the nuts and bolts of MeVisLab,
that is:

» Section 2.1, “MeVisLab Basics”

» Section 2.2, “Development in MeVisLab”

» Section 2.3, “MeVisLab Modules”

» Section 2.5, “Networks”

e Section 2.6, “Overview of Important Files ”

» Section 2.7, “User Interfaces Controls”

» Section 2.9, “How to Find More Information on Networks and Modules”

2.1. MeVisLab Basics

Some of the most prominent features of MeVisLab:

» Full 6D image processing (X, Y, z, color, time, user dimensions)
» Paging

» Caching

» Multithreading support

» Multi-platform (Windows and Linux supported)

 Scripting support (Python)

* Macro system

 Defining of GUI elements with the MDL scripting language
» C++ programming interface

» Pure C++ and object-oriented design

 Self-descriptive module and application interfaces

» Error handling: configurable exception usage; configurable error handling; diagnosis modules,
automatic module tester

* Runtime type system
» Extensible voxel type
» Resources-friendly memory usage

» Supports highly complex module networks

15

The Nuts and Bolts of MeVisLab

Based on standard libraries
Currently around 960 Standard modules in the MeVisLab SDK core, around 3300 modules delivered
in total (with around 350 ITK modules, around 1400 VTK modules, and around 440 modules in the
Fraunhofer MEVIS release)

Long time maintenance

2.2. Development in MeVisLab

In MeVisLab, development can be done on three levels:

Visual level: Programming with “plug and play”: Individual image processing, visualization and
interaction modules can be combined to complex image processing networks using a graphical
programming approach.

Scripting level: Creating macro modules and applications based on macro modules: Python scripting
components can be added to implement dynamic functionality on both the network and the user
interface level.

C++ level: Programming modules: New algorithms can easily be integrated using the modular,
platform-independent C++ class library.

In addition, the abstract, hierarchical MeVisLab Definition Language (“MDL") allows designing efficient
graphical user interfaces, hiding the complexity of the underlying module network to the end user.

From a workflow point of view, an application development would look as follows:

1.

2.

3.

Connect existing modules to networks.

Develop new modules if necessary.

Build user interface (GUI).

Build macro modules to recycle complex functionality.
Use scripts to control networks, GUIs, and macros.

Build installer (only with a special ADK license which is only available for very close partners of
MeVis).

In MeVisLab, the algorithms are visualized as a network of modules (graphs). In a minimalist approach,
an image processing pipeline would consists of an image source, some algorithm/image processing
step in the middle and a viewer for displaying the output. This pipeline is mirrored in the MeVisLab GUI.

16

The Nuts and Bolts of MeVisLab

Figure 2.1. Image Processing Pipeline

Modules can be connected in various ways which will be described in the following paragraphs.

2.3. MeVisLab Modules

Within the concept of MeVisLab the basic entities we are working with are graphical representations of
modules with their specific functions for image processing, image visualization, and image interaction.

The three basic module types (ML, Inventor and macro) are distinguished by their colors:

Table 2.1. Module Types

Type Characteristics

ML Module (blue)

Page-based, demand-driven
processing of voxels

Open Inventor Modules (green) Visual scene graphs (3D); naming
convention: all modules starting

with “So” (for scene object)

Combination of other module
types, allowing implementing
hierarchies and scripted
interaction

Macro Module (brown)

Most modules have connectors which are displayed on the module. These represent the inputs (bottom)
and outputs (top) of modules.

17

The Nuts and Bolts of MeVisLab

In MeVisLab, three types of connectors are defined.

Note

Table 2.2. Connectors

In principle, every module type can have any kind of connector.

Look Shape Definition
A triangle ML images
"
Y half-circle Inventor scene
= F
Hal square Base objects: pointers to data
O

structures

By connecting these connectors and therefore establishing a so-called data connection, image data, or
Open Inventor information is transported from one module to one or more others.

Besides connecting connectors, basically any field of modules can be connected to other compatible

fields of modules with a parameter connection.

Note

O

A special case are Inventor engine fields; they have no value representation themselves

unless connected to a fitting destination field. See Section 28.3, “Connecting Inventor
Engines to ML Modules” for more details.

Table 2.3. Connections

Type

Look

Characteristics

Data connections (connector
connections)

The direct connection between
connectors. Depending on which
connectors are involved, the
connection is rendered in a
different color: blue for ML, green
for Open Inventor, brown for Base.

Parameter connections (field
connections)

Connections created by
connecting parameter fields within
or between modules

Tip

For more display options, see the MeVisLab Reference Manual, chapter “Modules and

Networks”.

2.4. Fields

Fields define the interface of a module, that means they are also the basis of the connector types given

above.

They come in two types:

1. In/out fields — connected by data connections

18

The Nuts and Bolts of MeVisLab

* Images
* Nodes
* Objects
2. Parameter fields — connected by parameter connections
« Numbers, Strings, Booleans
* Vectors
e Triggers

Field changes trigger events handled by field listeners. Field connections are a special forms of field
listeners.

Tip

Read Section 2.9, “FieldListener” for information about the use of explicit field listeners for
Python scripting.

2.5. Networks

Networks are connections between modules with which you can implement complex processing tasks
from sets of standard ML, Inventor, WEM, CSO, ITK, or VTK modules.

Networks are edited and saved as *. nl ab files in MeVisLab.

In Figure 2.2, “Network Layout”, the internal network of the Regi onG owi ngMacr o module is shown. It
consists of all three types of modules and shows data connections as well as parameter connections.

19

The Nuts and Bolts of MeVisLab

Figure 2.2. Network Layout

Remember that macro modules are encapsulated networks of their own, so you effectively work with
subnetworks (see Chapter 9, Introduction to Macro Modules for more information).

Tip

For information on the involved classes for the programming of modules, connectors, and
connections, see Chapter 13, Introduction to C++ Modules.

2.6. Overview of Important Files

Here a list of the most important file types:

20

The Nuts and Bolts of MeVisLab

Table 2.4. Important Files

File type Contents

.mab Network file, includes all information about
the network's modules, their settings, their
connections, and module groups.

. def Module definition file, necessary for a module to be
added to the common MeVisLab module database.
May also include all MDL script parts (if they are
not sourced out to the . scri pt file).

.script MDL script file, typically includes the user interface
definition for panels. See Section 10.2, “Adding the
Macro Parameters and Panel” for an example on
GUI programming.

. mhel p File with descriptions of all fields and the use of a
module. See MATE as a Module Help Editor in the
MeVisLab Manual.

. py Python file, used for scripting in macro modules.
See Chapter 10, Developing a Macro Module for an
Applicator for an example on macro programming.

.dcm DCM part of the imported DICOM file, see
Section 12.7, “Data Types for DICOM and TIFF".

Jtiff TIFF part of the imported DICOM file, see
Section 12.7, “Data Types for DICOM and TIFF".

. i mage 6D image saved with all DICOM tags, lossless
compression, and in all data types.

. gvr Precomputed octree file for direct volume
rendering.

For files related to module programming in C++, see Chapter 13, Introduction to C++ Modules.

2.7. User Interfaces Controls

MeVisLab uses Qt for rendering the GUI (panels, etc.) and offers a scripting interface.

Every module comes with an automatic panel on which all fields and available settings are listed.

For improving the handling, user interfaces (“panels”) can be added for modules, see Figure 3.19,
“Automatic and Settings Panel of View2D” for an example. Panels are written in MDL and offer the
following possibilities:

« layouting and grouping of fields

» excluding some of the available fields (to make the panels more user-friendly)
 adding additional fields

» adding additional functionality by calling script methods

The components of the user interface are controls.

» User input controls, like text and number edit controls; popup menus, radio buttons, checkboxes, and
trigger buttons. They are typically, but not necessarily linked to a field. Several controls can be linked
to the same field.

» Layout controls, like for horizontal/vertical grouping.

» Decoration controls, complex controls, dynamic controls, etc.

21

The Nuts and Bolts of MeVisLab

To these controls, scripting can be added.

An example for the programming of a small module panel is given in Section 10.2, “Adding the Macro
Parameters and Panel”.

Tip

See the Exanpl eGUI Scri pt i ng module or other example modules. Enter “Test” in the quick
search to get a list of available modules.

For further details on panel scripting, please refer to the MDL Reference.

2.8. Scripting

MeVisLab offers scripting interfaces. The scripts can be implemented in Python.
Scripts can be triggered by field listeners or user interface controls.

The trigger source defines the "context" of the script execution, i.e., the set of objects accessible by
the script code.

» Modules, fields, connections
» User interface controls, windows
* Wrapped C++ objects like ML images, CSOs, or markers

Global objects provide access to MeVisLab core and system functionality.

2.9. How to Find More Information on
Networks and Modules

1. When you enter the module name in the quick search, the About information of the module is
displayed.

2. If the View Module Inspector is open, you can find the About information on the respective tab.

3. To get a detailed description of the module's function and how to use it, refer to its help file.

a. Right-click the module to open the context menu.
b. Select Help - Show Help to open the module's HTML help in your default browser.
Figure 2.3. Module Context Menu: Show Help

Table Of Contents - ImageLoad

—— 77—

ImageLoad g ELEes MLModule
Purpose
Show Window 2 Usage genre FileMain
inctancelbians ' D_eﬁ!?es on the authors Tobias Boskamp, Dirk Sel
Show Example Network N -
- 5 DICOM/TIFF format package MeVisLab/Standard
Windows
Reload Definition ~ F5 L0 1P Default Panel di MLImageFile
Related Files (4) 3 Quiput Fields definition mllmageFile def
Show Enclasing Folder = output0 seealso ImageSave, Openlmage
Grouping 4 Parameter Fields MLImageFormatLoad ML
= Field Index :
= By Category keywords Open, File, Format, TIFF,
o Main
o Read Raw
o Page Size PUFPDSE
m Visible Fields i
o Filename The module fmageload opens an imag
o Load File
o Auto Load £ = DicoM
o Close File « TIFF
o Status « DICOM/TIFF
o X * RAW

av - L1nIeve

22

The Nuts and Bolts of MeVisLab

4. To see how the module is working, an example network is delivered with most modules.

a. Right-click the module to open the context menu.

b. select Help - Show Example Network to open the example network on another network tab.

23

Chapter 3. Loading and Viewing
Images

In the following chapter, we will walk through an example network for loading and viewing images.

e Section 3.1, “The MeVisLab GUI”: first steps in the MeVisLab user interface

e Section 3.2, “Searching and Adding Modules”: searching and finding modules

e Section 3.3, “Using the ImageLoad Module”: loading images

» Section 3.4, “Adding Viewers to ImagelLoad”: adding viewers (View2D and View3D)

In addition, two special topics are discussed:

¢ Section 3.5, “Alternative Ways to Load Images”: alternative ways to load images

¢ Section 3.6, “A Note on Importing DICOM Images”: importing and converting DICOM images to the
internal image format of MeVisLab

3.1. The MeVisLab GUI

First, start MeVisLab (the “how” depends on your platform). After the Welcome Screen (see Figure 1.1,
“Welcome Screen and Documentation Links”), the start view opens.

Figure 3.1. MeVisLab User Interface

1 MeVisLab - [untitled
File Edit Modules Applications Extras Scripting View Metworks Panels Help

D E||>xDD« ~|OXA @008 282 8| Fmamme

| Output Inspector

Click on a connector to display a data object

Fields | Fies | Tree | About | Related | Serinting |
Mame |Type |ln |0ut|VaIue
instanceMName String Untitled

ding preferences from C:/Program Fil ab2.8aVC 12-64/Pack ab/IDE fbin/mevislab.prefs

s is an unregistered version of MeVisLab. It is free for non-commerdal use, visit www.mevislab. de for details.

ding package FMEstable/Release (Instalied) from C:/Proaram Files/MeVislab2,8aVC 12-64/Packages [FMEstable/Releass

instadled) from C:/Program Files MeVisl ab2.8aVC 12-54/Packages FMEstable ReleaseMeVis

i E
ding package MeVisLab/Standard {(instaded) from C:/Program Files MeVisLab2,8aVC 12-64/Packsges MeVisLab /Standard

16 Info: Ready.
16 Info: Python language loaded.

/3071 MB 000%) | @ |1 y

24

Loading and Viewing Images

By default, MeVisLab starts with an empty workspace and some Views on the right (like the Output
Inspector) and bottom of the screen (usually the Debug Output). In the Debug Output, you can find
information about your MeVisLab installation and start-up, which preferences and license file are loaded,
and whether all packages loaded correctly or with errors.

Views can be configured via the menu bar, View - Views, or by a right-click on the border of Views.

Figure 3.2. View Selection

| View MNetworks Panels Help
|[:I:mmTaFil H 5] of =0 ‘ EI EEI |:|.|
jEE Zoom To Selection
&7\ Zoom In
@\ Loom Out

Zoom 100%

Layout L4
Toolbars
Background Tasks
v Debug Output

ML Parallel Processing Profiler

Module Browser
Module Inspector: Untitled
Module List
Maodule Search
Metwork Field WatchList
Output Inspector

Parameter Connections Inspector
Profiling

Recent Outputs

Screenshot Gallery

Scripting

Scripting Assistant

Search in Documentation
Search in Metwork
Snippets List

Some View arrangements are pre-defined as layouts, which can be selected via View - Layout. If
you are working in the User Default Layout, all changes you make in the Views configuration are
persistent and will be saved as your “User Default Layout”. Therefore, most screenshots in the MeVisLab
documentation are only examples — your own MeVisLab GUI may look different. Only the workspace
always remains visible.

Tip

For details on layouts, see the MeVisLab Reference Manual, chapter “Layout”.
The workspace is the place for constructing and editing module networks. If more than one network is
open, tabs appear on top of the workspace. To create, open and save one or more networks, use the

tool bar buttons or the File menu in the menu bar. To switch between different network tabs, use the
Networks menu in the menu bar or press Tab.

3.2. Searching and Adding Modules

There are several ways to add a module to the current network, for example:

25

Loading and Viewing Images

* via the menu bar, entry Modules.

* via the menu bar, Quick Search.

* via the View Module Search.

* via the View Module Browser.

* via copy and paste from another network.
by scripting, see the Scripting Reference.

Both the Modules menu and the Module Browser display all available modules. The modules are
sorted hierarchically by topics and by module name, as given in the file Genr e. def .

Therefore, both places are a good starting point when in need of a specific function, like an image load
module.

Figure 3.3. Modules Menu and Module Browser

it | Modules Applications Extras Scripting View Networks Panels Help

- I oicom v & 2| @] T | os
3
Image 4 [DuEDIO) Module Browser
Misc L4
Geometry D J Available Modules | Author
Analysis » MLImageFormat 4 = File
Bitlmage 4 +- DICOM
iii= ' MuttiFileVolumelist » *I- Inventor
+- Misc

Segmentation » preopFileListFilter

+- ML F t
Transformations * mageForma

DirectDicomImport +- Bitlmage
S . +- MultiFileVolurneList

Devices 4 DICOMFileListFilter Wolf Spindler

i .

Imagel cad / DirectDicomImport Wolf Spindler
e ——— P Y o PO o Alo -ndler
]maeLoad Tobias |oskamp, Di

magesave obias Boskamp, Dirk

Registration L4

Visualization L4

Image

Open Inventor * [+
+- Geometry
+
4

Special L4 Analysis
Extras L4 | o

Tk 0 Qutput Inspector
PCL L4

VTK L4

The advantage of the Module Browser is that you can right-click the entries, open the context menu
and, for example, open the help (in your default Internet browser) or the module files (in MATE, the in-
built text editor).

Note
For a module to get listed, it has to be available in the SDK distribution or in your user-
defined packages. If in doubt or missing something, check out the loaded packages in the

Preferences (on Windows and Linux: Edit — Preferences - Packages; on Mac OS X:

MeVisLab - Preferences - Packages). For details on packages, see Chapter 8, Starting
Development with Package Creation.

Usually the quickest way to add modules to a network is the quick search in the menu bar. It offers you
the possibility to search for modules by module name. By default, the search will also be extended to
keywords and substrings and is case-insensitive. To change these settings, click the magnifier button
for the search options.

Tip
The quick search field does not need to have the focus — any time you enter something

in the MeVisLab GUI while not being in a dialog window, this will be entered into the quick
search automatically.

26

Loading and Viewing Images

Figure 3.4. Quick Search Options

w :JvShljbshing

v Keywords

=l

Match Case

To search for a module to load an image, you could either type “load” or “image”. Let us go with the
second option this time. While typing “image”, the possible results appear. Use the up/down keys on
your keyboard to move to one of the listed modules. The module's About information will appear next
to it, allowing you to decide if this is the right module for you.

Figure 3.5. Quick Search Results

NI NI N RO =
Imageload Imageload
ImageloadMulti

Comment: Loads an image. AsyncMemorylmageload
Bitlmageload

Package: MeVisLab/Standard

DLL: MLImageFile

Author(s): Tobias Boskamp, Dirk Selle

Genre: FileMain

Keywords: Open File Format TIFF DICOM Analyze Lumisys Raw PNM PGM
PPM JPEG IPG PNG BMP

Openlmage Imag k ImageloadMulti
LoadBase FileDirectory DicomBrowser Locallmage
MLImageFormatLoad MLImageFormatSave
MLImageFormatFileCache MLImageFormatInfo DicomLUT
DicomPalettel UT

Tip
For a more complex search, use the Module Search View.
Select | mageLoad and press ENTER to add the module to a new network.
On the left-hand side of the bottom of the tooltip, you will find three buttons that you can click.
* 9
Adds the module to the network. If no network exists, a new network is added before adding the

module.

@
Shows the help file for the module in a browser.

* @
Opens a context menu with further options.

Figure 3.6. ImageLoad Module

27

Loading and Viewing Images

The module is an ML module, as can be seen by the blue color. It offers one image output connector
(triangle for image, output because it is on the top of the module; see Chapter 2, The Nuts and Bolts
of MeVisLab).

In the next section, we will have a closer look at the module details.

3.3. Using the ImageLoad Module

‘ Note
For the following section, we expect that the Views Output Inspector and Module
Inspector are open. If necessary, add them via View - Views.

1. First, we need to load an image.
a. Double-click the | mrageLoad module to open its panel.
b. Click Browse to select a file for display. The default file browser opens.
c. Go to the MeVisLab DemoData directory at $(1 nst al | Di r) Packages/ MeVi sLab/ Resour ces/
DenoDat a in the MeVisLab installation path and select a file, for example a MRI scan of a head
(Head4_t1.smal | . tif). The image is loaded immediately. (Instead of | mageLoad, you could

also use Local I rage which is optimized for loading images in relative paths, as explained in
Section 3.5.2, “Using the Locallmage Module”).

Tip

If you would like to start with your own image data immediately, please see the chapter
Section 3.6, “A Note on Importing DICOM Images” on how to convert your DICOM slices
into the internal file format of MeVisLab first. Then continue in place.

Module panels are intended to stay open, so keep the panel open or minimize it if it gets in your
way. There are two ways to minimize a panel:

* Click the minimize button on the top right of the panel window: this will minimize only this panel.

* Select Panels - Minimize All Open Panels (or press the respective keyboard shortcuts): this
will minimize all panels of this network.
2. For display, you can either add a viewer (we will do this later in this example) or you can click the
module's output connector to display the image in the Output Inspector.

The great thing about the Output Inspector is that it will display the output of any connector (or
data connection) in the process chain (as long it is a format the inspector can interpret). So if you
are ever unsure about what is actually the input or output of a module, simply click the connector
or connection to find out.

28

Loading and Viewing Images

Figure 3.7. ImageLoad Panel and Output Inspector

‘ Output Inspector: Imageload. outputd (Image) 5 X

B
7 Panel Imageload \ L‘:' B X J

Filename: Iesnurces{nemnnatafarainMu\t\MndaI!thandTl.tif Browse...

Main l Read Raw | Page Size 1

Format: DICOM/TIFF
Size: X: 109 ¥ 91 Z: 80
== 1T 1w 1 .I
Data Type: unsigned int16
Min Value: 0
Max Value: 5179
Color Space: Luminance
Comment: MeVisLab
Module Inspector: Imagel oad & X
Status: File open Fields | Fles | Tree | About | Related | Scripting
[+ Auto load Load File | Close File Mame ‘Typa ‘In ‘0ut|\la|ue <
A — instanceName String Imageload
filename String C:/Program Files/MeVi...
load Trigger M
autoload Bool TRUE
close Trigger Trigger
status String File open
Image outputl) format String DICOM/TIFF
size:109,91,80,1,1,1 type: dataType String unsigned nt16
unsigned intl6 sizeX Integer 109
size¥ Integer 91
| ||sizez Integer 80

Your image does not look like this? One reason might be that the slice of the image you are looking at
has no information. Click on the Output Inspector and scroll through the slices by

* using the mouse wheel

» keeping the middle mouse button (mouse wheel) pressed and moving the mouse up and down
 pressing the arrow keys Up or Down (Left or Right slice through time points)

Still not seeing anything? Then try to adjust the visibility range by changing the windowing. For this,

keep the right mouse button pressed while moving the mouse up/down (for window width) or left/right
(for window center). During these actions, the mouse cursor changes into a contrast symbol.

Figure 3.8. Adjusting the Window/Level

Qutput Inspector: Imageload.outputd (Image) [4

o | 30|

men Mitt

Both on the panel and on the additional information of the Output Inspector, the image properties can
be found. In the Output Inspector, you can open them by clicking ».

29

Loading and Viewing Images

Figure 3.9. Output Inspector with Image Properties

Qutput Inspector: Imageload.outputd (Image) [4

o | 30| + o8
Image Properties

Image Size: (109,91,80,1, 1, 1)

Page Size: (54,48, 1, 1,1, 1)

Data Type: unsigned int16 Range: [0.0, 5179.0]

Voxel Size: 1,953, 1.953, 2

World Matrix:0.0613 0.05734 -1.998 74.36
1.952 -0.0028660.06271 -133.9
-0.001065-1.952 -0.05875120.3
a a a 1

More Info...

Options

Update Min Max I~ Auto
Set Default LUT W Auto
View Al ¥ Auto

Save Image As... |

Settings... |

The image properties show the following information (see Chapter 12, Excursion: Image Processing in
ML for more information):

* Image Sizeinx,y,z,c,t,u
» Pagesizeinx,y, z,c,t,u
» Data type and range

* Voxel size in mm

World matrix
A number of options are available:
* More Info...: opens the panel of an Info module showing additional information about the image.

» Update Min Max: scans in the input image for the real min/max values. Also resets the LUT on base
of the new min/max values.

» Set Default LUT: sets the LUT on base of the image's min/max values or on stored DICOM tags if
available.

» View All: centers the rendered image in the 3D view, has no effect in the 2D view.

» Save Image As...: Saves the image to disk.

Settings...: Shows the panel of the used 2D viewer. Has no effect on the 3D rendering.
The layout of the Output Inspector's viewer and control panel can be adjusted.

In addition, two key shortcuts are available:

» A: Toggles the display of the annotations.

 |: Toggles the display of an additional information display.

30

Loading and Viewing Images

Figure 3.10. Output Inspector with Additional Information Display

Qutput Inspector: Imageload.outputd (Image) [4

o | 30| U

A 3D display is possible (in case of a single slice its depth is the voxel depth). For this, click the 3D
tab in the Output Inspector.

Figure 3.11. 3D Output Inspector

Qutput Inspector: Imageload.outputd (Image) [4
3D | >
Froband ¥linilturn Bramean Mittz
19780101 M FIUMARIS 4
001 I

izl Urislegrizel ingld

2 Ee]r] EAVEHE
LEmprasany 3 ez 2OO70E]
MeVisaty LIPS et (e et e

Note
&
The 2D and 3D views are independent of each other.

The 3D display can be rotated. The orientation can be seen on the little cube in the lower right corner
of the viewer (Notation: A = anterior, front; P = posterior, back; R = right side; L = left side; H = head; F
= feet). You can also use the windowing described above for the 2D view.

The information given in the panel and the 2D view image properties of the Output Inspector can also
be displayed right next to the module connector. For this, check

* Extras - Show Image Connector Preview for a thumbnail preview and/or

Extras — Show Connector Details for connector details.

31

Loading and Viewing Images

Alternatively, activate the respective options in the Preferences, section “Network Appearance” (on
Windows and Linux: Edit - Preferences; on Mac OS X: MeVisLab - Preferences).

Figure 3.12. Connector Details in the Edit Menu

| Extras Scripting View MNetworks Panels Help
Reload Module Database (Keep Cache)
Reload Module Database (Clear Cache)
Reload Imported Python Modules
Show Global MDL Definitions...
Run Module Tests...
Run Tests On Selection... Ctrl+T
Generate Module Reference For User Packages (HTML)

Show Widget Explorer...
Debug Widgets

Show Connector Details
Show Image Connector Preview

Clear Image Cache

Figure 3.13. Connector Details in the Preferences

P T
Category | |Network Appearance

- General i
- Packages "“""'““"

- Module Groups
-~ Suppartive Programs
- Paths ’rNelwork Rendering Style

~- Seriptin
pting Style: |Fu\| (Default) j [Halo: |Alternat|ve j Selected: | Source: | Destination: -‘

Show Mini Map: |Automatlc j Position: Iupper Right j [# Show parent navigation frames

- Netwark Appearance
-~ Network Interaction

- Shortcuts

Factor: I 1 3:_ "J—

—Modules

- Error | Debug Handling "Gk’bal & "Defanll(lolora

Groups: Notas: ‘

Font Size: 125

¥ Snap to grid x: 83:_ ¥y: 8%
¥ Show ML image state

¥ Show info message indicators

c Details c Image Preview
[¥ Show connector detail info I~ Show connector image preview

Detail Font Size: 10 % Image Preview Thumb Size: 64 =

Details on Zoom: 0.01 3:

Verbose Details on Zoom: | 1.5=

Note: Sizes and font sizes relate to a zoom factor of 100%.

Changing parameters in this panel overwrites settings from your mevislab.prefs file!

Restore Defaults Ok I Cancel Apply

The additional information is displayed when single-selecting a module. The amount of displayed
information depends on the zoom factor. To zoom in/out of a network, scroll with the mouse wheel.

32

Loading and Viewing Images

Figure 3.14. Connector Details Depending on Zoom

Imagelload 'G

For this example, we will work without the connector details display, because it tends to clutter the
interface.

3.4. Adding Viewers to ImagelLoad

Instead of using the Output Inspector (whose display might change with every clicked connector), it is
sensible to add a viewer to the network. There are two standard macro modules available in MeVisLab
which provide standard viewer configurations for 2D and 3D rendering, namely Vi ew2D and Vi ew3D.
Especially the 2D Viewer is frequently used to examine image processing results within a module
pipeline, for example. Once you begin to implement your own applications, you are free to create your
own viewer implementations adapted to your special tasks.

3.4.1. Adding the View2D Module

1. Add a View2D module to your network. In the Modules menu it is located at Modules —
Visualization - 2D Viewers - View2D.

The Vi ew2D module has one input connector for the image to be rendered, as well as three Inventor
inputs.

2. Feed in the image by connecting the image output of the | rageLoad module with the image input
of the Vi ew2D module. This is done as follows:

a. Click the output connector of | rageLoad.

b. Keep the left mouse button pressed while dragging the connection to the input connector of
Vi ew2D (white line).

c. Check that the connection is well-defined (green line).

d. At the input connector of vi ew2D, release the mouse button and establish the connection (blue
line).

33

Loading and Viewing Images

Figure 3.15. Setting up the Connection

"

connect to:
Image inlmage

no data

Imagelioad’ (&Y

Tip

There are many more ways to connect and to disconnect modules, see Section 3.4,
“Connecting, Disconnecting, Moving, Copying, and Replacing Connections”.

Although the connection is established, no image rendering has started yet. To initialize rendering,
open the vi ew2D panel by double-clicking the Vi en2D module in your network. As you can see, the
default panel is the viewer itself.

Figure 3.16. Panel of View2D

00imm

The View2D panel provides a standard viewer with many features, like slicing, zooming, windowing,
annotations, slab view, cine mode, and many more. A full description of all supported features and
how to use them can be found on the Vi ew2D help page which you can open from the module's
context menu.

The Vi en2D module offers various settings. As the default panel is the viewer, the Settings panel
needs to be opened explicitly from the context menu via Show Window - Settings.

34

Loading and Viewing Images

Figure 3.17. Opening the Settings Panel of View2D

Show Internal Network
View2D Options

- Panel
Instance Name Automatic Panel

Help
Viewer

— e __)J

Reload Definition F5
Scripting Consol
Related Files (4) y __Senpting Console

Show Enclosing Folder

Grouping L4

Figure 3.18. Settings Panel of View2D

Inventor In/Output
[¥ Show Inventor input fields

[~ Show Inventor output field

Voxel Value | Color Chann ﬂl

[¥ Show all voxel components

Component Precision:

— Seftings
Start Slice:

Slab:

Blend Mode:

Time Point:

MaxTime Point: | 0
Voxel Filter: Im
[¥ Snap to center

[¥ Use standard keys

[¥ Enable slicing

Reset LUT

~Rendering

[¥ High resolution render area

Note
A module always has one automatic panel and may have an arbitrary number of
additional panel windows, as defined in an MDL file (in the . scri pt file by default). The
automatic panel lists all variables, fields and inputs/outputs of the module; the scripted
panels may only include a fraction of these fields (see also Section 2.7, “User Interfaces
Controls”) or more controls than fields.

35

Loading and Viewing Images

Figure 3.19. Automatic and Settings Panel of View2D

Inventor In/Output
[¥ Show Inventor input fields

(4 Panel View2D
= .

Parameters | Inputs | Outputs |
Name |Type |1n |Out|\|'alue

instanceName String View2D
inventorInputOn Bool TRUE
inventorQutputOn Bool FALSE
view2DExtensionsOn Bool TRUE
startSlice Integer 40
numSlices Integer 1

1

1

1

numxSlices Integer

sliceStep Integer

slab Integer

blendMode Enum BLEND_REFLACE
timePoint Integer 0

maxTimePoint Integer o

filterMode Enum FILTER_LINEAR
standardKeys Bool TRUE

startCine Trigger Trigger
stopCine Trigger Trigger
cineMode Enum CINE_ZT
cineDirection Enum CINE_FORWARD
cineRepeat Enum CINE_ONCE
rinaSnaad Elnat n1

| [V High resolution render area

3. Now is a good time to save your network as MyFi r st Net wor k. m ab. You can do this in several ways:

* Select File —» Save or press the respective keyboard shortcut (for how to get a list of all shortcuts,
see the MeVisLab Reference Manual, chapter “Shortcuts”).

* Click the disk symbol in the toolbar.

The network modules and all module parameters are stored. Next time you open the network, you
will get access to the loaded image at the output of the | rageLoad module immediately.

Tip
You can quickly re-open the last twenty networks via the menu bar, File —~ Recent Files.
Tip

The most recent network file can be opened via File -~ Open Most Recent File which
has an own keyboard shortcut.

Tip

If the option Auto save MeVisLab documents in the Preferences is selected, MeVisLab
networks are auto-saved as <Net wor kNane>. nl ab. aut o upon major changes. This
allows for restoring the networks in case of system crashes. Auto-saved copies are
deleted when the according networks are saved.

36

Loading and Viewing Images

3.4.2. Adding the View3D Module

The Vi ew3D macro module is an easy-to-use application of the SoGVRvol uneRender er module, which
is a high-end, hardware-based image rendering module using 3D textures. Adding the Vi ew3D module
to the network, we get access to a 3D scene of our example image.

Figure 3.20. Connecting the View3D Module

o

Imageload (&Y

Figure 3.21. The View3D Panel

Proband linikum Bremen Mige | General | LUT | Tlumination | Clipping | +¢
a01 M FUMARISH | Viewer
19730101 ME View All | ¥ Auto view all
Axial | Sagittal | Coronal | Profile |
Time Point: lﬂ
~Mode
Interactive Quality: Im
Quality: — |
[~ Orientati
¥ on
Model [ebe -]
Projection Type: Im
Location Im
~ Settings
v Background

Screenshot

¥ Annotations

’rRendering

¥ High resolution render area

acquisition: QOOMJ

In addition to the 3D display offered by the Output Inspector, the View3D viewer comes with several
panels on which you can set display details or even record a movie.

3.5. Alternative Ways to Load Images

Besides the way described above, there are variations.

3.5.1. Dragging Images onto the Workspace

Instead of adding the module, you can drag the image file

37

Loading and Viewing Images

« onto the workspace: An | nregeLoad module is created automatically in the current network when you
drag a DICOM or TIFF image file from a file browser onto the MeVisLab workspace. The dragged file
is loaded automatically and available at the image output connector of the created | mrageLoad module.

Tip

This mechanism also works for WEM files (creates a WEMLoad module) and CSO files
(creates a CSOLoad module).

* onto an existing | mageLoad module

¢ onto the filename field of an existing | mageLoad module

3.5.2. Using the Locallmage Module

Instead of using the | mageLoad module, you can use Local | mage.

Local | mage is a macro module that allows for image selection based on relative paths. This method
is recommended for image referencing because it enables an easier exchange of networks between
cooperating parties. The list of supported variables can be seen when using the drop-down box of the
input widget.

Figure 3.22. Locallmage Module

v 1 Panel Locallmage [E=SYEE===)

Locallmage |E

Name: |$[DemoDataPath),"ErainMultiModaIf’Proband‘I’l.dcm|j Erowse...l
True Name: ...isLab/Resources/DemoData/BrainMultiModal/ProbandT1.dcm

‘ v Auto load Load | Close File ||

| Status: File open |

Macro modules are a combination of an internal network and a script. You can open the internal network
via the module's context menu or by pressing SHIFT and double-clicking the module. Alternatively, the
internal network can be opened in the preview state of a network (see the MeVisLab Manual).

Figure 3.23. Show the Internal Network

Show Window

Instance Name

In the case of Local | mage, the internal network consists of an | mageLoad only. The difference to that
module is only in the scripting that offers relative instead of absolute paths to the file — a feature that
has become somewhat obsolete by the introduction of the i sFi | ePat h attribute on string fields, which
accomplishes roughly the same without the need for extra code.

38

Loading and Viewing Images

Figure 3.24. Internal Network of the Locallmage Module

outimage

3.6. A Note on Importing DICOM Images

Without importing your DICOM slices, the standard MeVisLab image loading modules like |1 mageLoad
will only be able to load single DICOM slices separately. For further information, see the chapter
Chapter 12, Excursion: Image Processing in ML.

The DICOM import is mainly provided by the modules Di coml nport and Di r ect Di com nport . The use
of Di coml nport will be described here:

1. Add the module to the network via the quick search or the menu bar, Modules - File -~ DICOM -
DicomlImport. Open the module panel with double-click on the module.

Figure 3.25. DicomIimport

L L LE L]
Dicomimport. |G

@ Panel Dicomlmport

InputMode: # Directory © Files

—Source

Source Directory: I$(DemDatzPaﬂ1)\BﬁinT1Dimm

Name
[=]: TestPatientd *2999-01-01
=] 2000-03-11
i MR ILAB4 256*256%3%1

2. Enter the necessary data.

a. Selectthe Source Directory where your DICOM slices are located. In the MeVisLab installation
path you can find some example DICOM slices in the directory $(1 nstal | Di r)/ Packages/
MeVi sLab/ Resour ces/ DenoDat a/ Br ai nT1Di com All subdirectories will be scanned recursively
by default.

39

Loading and Viewing Images

b. Click the Import button. The lower part of the module panel will show error messages (if there
are any).

Most of the import process happens asynchronously. When the progress bar at the bottom of the
module panel disappears the import has finished. The area above the error message area will contain
the list of imported patients, which can be expanded to show studies, series, and finally image
volumes. You can click on the volume entries, which will be provided at the first and second output
connector of the module. (The second output only contains the combined DICOM tree, while the first
one also provides the image volume.) By default no entry will be selected.

You can now connect any module that processes images (or DicomTree objects) to the module.

If your DICOM import fails, or doesn't provide the expected results, check the settings of the module
by clicking the Configuration... button, especially check the sections Sort/Part. You should probably
also consult the help page for this module which is available through the context menu of this module

via Help — Show Help.

Tip

DICOM multi-frame files can be opened directly in MeVisLab through the | mageLoad
module; therefore, the use of Di com nport is not absolutely necessary for displaying the
data. | mageLoad will not split or re-arrange the frames in a multi-frame file, though.

DICOM files without image data can also be opened with LoadDi conr ee.

Note

MeVisLab has its own 3D file format which stores the image values and the image DICOM
tags in a file with the file extension . m i mage, which can be stored with MLI mageFor mat Save
and loaded with MLI mageFor mat Load.

There is also an older format that stores image and tags separately in two files with the
same base file name but different file extensions: <fi | enane>. tiff and <fi | ename>. dcm
These pairs can be loaded with | nrageLoad

40

Chapter 4. Implementing a Contour
Filter

In this chapter we will introduce to you how an image processing pipeline is implemented by means of a
MeVisLab network. We are going to implement a contour filter which is based on the elementary image
processing steps average, dilation, and subtraction. To get a visual impression of what the filter is doing,
we will also implement two synchronized render pipelines with 2D viewers for the filter in- and output.

» Section 4.2, “Implementing the Contour Filter”: implementing an image processing pipeline
» Section 4.3, “Parameter Connection for Synchronization”: synchronizing parameters between
different modules by establishing parameter connections

This will be our resulting network:

Figure 4.1. Example Network Contour Filter

SyncFioat

{7 Panel View2D ElEN s

£ Panel View2D1 = =

) ViewzD1
():
189 GV

=7 >N\

HI

100)

Avs
Arithmetic?.
Subiract

Morphology
Dilation.

7

LUT C/W: 439.962 / 932.866

Gonvolution

Locallmage (@]

. Note
In this example, the Inventor inputs of the Vi ew2D modules are hidden by unchecking the

context menu option View2D Options - Show Inventor Inputs. For more information,
see the MeVisLab Reference Manual, chapter “Additional Inputs”.

4.1. Loading the Input Image

First, we need an image as input. This image will be used as the input image for the normal viewer as
well as as the input and filter image for the image processing pipeline.

Create a new network (File -~ New) and save it to disk.
Find and add the Local | mage module via the Quick Search. As image input, use an image from the
default MeVisLab demo data path.

3. The default image loaded by Local | mage, ProbandT1 is fine.

4. For the output, find and add the Vi ew2D module via the Quick Search and connect it to the
Local | mage output. Double-click Vi ew2Dto see the original image. Later, we will compare this output
with the image resulting from the filter process.

41

Implementing a Contour Filter

Figure 4.2. Viewing the Input Image for the Contour Filter

Slice: 40 > 932.866

Tip

To see an immediate (albeit small) preview of the input image, you can enable the preview
modus in the menu bar, Extras - Show Image Connector Preview.

4.2. Implementing the Contour Filter

We want to implement a contour filter that is composed of the following image processing pipeline:

1.
2.
3.

4,

5.

Take an input i mage a.

Smooth the input image with an average kernel: Aver age[i mage a] -> inmage b.

Dilate the smoothed image by means of a morphological kernel operation: Di | ate[i mage b] -
> i mage c.

Subtract the smoothed image from the dilated and smoothed image: Subtract [i mage c, i mage b]
-> imge d.

Show the filter output i mage d.

For this processing pipeline we need the following basic image operators:

Average operator: a search yields the module Convol uti on. From the description: “Simple constant
convolution filters like Average, Gauss, Sobel, Laplace.”

Dilation operator: a search yields the module Mor phol ogy. From the description: “Implements dilation
and erosion filters that separately act on single bits.”

Subtraction operator: a search yields various arithmetic modules. How to decide which module is the
correct one? When you add the modules and have a look at the modules' help, you will find that
ArithmeticO is for arithmetic operations on scalars or 3D vectors, Arithneticl is for arithmetic
operations on a single image, and Ari t hneti c2 is for arithmetic operations on two images. As we
want to subtract two images, Ari t hneti c2 is the correct module.

Proceed as follows:

1.

Add the modules Convol uti on, Mor phol ogy, and Ari t hnet i c2 to the network.

Alternatively you could find and add the modules to the network via the Modules menu:

42

Implementing a Contour Filter

a. via Modules - Filters — Kernel —. Convolution,
b. via Modules - Filters — Morphology - Morphology and
C. via Modules - Analysis — Arithmetic — Binary — Arithmetic2.

The image we use as input has to be processed first via the Convol uti on module. After that, the
resulting convoluted image will be processed and also output directly to the Arit hmeti c2 module
where the two images will be subtracted.

For the subtraction, the following information is offered in the help of Ari t hnet i c2: “The input image
1 decreased by input image 2 is passed to the output.” Therefore, it is important to connect the
images in the correct order, otherwise the result will look rather strange.

2. Open the panels of Convol uti on, Mr phol ogy and Ari t hneti c2 by double-clicking the modules.
Then adjust/check the default values of the following parameters:

a. Module Convol uti on: Keep the default kernel type "3x3 Average Kernel" for pr edef Ker nel .
b. Module Mor phol ogy:

i. Inthefield Filter Mbde, keep the default value "Dilation".

ii. Forthe Kernel Geometry, use a kernel of the size 3x3x1.

c. Module Arithnetic2: In the field Function, change the default value "Add" to the value
"Subtract”.

Figure 4.3. Adjust Filter Parameters

Main | Interval Filtering |
~Filter Mode

Use: IDiIation 'l

~Input Kernel
[~ Use external kernel

Constant:

Output Image Size: IInvaIidate Output If Sizes Differ j

External Kernel: is) elems, 3xGxixixixl
—Border Handling

Border Handling: IPad Src Clamp -

Fill Value:

Main | Advanced |
Eredeﬁned Kernel

Use: |3x3 Average Kernel j_J
Border Handling————
Border Handling: W
Fill Value: [%o

Kernell:

[~ Make kernel spherical

Tip

You can view and edit module field values also in the Module Inspector View. On the
Fields tab, all fields of the currently selected module are listed by hames and values.

‘ Note
Field names (in the module) and field labels (in the interface of the module panel) do
not have to be the same. To find the field name, right-click the field label on the panel;
the field name is listed as first entry of the context menu.

3. To view the results of every step in the processing pipeline, use the Output Inspector, which can

Implementing a Contour Filter

Figure 4.4. Constructing the Filter Pipeline — Convolution Output

Output Inspecter: Convoluti

Locallmage |

Convolution

Locallmage |

Convolution

Locallmage |

4. To distinguish the image processing pipeline, you can create a group for it. For that:

44

Implementing a Contour Filter

a. Select the three modules, for example by dragging a selection rectangle around them, or by
single-selecting the modules while pressing SHIFT.

Right-click the selection to open the context menu and select Add to New Group.
Enter a name for the new group, for example “Filter”.

Figure 4.7. Creating a New Group

Show Window
Instance Name
Help

Extras

Reload Definition F5
Related Files (3) 4

Show Enclosing Folder

Add To Group

Remove From Group

Locallmage

The new group is created and displayed as a green rectangle. The group allows for quick interaction;
for example, a double-click on its title bar zooms in and centers the group; a right-click on the title
bar opens a menu for editing and deleting the group. You can also change the default color in the
Preferences. For further information on groups, please refer to the MeVisLab Reference Manual,
chapter “Using Groups”.

For the output, add another Vi ew2D module, either via the quick search or by selecting the existing
Vi ew2D module in the network and duplicating it (via Edit — Duplicate or by pressing the keyboard
shortcuts given there).

Figure 4.8. Resulting Contour Filter Network

Eilters

45

Implementing a Contour Filter

Tip

The filter can be tuned via some parameters given in the Convol ut i on and Mor phol ogy
modules. Changing the convolution kernel size (field pr edef Ker nel of the Convol uti on
module) and/or the dilation kernel (fields ker nel X, ker nel Y, ker nel Z of the Mor phol ogy
module) will enhance contours at different scales.

In a final step, we will synchronize the Viewers of the two Vi ew2D modules by establishing parameter
connections between them.

4.3. Parameter Connection for
Synchronization

Besides data connections between module inputs and outputs (Image, Inventor, and Base connectors)
it is also possible to connect module fields via a parameter connection. The values of connected fields
are synchronized, that means when changing the value of one field, all fields connected to this field will
be adapted to the same value.

Some important points:

 Fields can be connected to an arbitrary number of other fields as source, but only once as destination.
(Similar to data connections, for which an output connector can be connected to an arbitrary number
of other connectors but an input connector can only be connected once.)

» Connections between fields may be unidirectional or bidirectional.

Unidirectional: Field A is the output and field B the input. Changes in field A reflect in field B but
changes in field B have no effect on field A.

Bidirectional: Field A is the output and field B the input and vice versa (two parameter connections).
Changes in field A reflect in field B and changes in field B reflect in field A. (This is the setting we
will use in our example.)

. Note
MeVisLab prevents the creation of infinite loops between fields in most cases. A notable
exception is a loop between Inventor fields when ML or macro interface fields constitute
intermediate fields. In this case the loop cannot be detected and - once triggered - will
lead to a background computational load. This can be avoided by using the SyncFl oat
or SyncVect or modules (see “Using SyncFloat to Reduce System Load”) or by using
scripting to only propagate real value changes.

* Not all connections between all fields are sensible. Usually the connected fields should be of the
same type.

» Parameter connections may be established both between fields within the same module and between
fields of different modules.

» On the MeVisLab user interface, parameter connections are established by dragging fields onto the
labels of automatic panels (and most scripted MDL panels, see the MeVisLab Reference Manual,
chapter “Parameter Connections Inspector” for details).

In our example, a bidirectional parameter connection is the way to synchronize the Vi en2D modules so
that the same slice is rendered in both viewers. To establish this, proceed as follows:

1. Add a SyncFl oat module to the network and open its panel with a double-click.

46

Implementing a Contour Filter

2. Right-click each Vi ew2D module to open the context menu and select Show Window - Automatic
Panel (alternatively, press ALT and double-click the module). The field that controls the currently
rendered slice in a SoVi ew2D module is the start Sl i ce field.

3. Onthe SoVvi ew2D panel, select the label of the st art Sl i ce field and drag the (invisible) connection
onto the label of start Sl i ce field on the SoVi ew2D1 panel. The connection is drawn as thin gray
arrow with the arrowhead pointing to the module that receives the parameter as input.

4. Inthe other direction drag the st art Sl i ce field from the Sovi ew2D1 panel to the f | oat 1 field of the
SyncFl oat panel, and from the same panel the f | oat 2 field to the st ar t Sl i ce field of the SoVvi ew2D
panel. The intermediate SyncFl oat module breaks the inevitable notification loop by only triggering
the second connection at real value changes.

Tip
Another typical way of notating the fields is “InstanceName.FieldName”, for example
SoVi ew2D. start Slice. You will find this notation when you right-click the parameter

connection to open its context menu, in which you can disconnect single or all parameter
connections.

Figure 4.9. Establishing the Parameter Connections
[75 Panel View2D.

Parameters | Inputs I| 0utp|uts|| | o 2]
Name Type |In | Out |Value = o N L In | Out | Val
instanceName View2D - - m:tr::ceuamg I - I I IViwuvele

inventorInputon 7 H H epsilon: [0.0001 inventorInputOn

inventorQutputQn

inventorQutputOn
3 view2DExtensionsOn

view2DExtensiggsOa

0 e 1 numslices
numXSlices numxslices
slicesStep sliceStep
slab slab

Filter:

As a result, moving through the slices with the mouse wheel (“slicing”) in one of the viewers synchronizes
the rendered slice in the second viewer.

Tip

A list of all parameter connections is displayed in the Parameter Connections Inspector

View (which can be opened via the menu bar, View - Views - Parameter Connections
Inspector). Right-click the connections for a context menu with various options.

47

Implementing a Contour Filter

For further information on parameter connections, please refer to the MeVisLab Reference Manual.

This is the end of this example. The full network is delivered with the demos of MeVisLab (available via
Help —» Welcome - more... —» ContourFilter.mlab).

48

Chapter 5. Defining a Region of
Interest (ROI)

In the following chapter, we will walk through the creation of a network that allows defining a 2D region
of interest (ROI), that is by selecting a region of the image in the first viewer, the selected region is
displayed as a subimage in a second viewer.

» Section 5.1, “Creating a Viewer with a Selection Rectangle”

» Section 5.2, “Adding a Second Viewer for the Subimage”

» Section 5.3, “Adding the Interactivity for the Viewers”

The resulting network looks as follows:

Figure 5.1. Example Network ROISelection

f Panel View2D [S1= [= J} [#3 panel view2n1 == s]

dualecho &

View201
- aa .

Sublmage

Localimage X

In this chapter, we will use the terms “world position” (absolute) and “voxel position” (relative to the
image), which are discussed in detail in the chapter Chapter 12, Excursion: Image Processing in ML.

49

Defining a Region
of Interest (ROI)

5.1. Creating a Viewer with a Selection
Rectangle

The first part is building a simple network with an image load module, a viewer, and a module that allows
for drawing a selection rectangle.

1.
2.

3.

Add Local | mage and the Vi ew2D module to the new network and connect their image connectors.
Double-click on Local | mage to open the panel, and select the image Head3_dual echo. smal | . dcm
for this example. Load the image.

Add the Open Inventor module SoVi ew2DRect angl e and connect its output to the first Vi ew2D Open
Inventor input connector.

The module help offers the following purpose for the module: “The SoView2DRectangle module
allows for a drawing and interactive adjustment of a 2D rectangle in a 2D viewer. Note: Although
this module is called SoView2DRectangle, it actually draws a 3D box.” (The latter is the reason why
the world positions are given in 3D.)

Double-click on SoVi ew2DRect angl e to open its panel. For displaying the subimage, the world
positions will be crucial.

Figure 5.2. Viewer with Selection Rectangle

i Panel SoView2DRectangle
{74 Panel View2D (o= = | Buttons
echo_s. Buttonl: el | Shift: Ignored

View2D Button2: |Ignored x| Control: |Ignored ~
A A &
Button3: Ignored -

Position

StartWorld Pos: [x -54.4683 |y 167580 [z -43.3009

End World Pos: |x 47.8976 |y 73.1875 [z -62.5186

L]
M Editing

¥ Editing on

[Cooperative [Create Mode Create

[~ FixZ [Allow drag [” Select outside

Selection Tolerance: ’74

Appearance

W Drawing on Color: Shade Exterior: ’—Uil
Line Style: Solid = I Shade all exterior
Blend Inside: ’T Line Blend Inside: ’T
Blend Onto: ’T Line Blend Onto: ’T
Blend Outside: ’_EI Line Blend Outside: ’_EI

Locallmage (@]

5.2. Adding a Second Viewer for the
Subimage

Add the second viewer part, which consists of two modules:

* a Subl mage module for cutting out the selected region

» and another Vi en2D module.

The module help of Subl mage offers the following purpose and usage tips for the module: “This module
extracts subimages from its input image. [...] Connect an input image, set the coordinate mode and the
size and position of the subimage.”

50

Defining a Region
of Interest (ROI)

On the Subl mage module, check the option Auto apply so all changes to the module's parameter take
an immediate effect. Also, set the module's Mode to “Voxel Start & End”, because we will use the start
and end voxel position of the interactively drawn rectangle to define the subimage.

Figure 5.3. Viewer for the Subimage

4 Panel View2D1 == = |

i Panel Sublmage l =3 X |
Parameters
Mode: |V0xe| Start & End j

Box Input: |DDDDDD-1-1-1-1-1-1

[Auto apply box Apply Box
Start X: 0 EndX: 32
View2D View20 1 Start Y: 0 EndY: 32

startz: | 0 Edz: | 32
Start C: lin End C: ’71
Start T: lin End T: ’71
startu: [0 Endu: [1

Full Size

vV X VY vz

-
SoViewZDRectangle

Modifyable Output Dimensions:
re Tt TNu

I~ Always clamp to input image region Fill Value: 0

I™ Auto-correct for negative subimage extents

¥ Auto apply Apply

Actions
Localimage &

Just leave X, Y, and Z as Modifyable Output Dimensions; uncheck T here.

We have not yet defined how the world positions of SoVi ew2DRect angl e are connected to the subimage,

so the current subimage is rather random, depending on the initial parameter state of the Subl mage
module.

5.3. Adding the Interactivity for the Viewers

In the third step, we add the interactivity. The problem in connecting the modules SoVi ew2DRect angl e
and Subl mage is that the world positions offered by the first modules need to be translated to voxels
positions for the latter.

For such translation tasks, there are several modules that convert values from one type to the other.

1. As we need world and voxel, enter those words in the quick search to find the module:

51

Defining a Region
of Interest (ROI)

Figure 5.4. Searching for World to Voxel Conversion

SR ET I e
WorldvoxelConvert WorldVoxelConvert
ChangeWorldMatrix
C50WorldBox
CompareMetworks
NetworkMotifyer

Comment: Convert world in voxel coordinates and vice versa.

Package: MeVisLab/Standard

DLL: MLCoordUtils1 SetWorldMatrix
Author(s): Tobias Boskamp SoMLVoxelToWorld
Genre: Coordinate SoMLWorldToVoxel

Keywords: coordinate transform
: SoView2DPosition SetWorldMatrix SoMLTransform
SoMLvoxeToWorld SoMLWorldToVoxel

itkKittlerllingworthThresholdlmageFilter
vtkImageButterworthHighPass hd

9 3 9

Wor | dVoxel Convert converts world into voxel positions (or vice versa), either as vector or as single
float values.

Figure 5.5. WorldVoxelConvert Panel

P55 banet woravoreiConver B = |
Keep Constant: IVoer 'l

~Voxel Position

Vector: |x 0 |y

Single: X | oY

[v Integer voxel coordinates

~World position

Vector: |x 0.5 |y 0.5 |z

Single: X | 0.5 Y |

In our case, we need two conversions, for the start and end positions separately.
Add Wr | dVoxel Convert a second time by selecting the module and duplicating it, either via Edit
- Duplicate or by pressing the respective keyboard shortcut.

Name the instances accordingly, for example “startPos” and “endPos”. For this, select Edit Instance
Name in the module's context menu.

Tip
Alternatively, use the shortcuts F2 (Windows and Linux) or ENTER (Mac OS X). See
the MeVisLab Reference Manual, chapter “Shortcuts”.

In both Wor | dvoxel Convert modules, check the option Integer voxel coordinates.

Both Wor | dVoxel Convert modules need the original image for obtaining the world-to-voxel matrix,
so connect them to Local | mage (the image output can be connected to an unlimited number of
modules).

52

Defining a Region
of Interest (ROI)

Figure 5.6. WorldVoxelConvert Modules Added

6. For the parameter connections, proceed as follows:

a.

Connect the SoVi ew2DRect angl e Start World Position to the Wor | dVoxel Convert (st art Pos)
World Position Vector.

Similarly, connect the SoVi ew2DRectangle End World Position to the
Wor | dVoxel Convert (endPos) World Position Vector.

Connect the converted values from Wor| dVoxel Convert (start Pos), that is the Single X,
Single Y, and Single Z values, to the respective Subi nage Start X, Start Y, and Start Z values.

Similarly, connect the converted values from Wor | dVoxel Convert (endPos), that is the Single
X, Single Y, and Single Z values, to the respective Subi rage End X, End Y, and End Z values.

53

Defining a Region
of Interest (ROI)

7.

Figure 5.7. Adding the Parameter Connections

Button1: |Pressed ~| shift: [ignored ~]

Button2: [ignored v| Control: [ignored v|

Button3: |lgnored <]

Position

start World Posl [x -56.5669 [y -17.7772 [z -a3.1835
End World Pos: I [x 48.129 |y 72541 [z -62.3812
~Editing AN

¥ Editing on

I” Cooperative [~ Create Create

I FixZ I~ Allow drag ™\ I~ Select outside

Selection Tolerance: |—4

N

¥ Drawingon Color: Shade Bxterior: 0=
Line Style: [Solid - I~ Shag all exterior
Blend Inside: | 0.2 Line Blend Inside: 05
BlendOnt: | 05 Line Blend Onto: o
Blend Outside: 0 Line Blend Outside: | 0

If you have not done that before, check the option Auto apply on the Subl mage panel (bottom right
corner), so that any changes of the selected region in the first viewer are updated automatically in

the second viewer.

Keep Constant: [Voxel |
Voxel Position
Vector: [x 3 fy 48 [z 1
Single: X | 31 ik 48 b 1
¥ Integer rdinates
World =)
W |x 565669 |y wz -43.1835 F
single: X | 565669 Y [-172.777. [-43.1835 Mode: [Vorel Start & End =
BoxInput: [000000-1-1-1-1-1-1
I~ Auto apply box Apply Box |
stan?! | 31 Endx:l | 83
staty: § | 48 Endv:l | %
startz: § | 1 endz 1
statc: | u/ﬂéc I%‘ 1
statT: | 0 EndT: | 1
startu: | 0 Endu: | 1
/ Full Size]

Keep Constant: -

Voxel Position

FXx FY ¥z

fyable Output Dimensions:
ifyable Outpit Dimensions:

™ Aways clamp to input image region | Fil Value: | 0
I~ Auto-correct for negative subimage extents

Actions
’ W Auto apply Apply

Vector: [x 83 [y 9 [z /1
single: @ | 83 vib| 9 27| 1
¥ Integer voxel coordinates

g

vector:l [x 48129 |y 72541 [z -62.3812
single:x | 48120 Y | 72541 7z | -62.3812

Now the network is fully functional.

54

Defining a Region
of Interest (ROI)

Figure 5.8. Example Network ROI Selection

f1 Panel View2D [S1= [= J} [#3 panel view2n1 [o]=] =]

Sublmage

Localimage &

This is the end of this example. The full network is delivered with the demos of MeVisLab (available via
Help - Welcome - more... —» RoiExample.mlab).

55

Chapter 6. Excursion: Functionality
Overview

In the following chapter, we will list a number of typical modules for typical questions, with brief
information on their main purposes.

Tip
To learn about module details, read the module help and have a look at the example

network.

Section 6.1, “Image Handling and Processing”

Section 6.2, “Visualization”

Section 6.3, “Data Objects”

Section 6.4, “Miscellaneous”

6.1. Image Handling and Processing

6.1.1. Image Handling

ImagelLoad: opens an image file stored in one of the following formats: DICOM, TIFF, DICOM/TIFF,
RAW, LUMISYS, PNM, Analyze, PNG, JPEG.

Locallmage: works like ImageLoad, but loads images relative to the network or the local MeVisLab
installation.

ImageSave: saves an image to file using one of the following image file formats: DICOM, TIFF,
DICOM/TIFF, RAW, LUMISYS, PNM, Analyze, PNG, JPEG.

6.1.2. Image Properties

Info: shows information about the currently connected input image, like image size, page size, voxel
size, total volume, world matrix, etc.

MinMaxScan: scans the input and updates the minimum and maximum values of the output image.
The data type can be be adapted, left unchanged or set to an arbitrary one.

ImagePropertyConvert: allows to freely change page size, minimum or maximum value, data type,
or world matrix of an image.

ImageStatistics: computes some statistics of the input image voxels (subset of voxels).

6.1.3. Basic Image Processing

Sublmage: extracts subimages from an input image based on either voxel start/size, voxel start/end
or world start/end. Can also be used to create a region larger than the input image.

Resample3D: resamples an image in 3D on an arbitrary planar parallel grid. 17 filters are available.
Reformat: can be used to reformat an image to a reference image, or to create reformatted overlays
via SoVi ew2D/SoOr t hoVi ew2D.

Scale: scales the input image to another interval. The source and target scale interval can be defined.
Arithmeticl: performs arithmetic operations on one image. For example, in case of Add, the constant
value is added to each voxel of the input image.

Arithmetic2: performs arithmetic operations on two images. For example, in case of Add, the values
of input image 2 are added to each voxel of input image 1.

Switch: selects one of up to 25 input images depending on an input parameter. The selected image
is passed unchanged to the output.

56

Excursion: Functionality Overview

Mask: masks the image of input 1 with the mask at input 2. For example, in case of Masked Ori gi nal
(default), all pixels from the first input are passed unchanged to the output if non-zero values are found
at their positions in the second input image. Otherwise background values are passed to the output.
TestPattern: generates a test image of a defined size, page size, data type and pattern (stripes,
checkers, ramps, etc.).

AddNoise: produces noise based on a scalar input image and a chosen distribution, for example
uniform noise, Gaussian noise, Salt&Pepper, etc.

6.1.4. Filter

Convolution: offers standard kernel-based filters like Average, Gauss, Laplace or Sobel.
ExtendedConvolution: offers standard convolution filters similar to Convol ut i on but with more flexible
kernel sizes and kernel geometry.

Rank: offers rank-based kernel filters like Min, Max, Median, Rank or Index.

Morphology: implements dilation and erosion filters. By using threshold intervals, filtering can be
applied selectively to regions in the image.

CalculateGradient: computes the slope of image value changes in regions around each voxel in an
image.

6.1.5. Segmentation

Threshold: transforms the input image into a binary image, in which voxels below the threshold are
set to the image minimum value, and voxels at or above the threshold are set to the image maximum
value. Can be used with a relative threshold.

IntervalThreshold: processes an image by filtering just those image values that lie in a certain gray
value interval. Voxels outside this range can be set to zero or to a user-defined fill value. This can be
useful for the segmentation of objects that are expected to have gray values in a defined interval.
RegionGrowing: provides a simple threshold/interval-based 1D/2D/3D/4D region growing algorithm.
A threshold/interval and at least one seed are necessary as start parameters.
RegionGrowingMacro: extends the options of Regi onG owi ng by adding a viewer (Vi en2D) and a
marker editor to simplify its usage.

ComputeConnectedComponents: performs a connected component analysis on 2D / 3D grayscale
images. You need other modules mentioned in the seeAlso of the module to process its output.

6.2. Visualization
6.2.1. 2D Viewing

View2D: provides a viewer for viewing a 3D image as 2D slices, with the possiblity to scroll through.
Annotations are displayed and the LUT of the displayed image can be changed by dragging the mouse
with the right mouse button pressed.

View2DEXxtensions: encapsulates a set of viewer extensions that are commonly used in conjunction
with a 2D viewer, including extensions for navigation (browsing through slices, zoom and pan), level/
window adjustment, and drawing annotations.

SoView2D: displays a slice (or a slab) of a volume image in a 2D viewer.

SoRenderArea: provides Open Inventor rendering and event handling inside a MeVisLab window.
To be useful, the connected scene graph must contain a camera and at least one light source (see
the example network).

SoView2DOverlay: blends a 2D image over another one.

SoView2DPosition: shows the last clicked position in a 2D viewer. The style of the displayed position
marker can be set to crosshairs, circle and voxel rectangle.

SoView2DRectangle: allows for a drawing and interactive adjustment of a 2D rectangle in a 2D viewer.
Although this module is called SoVi ew2DRect angl e, it actually draws a 3D box.

SoMouseGrabber: grabs mouse events in an Inventor scene and converts them to x, y float fields.
The mouse coordinates can be filtered and scaled before the x and y fields are set.

57

Excursion: Functionality Overview

SoKeyGrabber: watches keyboard events in an Inventor scene and triggers Trigger fields depending
on the keys pressed, for example on Last Key, SHIFT, CTRL, ALT, etc.

OrthoView2D: provides a 2D view displaying the input image in three orthogonal viewing directions.
SoOrthoView2D: renders orthogonal slices of a volume image in one 2D viewer.

SynchroView2D: provides two 2D viewers that are synchronized via their world coordinates.

6.2.2. 3D Viewing

SoGVRVolumeRenderer (also called Giga Voxel Renderer, GVR): an octree-based render that allows
high-quality volume rendering of 3D/4D images. This module is complemented with a set of extension
modules that allow to customize the rendering, all starting with the SOGVR* prefix.
SoExaminerViewer: provides Open Inventor rendering and event handling inside a MeVisLab window.
Open Inventor rendering attributes such as the background color, transparency type, draw style, etc.
can be set.

View3D: allows volume rendering of a 3D dataset. It encapsulates the complex features of the
SoGVRVol ureRender er module and provides access to basic rendering features.

SoBackground: renders a color ramp in the background of an Open Inventor scene. The ramp can
be flipped and rotated 90 degrees. The module should always be used to give optical depth to an
Open Inventor scene.

6.2.3. Lookup Tables

ApplyLUT: applies a lookup table (LUT) to an input image. The voxel values of the input image are
used as LUT index values, the LUT entry values are rescaled relative to the Max Entry parameter
and stored in the output image.

SoLUTEditor: allows to edit a RGBA Lookup Table and output it as a MLLut object. Also offers an
optional histogram display for orientation.

SoMLLUT: provides an ML lookup table (LUT) object to the Open Inventor scene graph.
LUTPrimitive: generates a single-channel, parametrized lookup table (LUT) object that can be used
with the Appl yLUT module or within 2D/3D viewers (in conjunction with SoM_LUT).

LinearLUT: generates a lookup table (LUT) object by interpolating two specified entries. The
interpolation is performed in gray (luminance) or RGB values, with or without alpha channel.The
generated LUT can be used with the Appl yLUT module or within 2D/3D viewers (in conjunction with
SoMLLUT).

RampLUT: generates an RGB and alpha ramp lookup table (LUT) object. The two ramps for RGB
and alpha channels can be parametrized independently. The generated LUT can be used with the
App! yLUT module or within 2D/3D viewers (in conjunction with SoM_LUT).

TableLUT: generates a lookup table (LUT) object from a table of sampling points (as a string), each
consisting of an index value and up to four channel values. The generated LUT can be used with the
Appl yLUT module or within 2D/3D viewers (in conjunction with SoM_LUT).

LUTCombiner: generates an output lookup table (LUT) by combining up to six input LUTs. For each
of the input LUTSs, the parameters Mode (Add, Blend, Subtract, etc.) and Mask (R, G, B, RGB, etc.)
can be set.

LUTCompose: generates an output lookup table (LUT) by composing up to four input LUTs. The
composition of LUTs can be interpreted as the chained evaluation of the lookup functions.

6.3. Data Objects
6.3.1. Markers

XMarkerListContainer: stores a list of XMarker objects as an XMarkerList object. The contents can
be displayed, edited and saved. An XMarker object consists of a 6D Position, a 3D Vector, a Type
and a Name property.

SoView2DMarkerEditor: allows for an interactive placement, editing and showing of markers on a 2D
viewer.

58

Excursion: Functionality Overview

» So3DMarkerEditor: displays markers in 3D and provides some possibilities to interactively edit the
markers.

6.3.2. Curves

» ProfileCurve: extracts a profile curve from an image along any data dimension, by reading voxel
values from its input image at positions along a specified line.
» SoDiagram2D: displays 2D curves, such as time series, gray scale profiles, histograms, etc.

6.3.3. Contours

e CSOManager: allows for editing the setting parameters and default parameters for CSOs and
CSOGroups, as well as for the maintaining of the togetherness of CSOs and CSOGroups.

* SoCSO3DRenderer: enables a visualization of the CSOs of a CSOList in 3D as an Open Inventor
scene. Needs a valid CSOList for input (for example via CSOvanager).

» CSOlsoGenerator: allows for a generation of iso contours for a whole image at a fixed iso value.
Needs a CSOList that is to be filled (for example via CSOvanager).

» SoView2DCSOEXxtensibleEditor: allows for editing and drawing CSOs. To be used in combination
with CSOvanager , a CSO sub-editor and a 2D viewer for output.

» SoCSOSplineEditor: allows for a freehand or point-by-point generation of CSOs. Those CSOs are
smoothed by a spline interpolation or approximation.

» SoCSOEllipseEditor: allows for generating an ellipse or circle CSO.

6.3.4. Surface objects

» SoOWEMRenderer: renders a WEM as an Open Inventor scene.

» WEMlIsoSurface: generates the iso surface of a scalar volume image at a certain threshold.

* WEMSmooth: smoothes a WEM by applying either a surface smooth (Laplacian), or a smoothing of
the surface's normals.

* WEMBLuUIlgeEditor: interactively bulge a WEM surface in a 2D viewer with SoView2DWEMBulgeEditor
or directly in 3D with SOWEMBulgeEditor.

6.4. Miscellaneous
6.4.1. Fields

» SettingsManager: loads/saves field contents from/to a file or a settings string.

» SoCalculator: calculates by evaluating expressions (with access to input/output fields) and writing the
result to the output fields.

» StringUtils: offers a collection of general purpose operations on strings, for example comparison,
case-conversion, find+replace, etc.

» Boolint: translates between a Boolean and an integer value.

» BoolString: translates between a Boolean and a string value.

» ComposeVector3: composes a vector from float values x, y, and z.

» DecomposeVector3: decomposes a vector into single float values of x, y, and z.

» ComposeMatrix: composes a matrix from float values or from vectors.

» DecomposeMatrix: decomposes a matrix to float values of components or vectors.

» WorldVoxelConvert: converts between voxel and world coordinates with respect to the image that is
connected to the operator's image input field. All coordinate fields are interconnected, changes in one
field are immediately reflected in the other fields.

 Fieldlterator: iterates through a list of field values and successively assigns these values to a collection
of specified fields in a network. Can be used to batch-process a number of images, or to perform an
operation for a list of parameter values and store the results in different output image files.

59

Excursion: Functionality Overview

FieldShift: saves the last ten field changes of an input field. Can be used to collect the most recently
selected coordinates, text string changes, enum changes etc.
FieldListener: displays information about a field and logs field changes.

6.4.2. Diagnostic

Systeminfo: lists information about the computer, the operating system, and the OpenGL driver and
version details.

StopWatch: measures the time needed for an operation. Three methods are available: Start-Stop,
external duration and image computation.

SoActionLog: log actions occuring in an Openinventor scene.

60

Chapter 7. Creating an Open Inventor
Scene

In the following chapter, we will walk through the creation of an Open Inventor scene.

¢ Section 7.2, “Creating the Applicator”

* Section 7.3, “Creating the Interaction”

e Section 7.4, “Creating the Anatomical Image”

» Section 7.5, “Finishing the Complete Open Inventor Scene”

Here a look at what we want to accomplish: a dynamically definable applicator (needle for minimally
invasive surgeries) shall be placed at a position and an angle relative to the rendering of an anatomical
image.

Figure 7.1. Example Network: Open Inventor Result

61

Creating an Open Inventor Scene

Figure 7.2. Applicator Only

1 Viewer SoSeparator2 | S|

5
n
-] (]

Rotx Roty Dolly

The applicator shall be able to be moved within the viewer (navigation) and also be able to be
repositioned (interaction) with the tip pointing to the body.

The data shall be displayed in 3D mode. In addition, the output shall have the windowing functionality
of the standard Output Inspector.

In the resulting network, modules will be grouped; however, this has no effect on the functionality we
will build.

7.1. Introduction to Open Inventor

Open Inventor is an object-oriented 3D toolkit developed by Silicon Graphics (SGI) offering a
comprehensive solution to interactive graphics programming problems.

Inventor scenes are organized in structures called scene graphs. A scene graph is made up of nodes,
which represent 3D objects to be drawn, properties of the 3D objects, nodes that combine other nodes
and are used for hierarchical grouping, and others (cameras, lights, etc). These nodes are accordingly
called shape nodes, property nodes, group nodes and so on. Each node contains one or more pieces
of information stored in fields. For example, the Sphere node contains only its radius, stored in its radius
field.

The MeVisLab implementation of Open Inventor is based on the original SGI source code that was
released to the public in 2000. It is suited for use with MeVisLab but can also be used independently.
The MeVisLab modules can be used for rendering and viewing both image data and arbitrary Open
Inventor objects as well as for interacting with images. Inventor modules function as Inventor nodes, so
they may have input connectors to add Inventor child nodes (modules) and output connectors to link
themselves to Inventor parent nodes (modules).

Characteristics of an Open Inventor scene graph:

» Scene objects are represented by nodes.

 Size and position is defined by transformation nodes.

» A rendering node represents the root of the scene graph.
* Nodes are rendered in the order of traversal.

* Nodes on the same level are traversed from left to right.

62

Creating an Open Inventor Scene

¢ All modules that are derived from SoG oup offer a basically infinite number of input connectors (a

new connector is added for every new connection). For more information about connecting to an
Inventor group node, see Section 3.4, “Connecting, Disconnecting, Moving, Copying, and Replacing
Connections”.

In Figure 7.3, “Traversing in Open Inventor”, the red arrow shows the order of traversal, from top to
bottom and left to right. The numbers designate the order in which each module is passed first, from
1to 8.

Figure 7.3. Traversing in Open Inventor

Typical functions of Open Inventor modules are:

Draggers and manipulators

Group nodes

Light sources

Transformations

Cameras

3D viewers

Geometric objects (Spheres, Cones, 3D Text, Nurbs, Triangle Meshes, etc.)

Object properties (Textures, Colors, Materials, etc.)

The order of traversal is very important, and its effects will be shown in detail in the following example.

Another important point is that field changes in Open Inventor modules are handled differently to ML
modules:

Field changes in ML modules are executed synchronously: The field change leads to an immediate
execution by calling its handl eNot i fi cati on(Fi el d*) method.

Field changes in Open Inventor modules are executed asynchronously: The field changes is stored
in a delayed queue. In general, it is not known when this queue will be processed. Processing can
be enforced by calling MLAB. pr ocessl nvent or Queue() .

For further information on Open Inventor modules in MeVisLab, please refer to the Open Inventor
Reference and the Inventor Module Help. For general information on Open Inventor, we recommend
the following literature:

The Inventor Mentor by Josie Wernecke (ISBN 0-201-62495-8: This book provides basic information
on programming with Open Inventor. It includes detailed program examples in C++ and describes

63

Creating an Open Inventor Scene

key aspects of the Open Inventor toolkit, including its 3D scene database, node kits, interactive
manipulators, the Inventor Component Library, which contains editors and viewers, and the Open
Inventor file format.

* The Inventor ToolMaker by Josie Wernecke (ISBN 0-201-62493-1): The Inventor Toolmaker provides
advanced information on extending Open Inventor by creating new C++ classes and customizing
existing classes. Detailed examples and discussion show how to create new nodes, actions, elements,
fields, node kits, draggers, manipulators, engines, and components.

Tip

For online links to these books and other resources, see the MeVisLab website (https://
www.mevislab.de/).

7.2. Creating the Applicator

1. Asafirst element, we need the shaft of the applicator. For this, start by adding a SoCy! i nder module.

2. As we want to keep the applicator shaft and tip basically independent, we can already add a
SoSepar at or module here which comes with an in-built viewer. Connect the two modules and set
the parameters for the cylinder.

Tip

Several Open Inventor modules come with an in-built viewer, like SoSepar at or,
SoGroup, SoRender Area and more. For a complete viewer experience, use
SoExami ner Vi ewer and its associated macro module Scenel nspect or .

. Note
Each of the viewers have their own persistent settings. So if you copy and paste such
modules into another network, the zoom settings etc. will be those of the previously
used state! If confused, always add fresh modules via the search or the Modules menu.

Figure 7.4. Creating the Applicator Shaft

f Panel SoCylinder (==l e’

1 Viewer SoSeparator(Shaft) | =10 2 |

(@ Settings

@ Parts: ALL
gi Radius: ’—1
9 Height: W
E@ Tesselation
ZI; Sides: ’—D
K"' Sections: ’—D

-
Shaft
SoSeparalor

Rotx Roty Dolly

3. Usually, such Open Inventor objects will be colored. Add the SoMaterial module before the
SoCyl i nder module and edit the material settings. Feel free to play around with the color settings.

64

https://www.mevislab.de/
https://www.mevislab.de/

Creating an Open Inventor Scene

4,

Figure 7.5. Coloring the Applicator Shaft

1 Viewer SoSeparator(Shaft)

F3 MaterialEditor . (S|l

Ambient Color:

Diffuse Color:

Emissive Color:

Specular Color:

Shininess:

Transparency:

Shaft
SoSeparalor
- &

Rotx Roty

In a next step, we will create the applicator's tip. For this, add a SoCone module and also another
SoMat eri al and SoSepar at or module to build a construction similar to the shaft.

Figure 7.6. Adding an Applicator Tip

9 Viewer SoSeparator(Tip)

Rotx Roty

9 Viewer SoSeparator(Shaft)

Dolly|{* i Rotx Roty

(53 Panel 5. ool i S

Settings

Parts: ALL

Bottom Radius: 1
Height: 3

Tesselation

Sides:

Sections:

L
Tip Shafi

SoSeparalor SoSeparalor
- a - -

- []
SoMaterial SeCylinder

65

Creating an Open Inventor Scene

To combine the two independent elements (shaft and tip), we have to a) combine them and b)
translate the tip (or shaft) in relation to the other, otherwise the two Open Inventor elements would
be placed at the same position, namely the origin of the Inventor's world coordinate system [0,0,0].
(For more information on coordinate systems, see Chapter 12, Excursion: Image Processing in ML.)

5. For the translation, add a SoTr ansl ati on module in front of to the cone, and set the y-translation
to (in this case) “11.5". The SoG oup module has an in-built viewer, so that you can preview the
resulting applicator. It can be rotated in the viewer.

Figure 7.7. Adding Translation and Grouping

4 Viewer SoGroup(Applicator) |£IEIL|

E N QODOIe P

Rotx Roty

-
i Panel SoTranslaticn | = | [=] 2 | Applicatar
SoGroup
Translation: X 0 |y 11.5 |z 0 - a

L L J
Tip Shafi

SoSeparalor SoSeparalor

a a a - -

-
SoMateriall Pkt i i SoMaterial SeCylinder

6. For a finishing touch, add a SoExani ner Vi ewer for display and a SoBackgr ound. The latter adds a
gray gradient background that gives a more 3-dimensional impression of the rendered Open Inventor
scene.

7. For easier handling, create a group for the two parts of the applicator. Select the modules that belong
to the applicator, right-click them and select Add to New Group. Enter an appropriate name like
“applicator”. The new group appears in the workspace.

66

Creating an Open Inventor Scene

Figure 7.8. Finishing the Applicator

Applicator,

7.3. Creating the Interaction

Although the applicator created in the last section is complete, it is not yet functional so that you can
easily point the tip to a position. For this, some interactivity must be enabled.

The first module necessary for this is SoCent er bal | Mani p. In the Inventor Reference, the following
information can be found for this module:

“SoCenterballManip is derived from SoTransform (by way of SoTransformManip). When its fields
change, nodes following it in the scene graph rotate, scale, and/or translate. [...] On screen, this
manipulator will surround the objects influenced by its motion. This is because it turns on the
surroundScale part of the dragger. ”

Note
&
When attaching the SoCenterballManip the first time, it might appear very small in the

viewer. Just click on it to trigger a rescaling. Once rescaled, the manipulator will keep its
size.

67

Creating an Open Inventor Scene

This means that once we put an object in the middle of the sphere opened by this module, it can be
moved around with it.

1. To keep the interaction separate from the applicator, add another separator.
2. Then add the modules SoCenterbal | Mani p and SoTransl ati on. The translation module is

necessary to position the centerball (as the latter is foremost intended for rotation and not perfect
for translation).

Figure 7.9. Using SoCenterballManip

i Viewer SoExaminerViewer |ﬂl

SoExaminer\Viewear
-

L]
SoSeparator;
[1

L] L]
SoCenterballManip SoTranslation

oo Robx Roty Dolly
(73 Panel SoCenterballManip == =] 7 Panel SoTranslation [S=] =]
Translation: |x 0 |y 0 |z 0 Translation: |x 0 |y 0 |z 0
Rotation: |x 0 |y 0 |z 1 |r 0 Apply
Scale Factor: |x 1 |y 1 |z 1
Scale Orientation: |x 0 |y 0 |z 1 |r 0 Apply
Center: |x 0 |y 0 |z 0

To see the actual ball, use the mouse to rotate the view.

68

Creating an Open Inventor Scene

Figure 7.10. SoCenterballManip — Turned

ol e |

4 Viewer SoExaminerViewer

E N QODOIe P

Rotx Roty

Tip

Press the ALT button to toggle between the view mode (for navigation) and the pick
mode (for interaction, changes the data on the panel of SoCent er bal | Mani p).

3. To connect the translation of the modules, a parameter connection has to be established between
the Cent er field of SoCent er bal | Mani p and the Tr ansl at i on field of SoTr ansl ati on. This is done
by opening the panels, clicking near the Cent er field and dragging it onto the other panel until a little
plus sign appears. The parameter connection is drawn as a thin line between the modules, always
starting at the modules’ side (never on top or bottom, like data connections do).

Tip

For an overview of all parameter connections, open the Parameter Connections
Inspector via the menu bar, View - Views - Parameter Connection Inspector.

Figure 7.11. Connecting Parameters

4 panel SoCenterbalivarip NN =xis i W 75 panei soTranstation (=B 50 |

Translation: |x 0 |y 0 |z 0 |

Rotation: |>< 0 |]r 0 |z 1 |r 0

Scale Factor: |J< 1 |\r 1 |z

o

Scale Orientation: | ®

4. Now we can combine the interaction part and the applicator. For this, connect the applicator to the
second separator.

69

Creating an Open Inventor Scene

Figure 7.12. Combining Interaction and Applicator

Interaction Applicatar,

The applicator can now be rotated or dragged into any direction by using the handles on the
manipulation sphere.

7.4. Creating the Anatomical Image

Last not least we need the 3D image at which the applicator shall be positioned.
1. As first step, add a Local | mage module. Select an image from the demo data folder, for example

the liver set at $(DenoDat aPat h) / Li ver 1_CT_venous. smal | . dcm You can view the result in the
normal Output Inspector.

Figure 7.13. Loading a Local Image

Output Inspector: Locallmage.outimage (Image) 5 x

L3

Locallmage
Image cutlmage

size: 93,93,61,1,11 type:
unsigned intl6

Slice: 0 LU 640007 400.000

70

Creating an Open Inventor Scene

For the 3D display, add a SoGVRVol uneRender er module. Behind this hides a rather potent module
called GigaVoxel Renderer. It comes with many features — open its panel to have a look at the

options.

Figure 7.14. Adding the GigaVoxel Renderer

Output Inspector: SoGVRVolumeRenderer.self (SoMoc F X

J -

SoGVRVolumeRandarer
[5oMode self
SoGVRVolRen

Locallmage

Options ™

For the windowing we use the | nt er act i veRanpLUT module. This modules changes the windowing
values by tracking the mouse while the right mouse button is pressed.

3. Add the module to your applicator network and connect it to the SoGr oup module, in front of the
rendering module.

Figure 7.15. Adding the Windowing to the Applicator

78 Viewer SoGroup - O *
- @
SoGroup Q
& A 2
[-l
n& a
| L
SoGVRVolumeRendarer @_
A N (’
InteractiveRampLUT;
/N
\ [
Locallmage
Rotx Roty Dolly

The default settings of the I nt er acti veRanpLUT are suitable for our purposes, so we don't need
to change anything.

7.5. Finishing the Complete Open Inventor
Scene

The three elements of the scene — applicator, interaction and anatomical image, preferably grouped,
now have to be combined to result in one Open Inventor scene.

71

Creating an Open Inventor Scene

1. First, connect all three groups to the same SoExani ner Vi ewer . Make sure that the applicator and
its interaction sphere are connected via a separator.

Figure 7.16. Combining the Groups

Anatomicallimage

rleraction

‘ Note
Because the scene with the anatomical image can be rendered with transparencies,
add it right-most to the viewer so it is rendered last.

72

Creating an Open Inventor Scene

Figure 7.17. Combined Graphic Elements

Fvere e T O

OPP P

]
]

-]
[

R OK

2. Alook at the viewer tells us that the relative sizes of the graphic elements need to be aligned. This
can be done by adding the scaling module SoScal e, either to the applicator or the image. In our
case, we will add it to the applicator, that means to the SoSepar at or module. A scale factor of 10
in all directions is sufficient.

Figure 7.18. Adding the Applicator Scaling

i 3 ‘ 1 Viewer SoExaminerViewer
7 Panel SoScale =y

Scale Factor: x po |y 5 Iz 5

Interaction

VCHOIPP

erballManip

3. Then take the applicator and move it to the body to point at whatever spot you want to point at.

Looking at the result, it might not be the best idea to have the applicator tip at the edge of the sphere
which is always aligned by its center. It may be sensible to place the tip into the sphere's center
instead.

73

Creating an Open Inventor Scene

4. Add another SoTr ansl ati on module. It needs to have an effect on the applicator, so it needs to be
added to the applicator's SoG oup module.

Figure 7.19. Improved Applicator/Interaction Arrangement

H-; [E=REEN)

Translation: [x 0 |y -11 |z 0 Applicator

VPP

]
]

o=]

2
)

This is the end of this example. The full network is delivered with the demos of MeVisLab (available via
Help —» Welcome - more... —» ApplicatorExample.mlab).

Tip

In the chapter Chapter 10, Developing a Macro Module for an Applicator, the applicator
modules will be used as the starting point for programming a Python macro.

74

Chapter 8. Starting Development with
Package Creation

8.1. What are Packages

Modules and projects come in a package structure, which offers an improved modularity and granularity.
A package is a self-contained directory structure that contains the following components:
» PackageGroup
« PackageName
« Package.def
* Modules
» Sources
» Configuration
» Documentation
e lib
* bin
Figure 8.1. Example for a Package Tree

= |2) MyPackageGroup
+ |2 Internal
+ |2 Playground
+ |) Research
= |) vetanotherPackage
|20 bin
| 2) Configuration
* |) Documentation
= lib
+ |2 Modules
+) Sources

In this example, we have a PackageGroup "MyPackageGroup". Below it, four packages can be found
(Internal, Playground, Research, YetAnotherPackage). Below each package, the typical folders can be
found. (This example was generated with the Project Wizard in MeVisLab.)

A PackageGroup can contain any number of packages, and of course there can be different
PackageGroups.

The Packagelndentifier is defined by "PackageGroup/PackageName", e.g., the MeVisLab Standard
Package has the identifier "MeVisLab/Standard".

‘ Note
For more detailed information on packages, see the Package Structure documentation.

MeVisLab reads packages in the following order:
» the Packages directory in which MeVisLab was installed

« the directories given in the PackagePaths settings of the nevi sl ab. pref s file

75

Starting Development
with Package Creation

» the UserPackagePath (as set in the MeVisLab Preferences dialog

Scanning is always two levels deep, never deeper. If a package with the same Packageldentifier is found
more than once, the last package found will overwrite the earlier packages (in the order given above).
This way, your packages given by mevi sl ab. prefs or your user packages can overwrite installed
packages.

You can check your effective package structure in two ways:
» by using the meta-tool ToolRunner. See the ToolRunner documentation for details.

» by checking the MeVisLab Preferences, section “Packages”.

Figure 8.2. Preferences — Packages

fﬂ MeVisLab Preferences ‘ o e

Category | Packages
General
Dl Type/Path | Package | Owner Description |
Module Groups = User Packages
s:shpsm‘tlve Frograms D:/MeVisLab/PackageGroup/Example/General Example/General MeVis Develo...
Scripting =l Installed Packages
Network Appearance =t C:/Program Files/MeVisLab2.8aVC12-64/Fa...

Network Interaction FMEstable/Foundation FMEstable/Foundation Fraunhofer M... Fraunhofer MEVIS Foundation...

Error / Debug Handling FMEstable/Release FMEstable/Release Fraunhofer M... Fraunhofer MEVIS Modules th...

Shorteuts FMEstable/ReleaseMeVis FMEstable/ReleaseM... Frau.nhnfer.M.‘. Fraunhofer MEVIS Modules fo...
FMEwork/ITK FMEwork/ITK MeVis Medical... ITK Modules
FMEwork/PCL FMEwork/PCL Fraunhofer M... Binding of the Point Cloud Libr...
FMEwork/Release FMEwork/Release Fraunhofer M... Modules that are released wit...
FMEwork/ReleaseMeVis FMEwork/ReleaseM... Fraunhofer M... Fraunhofer MEVIS Modules fo...
FMEwork/ThirdParty FMEwork/ThirdParty ~ Fraunhofer M... FMEwork ThirdParty Libraries
FMEwork/VTK FMEwork/VTK MeVis Medical... VTK Modules
MeVis/BuildSystem MeVis/BuildSystem MeVis Medical... MeVis build system.

I MeVis/Foundation MeVis/Foundation MeVis Medical... MeVis foundation libraries.

MeVis/ThirdParty MeVis/ThirdParty MeVis Medical... MeVis ThirdParty Libraries
MeVisLab/Examples MeVisLab/Examples ~ MeVis Medical... Example modules including so...
MeVisLab/IDE MeVisLab/IDE MeVis Medical... MeVisLab IDE libraries.
MeVisLab/Resources MeVisLab/Resources MeVis Medical... MeVisLab documentation.
MeVisLab/Standard MeVisLab/Standard MeVis Medical... Standard MeVisLab modules.

Create New Package... Add Existing User Packages... ‘ Remove |

Changing parameters in this panel overwrites settings from your mevislab.prefs file!

Restore Defaults Ok | Cancel ‘ Apply |

In this dialog, the sequence of display is as follows (from top to bottom; higher entries overwrite lower
entries):

» User Packages: packages found in the user path (packages in other paths can be added manually).
These are the default packages for user-defined modules.

» mevislab.prefs: packages resulting from the paths given in the . pr ef s file.
* Installed Packages: packages resulting from an installation of e.g., MeVisLab SDK.

If a package with the same Packageldentifier is found more than once, the last package found will
overwrite the previously loaded packages. These will be grayed out and labeled “(Overwritten)”.

You can:

Create New Package: Opens the Package Wizard (see Section 8.2, “Creating a User Package for Your
Project”).

Add Existing User Packages: Opens the default file browser so that you can add a user package.
Folders are read recursively and all packages below them are automatically included.

76

Starting Development
with Package Creation

Remove: Removes the selected user package from the path of MeVisLab. (Installed packages cannot
be removed.) Removed user packages can always be re-added later.

8.2. Creating a User Package for Your Project

When you create new modules with the Wizard, you need to enter their package path. For your own
modules, you always should have your own user package (and path). This is done as follows:

1. Runthe Project Wizard (File - Run Project Wizard)

2. Select New Package. The Package Wizard opens.

Figure 8.3. Package Wizard

fid Packages/MNew Package (=1 >

Package Wizard

General settings for your package

Package Information

Package Group: * |

Package Name: * |Genera| j

Package Owner: |Me\-’is Developer

Package Description: |

Target Directory

Target Directory: = | Browse...

Info

Packages are the way MeVisLab organizes projects. A package can contain any number of
C++/Macro Modules, Installers, Documentation etc. The creation of an own package is mandatory for
SDK users, all other wizards require a valid target package.

* 1 Required fields

< Back | Next = | Create | SaveSetting| Close |

3. Create a new package with the Package Wizard. Enter the following:

Package Group: Enter the package group in which your package should be saved. Enter a name,
for example your company or site name. For our example, enter “Example”.

Package Name: Enter the package name. Select a typical user package name from the list or
enter a new package name. For our example, enter “General”

Package Owner: Enter a package owner (meta description without actual effect).

Target Directory: Select the target directory below which this package will be created.

4. Click Create so that the new package “Example/General” is created.

The

new package is added to the User Package Path, including all subdirectories and files. The

information entered in the dialog is saved in the Packages. def file. As adding a new package group
alters the user package path, the module database has to be reloaded.

After reloading, your user package “Example/General” is ready for saving modules and projects.

77

Chapter 9. Introduction to Macro
Modules

Macro modules are implemented by means of the MeVisLab Definition Language (MDL) and the
scripting language Python. A macro module behaves like any other elementary module in MeVisLab
(ML or Inventor). However, no C++ has to be coded to implement a macro module.

Like any other module, a macro module has to be declared within the MeVisLab module database in a
module definition file (*. def), which has to be located in the User Package Pat h.

The MDL script implementation of a macro module, that is its interface definition (input-, output-, and
parameter fields) as well as its GUI definition, usually are written in a *. scri pt file. The scripting is
given in separate *. py files which need to be included in the *. scri pt module definition file.

The definition of a macro module and the creation of all necessary files is supported by the ML Module

Wizard, via File -~ Run Project Wizard (see the next chapter Chapter 10, Developing a Macro Module
for an Applicator).

What you should know about macro modules:

* In most cases, macro modules encapsulate the “macro behavior” of an image processing and/or
visualization pipeline (realized by a MeVisLab module network). Its functionality is defined by the
macro module interface with inputs, outputs, and parameters (fields). The interface is built as a
combination of the interface elements of the modules in the underlying network, and of eventually
new fields. The encapsulated module network is stored in a <Macr oMbdul eNane. m ab> file, which is
also called the macro network of the module.

Why this encapsulation?

¢ In many cases, a desired module function can be built by connecting some elementary modules
or macros that are already implemented.

« Certain processing pipelines may be of common use in a variety of further applications and it is
convenient to encapsulate them in macro modules which can then be added easily to any network.

* The interface of an encapsulating macro module is more compact than the sum of all interfaces
of the contained modules.

» Macro modules are defined on an abstract level. They can and do exist stand-alone without a
corresponding macro network. In those cases, the module's functionality is implemented with scripting
only. In most cases those macro modules encapsulate dynamic user interfaces without any image
processing or visualization behind it. Examples for those modules are the MDL test modules, for
example Test BoxLayout . They consist only of *. def and *. scri pt files without any internal module
network.

» Macro modules can also be defined locally to a given network document path, called 'Local Macro
Modules'. These are used in complex networks to encapsulate subnetworks as independent functional
units with a defined interface to other network components. Such local macros often carry out an
application specific function which would not be of common use for any other application, and are
therefore not added to the common MeVisLab module database (that is they are not declared in /
do not possess a *. def file).

Local macros are created and added with respect to the current network via the menu bar, File -
Create Local Macro and File - Add Local Macro.

78

Introduction to Macro Modules

Tip

You can also convert a group to a (local) macro via the group's context menu.

Edit Title
Edit Color

Convert To Macro

Delete Group

79

Chapter 10. Developing a Macro
Module for an Applicator

In the following sections, we will create a macro module based on the applicator we have built in the
Open Inventor example chapter, adding fields and scripting for dynamic control of length and diameter
of the applicator.

¢ Section 10.1, “Creating a Basic Global Macro”

¢ Section 10.2, “Adding the Macro Parameters and Panel”

¢ Section 10.3, “Programming the Python Script”

* Section 10.4, “Addition: Shifting the Whole Tip”

‘ Note
If you have not followed our tutorial, please open the Appl i cat or Exanpl e. nl ab demo

(available via Help - Welcome) and start from there.

10.1. Creating a Basic Global Macro

Our first global macro needs an internal network. We will use the Applicator module group as this
network.

1. For a start, open a new network tab (File - New or a keyboard shortcut) and copy and paste the

applicator modules (Edit — Copy, Edit — Paste or the respective keyboard shortcuts) to the new
network.

Tip
You can select the Applicator group with a double-click on its title bar and just copy
the group.

Figure 10.1. Starting a new Macro from the Existing Applicator

Applicator;

SoTranslation2

SoTranslation

2. Clean the automatic instance names of the modules — as they will be used for a new macro, there
is no need to have names like “SoTranslation2”. Remove all numbers and write all module instance

80

Developing a Macro
Module for an Applicator

names starting with capital letters (if you want to) by right-clicking the module and selecting Edit
Instance Name from the context menu.

In our example, this is the resulting network:

Figure 10.2. Existing Applicator with Clean Instance Names

Applicator;

When the module names are cleaned up, save the network at some convenient location. On creating
the global macro, this network will have to be referenced and is copied to its final destination on
finishing the creation of the global macro.

Open the File - Project Wizard and choose Macro Module.

Enter the properties for your new module.

Figure 10.3. Macro Module Wizard

Module Properties
Enter the general properties of the module.
—General Module Properties
Name: * |ApplicatorMacro Author: * |JDoe

Comment: | Builds an applicator (length/diameter editable).

Keywords: |

See Also: |

Genre: |Vi5ualization Choose | v Add reference to example network

— Select Target Package
Package: * |Example!GeneraI j
~Project Properties
Directory Structure: Im
Project: * |ApplicatorMacro Select |

¥ Include project files
* : Required fields

Create Save Setting | Close |

81

Developing a Macro
Module for an Applicator

Name:

The name as entered above is displayed, for example Appl i cat or Macr o. You can edit the name
here. The module name has to be unique within the MeVisLab module database (including the
SDK module database). Therefore, you may need to change the module name slightly in case
of a collision.

Author

Enter your name or initials. The author entry is mandatory and will be used in module searches.

Comment

Enter a short description for the module. The comment entry is mandatory.

Keywords

The optional keywords should be the terms other users might search for, e.g., “applicator” in this
case.

See Also
The optional See Also entries should list other, related modules that might be of interest for a user.
Genre

Enter the genre. Genre entries are mandatory; they define the place of the module in the Modules
menu and the Module Browser. For suggestions, check out similar modules in the database.

Tip
The macro module wizard offers to choose from a tree of available genres:

Figure 10.4. Selecting a Genre

Module Properties

Enter the general properties of the module.

~General Module Properties

7 GenreSelector

Name: * |ApplicatorMacro Author: * I-ll

Comment: |Eui|ds an applicator (length/diameter edital

Keywords:
I Segmentation

Transformations

See Also: |

Genre: | Visualization Chgﬁ | " Reiistration

- Select Target Package e 2D oners

Package: = |Example/General LUT / Transfer Functions

Volume Rendering

~Project Properties Shading Language Support
| Vessel Visualization

Directory Structure: I Classic < l Iso Surfaces

-- Surface Meshes (WEM) d|

Project: * | ApplicatorMacro

¥ Include project files | Chosen Genre: Visualization |

* : Required fields ‘ ok I Cancel Reload Tree ”

82

Developing a Macro
Module for an Applicator

The genres are not carved in stone but developed over time, so there might be more
than one fitting choice for your module. You may even want to add a new genre in
Genr e. def or define an own user genre.
« Add reference to example network:
Each module should be completed by an example network to explain its function and usage in
an exemplary application. Check to create an empty example network Exanpl eModul eNane. m ab
which may be edited later (optional).
e Project:

User defined modules are grouped in projects. Enter a new project name here: “ApplicatorMacro”.
The module will be installed in the Proj ect Pat h in the subdirectory Pr oj ect Nane.

e Target Package:

Select a Target Package from the list, for this example “Example/General” as created in
Section 8.2, “Creating a User Package for Your Project”.

‘ Note
Only existing Target Packages can be selected; if you want to use a new one, you
have to create it before creating the module.

Click Next.
5. On this tab, browse to the previously saved network and set it as the Network File Name.

You might leave the option to add Python scripting unchecked as we will add the scripting file later
on manually in this tutorial.

Figure 10.5. Macro Module Properties

Applicator

Macro Module Properties
Enter the properties of the macro module.
- Internal Network
" No internal network (script-only)
" Start with empty network

@ Copy existing network

Network File Name: |D:{Me\flsLabeetworks!appllcator.mlab

~Scripting
" No dynamic scripting
@ Add Python file

Create Save Setting Close

Click Create.

Now that the macro module and its necessary files are created, the file browser (depending on
your system) will open and display the folders and files. In our example, we have a package group

83

Developing a Macro
Module for an Applicator

“Example” with the package “General” and in the folder Modules/Macros the new Appl i cat or Macr o
with the files

« . def : module definition file, for registering the module(s) to the MeVisLab module database.
* . m ab: network file which includes the modules and their settings.

e .script: MDL script file for the panel and from which Python code may get called.

Figure 10.6. File Browser with the New Macro Module Files

.
@uv‘ <« Example ¢ General + Modules » Macros » ApplicatorMacro »

Organisieren v In Bibliothek aufnehmen Freigeben fir v Brennen MNeuer Ordner Bz + I @

4 | MeVislab * Nag Anderungsdatum Typ GroBe
. Networks

. networks 02.03.201611:05 Dateiordner

4)| PackageGrou
2D 2] ApplicatorMacro.def 02.03.2016 11:02 Export Definition F... 18

4 || Example -
*| ApplicatorMacro.mlab 02.03.201611:02 MLAB-Datei 4 KB

4 |. General

b |#| ApplicatorMacro.script 02.03.2016 11:02 SCRIPT-Datei 1KB
in

. Cenfiguration

Documentation
. lib
4 | Modules E
Inventor
4 | Macros -
ApplicatarMacro
. ML

. Projects

Sources | 4 LI} &

4 Elemente

— R

On the workspace, the previously visible network is now displayed as one macro module.

Figure 10.7. ApplicatorMacro as Macro Module

ApplicatorMacro

6. To display the internal network on a second tab, right-click the module and select Show Internal
Network from the context menu. Alternatively, you can hold Shift and double-click the macro
module.

10.2. Adding the Macro Parameters and Panel

So far, the macro module has no points of interaction. Therefore, the input/output, the parameters/fields
and the scripting need to be added.

1. To edit the panel and its underlying scripting, right-click the Appl i cat or Macr o module and select

Related Files - ApplicatorMacro.script to open the file in the in-built text editor MATE. Since we
just defined this macro module, the script file is basically empty except for some placeholders.

84

Developing a Macro
Module for an Applicator

Figure 10.8. ApplicatorMacro.script in MATE

f] MeVisLab MATE - [ApplicatorMacra.script - Di/MeVislab/PackageGroup/Example/General/Madules/Macros/Applicatoriacro]
File Edit View Window Debug Bdras Help

el 4 p hed Module: Macro Reload Goto RunTests Windows ~ Files ~ Add To Project Workspace

Cutline a8 X |;| * ApplicatorMacro, script B [ApplicatorMacro.def

4 Interface
Inputs
Outputs

Parameters
Commands

Tip

MATE comes with some special features like autocompletion, syntax highlighting,
indentation, etc. for MDL, Python and help files. For an extensive list, see the MeVisLab
Reference Manual, chapter “MATE”".

We want three sections in the . scri pt file:

a. Interface: defines the inputs and outputs of data connections for the macro. In our case, the
macro has no inputs from other modules, but one output which is the Inventor scene.

b. Commands: defines the scripting file to be executed upon the activity of defined fields.

c. W ndow: defines the panel of the macro to set the parameters. In our case, length and diameter.
This is an optional entry; if not defined, only the automatic panel is available.

Note
The window section of the GUI could also be implemented in the . def file. If you want
to implement an enhanced GUI and add more fields that only exist for scripting, use
the . scri pt file and reference that from your . def file. The advantage of splitting the
GUI definition from the module announcement is a faster MeVisLab startup (because
only the . def file is read). Further information on this subject can be found in the MDL
Reference.

First we will define the interface. As no inputs are needed, keep this line as it is. For the output, we
address the output of the SoG oup module named Appl i cat or. The following lines will result in an
output field that will "deliver" the applicator.

Interface {
I nputs = ""
Qut puts {
Field Scene { internal Name = "Applicator.self" }
}

Paraneters = ""

}

Enter the lines in MATE and save the script file.

Then reload the module by right-clicking the macro module and selecting Reload Definition to apply
the changes. The Appl i cat or Macr o module now shows an Open Inventor output connector.

85

Developing a Macro
Module for an Applicator

Figure 10.9. ApplicatorMacro Module with Output Connector

The internal network of the macro shows the output placeholder. In the mouse-over, the output field
name is displayed.

Figure 10.10. Internal Network of the ApplicatorMacro Module

Applicator;

4. As next step, we will define the parameters for our interface. In this example, we want to have two
parameters:

« | engt h: this shall be the overall length of the applicator.
 di anet er: this shall be the diameter of the applicator.

These two parameters need to be added to the I nt er f ace part of the script file. Besides setting the
parameter type (t ype) and the default value (val ue), you can also add a minimum and a maximum
value to limit the range to sensible values.

Interface {
I nputs =
CQut put s {

Field Scene { internal Nane = "Applicator.self" }

}

Paranmeters {
Field length {

type = float
val ue = 20
mn = 1
max = 50

86

Developing a Macro
Module for an Applicator

}

Field dianeter {
type = float
value = 3
mn = 0.1
max = 10

}

}
}

Once again, save the script and reload the macro module.

Open the automatic panel, either by double-clicking the module, by holding ALT and double-clicking

the module, or by right-clicking the module and selecting Show Window — Automatic Panel from
the context menu. The new parameters are visible in the automatic panel. They can also be edited
there by clicking on each value field and editing the value.

Figure 10.11. Automatic Panel of the ApplicatorMacro Module

Parameters] Outputs]

A — Name |T',rpe |In |Dut|\|’a|ue

ApplicatorMacro instanceName 5tring ApplicatorMacro
length Float 20
diameter Float 3

In principle, this would be enough to enter the values. However, usually a more user-friendly panel
should be offered. In the panel, values can be sorted by correlation or importance and distributed
on various tabs. It is also possible to leave rarely used parameters out of the panel to make it
slimmer; as the automatic panel of a module is always available, the user can always view and edit
all parameters there.

To create a panel for the two parameters, the new section W ndow is added at the end of the script
file. Besides defining the fields in Cat egory, you can also add a step value which will regulate how
large the step is when moving through the values with the spin box arrows or the mouse wheel (with
the mouse cursor over the field). As the diameter is smaller than the length, it makes sense to set
a smaller step size here.

Interface {
I nputs =
CQut put s {

Field Scene { internal Name = "Applicator.self" }

}

Paraneters {
Field length {

type = float
val ue = 20
mn = 1
max = 50

}

Field dianeter {
type = float
value = 3
mn = 0.1
max = 10

87

Developing a Macro
Module for an Applicator

W ndow {
Cat egory {
Field |l ength { step
Field dianmeter { step

o P
(I
— e

}
}

Save the script and reload the macro module.

Now open the panel, either by double-clicking the module (because the panel is the new default

panel) or by right-clicking the module and selecting Show Window - Panel from the context menu.
The new parameters are visible in the panel and can be edited manually (or by using the spin arrows
or the mouse wheel).

Figure 10.12. Panel of the ApplicatorMacro Module

9 Panel ApplicatorMac...l“:- EEf—x

'
ApplicatoriMacra Length: po %
Diameter: 3=

All parameters are defined and the panel is ready for entering values — however, we still do not have
any interaction. So the last section Cormand needs to be added, in which the respective scripting file
(a Python file) and the fields this scripting file should “look at” need to be entered

The source will be a local file which we will add manually, with the name Appl i cat or Macr o. py by
convention.

To relate to the scripting, we need two field listeners that listen to fields and call the script command
given in the command tag when the field changes. The functions Adj ust Lengt h and Adj ust Di anet er
used in the code do not exist yet but will be defined by us in the Python file.

Interface {
I nputs = ""
Qut put s {
Field Scene { internal Name = "Applicator.self" }
}

Par aneters {
Field length {

type = float
val ue = 20
mn = 1
max = 50

}

Field diameter {
type = float
value = 3
mn = 0.1
max = 10

88

Developing a Macro
Module for an Applicator

}
}

Conmands {
source = $(LOCAL)/ Appl i cat or Macr o. py

Fi el dLi stener |ength { comand
Fi el dLi stener dianeter { comand

Adj ust Lengt h }
Adj ust Di aneter }

}
W ndow {
Cat egory {
Field |l ength { step =1 }
Field dianmeter { step = 0.1 }
}
}

8. Save the script and reload the macro module. If the Python file or the scripting commands do not
exist yet, errors messages will appear in the Debug Output of MATE. Do not be concerned — we
will add everything we need for real interactivity in the next section.

Tip

Panels can have a more complex design; for the possibilities, see the MDL Reference
and the MDL panel example modules in MeVisLab (search for modules starting with
“Test...”).

10.3. Programming the Python Script

L if not yet existing, create the Python file. For this, select File -~ New in the MATE menu bar and
save the new file as Appl i cat or Macr o. py in the same folder as the other module files.

2. . Note
In your code, you may need to import some of the global classes like M.AB,

MLABFi | eDi al og or MLABFi | eManager from the "mevis" module (e.g. from nevis
i mport ML_AB) to get access to some convenience functions. See the scripting reference
for a list of all available helper functions.

Then we need to add two functions, one for each scripting command

def AdjustLength():
pass

def AdjustDi aneter():
pass

‘ Note
In Python, block structure is defined by indentation. Therefore, it is important to
indent the lines as shown in the code examples. In the MATE editor, this will happen
automatically.

3. Let us have a look at the diameter adjustment. The diameter is given by the di anet er field. This
is written as follows:

def AdjustDi aneter():
di ameter = ctx.field("dianmeter").val ue

89

Developing a Macro
Module for an Applicator

To have both an effect on shaft and tip likewise, the diameter parameter of both must be set to the
value of the di anet er field. A look at the automatic panels of SoCone and SoCy! i nder shows that
both modules offer a radius parameter.

Figure 10.13. Parameters for Diameter Setting

Parameters | Outputs | Parameters | Outputs |
Name |Type |1n |Out|\|'alue Name |Type |1n |Out|\|'alue
instanceName String SoCone instanceName String SoCylinder
String ALL parts String ALL
radius Float
height N Float
sides Integer
sections Integer

These radius parameters need to be set to di anet er:

ctx. field("SoCone. bottonRadi us") . val ue = di aneter
ctx.field("SoCylinder.radius").value = dianeter

As the radius is half the diameter, a correcting factor of 0.5 has to be added to the diameter equation.

def Adj ustDi ameter():
dianeter = ctx.field("dianeter").value * 0.5

ctx. fiel d("SoCone. bottonRadi us") . val ue = di aneter
ctx.field("SoCylinder.radius").value = dianeter

4. To test if the diameter adjusting works, add a Scenel nspect or module to the network and connect
its input to the output of your Appl i cat or Macr o module. Double-click the Scenel nspect or to open
its viewer. When you change the diameter setting of the macro, the diameter of the applicator is
changed accordingly.

90

Developing a Macro
Module for an Applicator

Figure 10.14. Changing the Diameter of the Applicator

71 paet scenenepecor S L2 5]
[poret scencirpeco S

Options ™ |

(71 panel Applicatortac. = | B &]

Length:

ApplicatorMacro

Diameter:

5. Adjusting the length is a bit more complicated. The length change should have the following effects:
e The | engt h parameter gives the overall length.
* Only the shaft should be extended, not the tip.

< The adjustment should be done in a way that the point of the tip is not translated, that is that the
tip points to the same position as before. Therefore, we need to increase the applicator length in
the direction away from the tip.

We can define an overall length, a tip length and a shaft length. They can be calculated as follows:

def Adj ustLength():
overal I Length = ctx.field("length").val ue
tipLength = ctx.field("SoCone. height").val ue

shaftLength = overall Length - tipLength

The original translation factor for the tip (which is the relevant factor) was given by half the shaft
length (“107) plus half the tip length (“1.5"). This can be written in a general way.

ti pTransl ati on = shaftLength*0.5 + tipLength*0.5
The shaftLength defines the height of the SoCy! i nder cone to

ctx.field("SoCylinder. height").value = shaftLength
The resulting code lines for the length adjustment look as follows:

def Adj ustLength():
overal I Length = ctx.field("length").val ue
ti pLength = ctx.field("SoCone. height").val ue

shaftLength = overall Length - tipLength
ti pTransl ati on = shaftlLength * 0.5 + tipLength * 0.5

ctx.field ("SoCylinder.height").value = shaftlLength

Add this code to the Python script, save, and reload the definition. A test shows a funny effect: the
shaft length is changed independently of the tip.

91

Developing a Macro
Module for an Applicator

Figure 10.15. Strange Behavior of the ApplicatorMacro

This is due to not having connected the calculated ti pTransl ati on with the Transl ationTip
module yet.

6. To solve this problem, add the SoConposeVec3f module to the internal network of the macro and

assign to its translation in y direction the calculated value tipTranslation. Since SoComposeVec3f
supports an arbitrary number of elements on X,y,z, we have to use set Li st Val ue.

ctx.field("SoConposeVec3f.y").setListValue([tipTranslation])

7. In a last step, this translation needs to be connected to the tip's SoTransl ati on module via a
parameter connection in the network.

Figure 10.16. Adding the Correct Tip Translation

I Sofransiation

Vector:J# EngineOutput

Here the network and complete Python script of the ApplicatorMacro example:

92

Developing a Macro
Module for an Applicator

Figure 10.17. Complete ApplicatorMacro

Applicator;

def AdjustDi aneter():
di aneter = ctx.field("dianeter").value * 0.5

ctx.field("SoCone. bottonRadi us").val ue = di aneter
ctx.field("SoCylinder.radius").value = di aneter

def Adj ustLength():
overal Il Length = ctx.field("length").val ue
ti pLength = ctx.field("SoCone. hei ght"). val ue

shaftLength = overal |l Length - tipLength
tipTranslati on = shaftlLength*0.5 + tipLength*0.5

ctx.field("SoCylinder.height").value = shaftLength
ctx.field("SoConposeVec3f.y").setListValue([tipTranslation])

10.4. Addition: Shifting the Whole Tip

In the example above, the change in length will be translated into an overall change with the center of
rotation as overall center. However, it might be preferable to keep the tip in place and change the length
of the shaft into the other direction.

Basically, this is the same problem as in the length calculation we made in the Python script. However,
instead of calculating it in the macro scripting, we can also use a module for the calculation.

For this, the following modules need to be added:

¢ SoCal cul at or: For calculating the length of the shaft.

93

Developing a Macro
Module for an Applicator

¢ SoConposeVec3f : For applying the translation of the float value to the vector of the overall translation
in Transl ati onAppl i cat or .

The SocCal cul at or module offers input and output of floating values and vectors.

Figure 10.18. Feeding the SoCalculator Module

~Vector Input

. 4 15 | |va: oy
Radius: l—l g : 0 Iy
Height: b~ 15 d 3 oy

Iati 3 3 0 |y

oy

oy

oy

Expression:

08 =-(0.5%a + 0.5%h)

~Float Output- - Vector Output
-9.5 | ova: I): o |y

0 | ovb: I): Clly

0 | ovc: I): Clly

ovd: I):] |y

Some important points:

¢ In the Expr essi on field, mathematic formulas can be entered; the name of the input values and the
name of the output have to be given.

¢ More than one expression can be entered. For that, end each line with a semicolon ;
¢ For the expression to be calculated, you need to click Apply.

For calculating the translation from the input values of cone and shaft height, use the SoCal cul at or
module and set up parameter connections

1. Connect SoCyl i nder. hei ght to SoCal cul ator. a
2. Connect SoCone. hei ght to SoCal cul ator. b

3. Enter the calculation: oa = - (0.5*a+0. 5*b) (a negative sign needs to be added; otherwise, the
end of the applicator is fixed and the tip side grows).

To apply the new translation, we need another SoConposeVec3f module. It allows for converting the float
value y into a vector translation in y direction. For this, it needs to receive the output of SoCal cul at or
and deliver the input for the SoTr ansl ati on module.

1. Connect SoCal cul at or . oa to SoConposeVec3f 1.y

2. Connect SoConposeVec3f 1. vect or to SoTransl ati on.transl ation

94

Developing a Macro
Module for an Applicator

Tip

You can find the names of the connected parameters by right-clicking the parameter
connections. For an overview of all parameter connections in a network, use the Parameter
Connections Inspector View.

The resulting macro network looks as follows:

Figure 10.19. Improved Applicator Macro Module

~Vector Input
0 |y
0 |y
0 |y
0 |y
0 |y
0 |y

Oly

Translgtion:; =

Applicatar

Expression:

o0a =-(0.5%a + 0.5%h)

~Float Output- - Vector Output
ml‘hl -9.5 | ova: Ix o Iy

0 || ovb:] Iy

(]Iy

(]Iy

When to choose calculating values in scripts and when via modules? This is not an easy question.

¢ The advantage of the script is that it is easily changed and extended. This might be harder with
modules.

The main advantage of using script is that the setting of parameter field values or the triggering of
a (re-)computation is much more controlled. Using parameter field connections can easily lead to
unwanted notification avalanches.

¢ The advantage of the modules is that the connections between modules are visible as parameter
connections (which can be changed and removed).

In the end, it comes down to your current network and your design decisions which way to choose. Or
you might combine them, like we did in our Appl i cat or Macr o network.

What else could you do now? You could, for example, make sure that the shaft length cannot be shorter
than the tip length (which looks strange in the Open Inventor scene). You could also make the colors
parametrizable, or add new features for the applicator.

This is the end of this example.
Tip

This example is delivered with MeVisLab (. def file in $(1nstall Dir)Packages/
MeVi sLab/ Exanpl es/ Modul es/ Getti ngSt art ed/ Appl i cat or Macr oExanpl e, source
files in $(InstallDir)Packages/ MeVi sLab/ Exanpl es/ Sour ces/ GettingSt art ed/
Appl i cat or Macr oExanpl e). The module can be added via quick search.

95

Chapter 11. GUI Design in MeVisLab

The following chapter introduces the concept and the formatting possibilities of GUI design in MeVisLab.

The panel design is given in detail, from a look at MDL basics and principles down to the implementation
and scripting of controls.

For the visual appearance of panels, two major options are given: MDL styles and Qt style sheets. Both
of them are discussed and illustrated.

1. Panel design with MDL, see Section 11.1, “MeVisLab Definition Language (MDL)".

2. Panel formatting with styles and prototypes in MDL, see Section 11.3, “MDL Styles”.

3. Adding new MDL controls, see Section 11.3.3, “Creating Custom MDL Controls”.

4. Panel formatting with Qt styles (CSS), see Section 11.4, “Customize GUI Appearance Using Qt Style
Sheets (CSS)".

The base of every GUI in MeVislab is the panel designed in the MeVisLab Definition Language (MDL).
The MDL is described in detail in the MDL Reference.

Tip

Examples for GUI designs with the MDL are available in MeVisLab, just enter “Test” into
the quick module search (to be able to find the test modules the “Test” module group must

be enabled in Preferences —» Module Groups).

The part of the MDL in relation to the GUI is to define the structure of a panel, the included elements and
buttons, and the way those elements are arranged. Available elements are, for example, lists, sliders,
thumb wheels, text fields, check boxes, buttons, and many more. For arranging the elements, group
controls are available, like tables, grids, boxes, and tabs.

Figure 11.1. View3D Panels as Example for GUI Elements

r ™
Probane wliniteurn Bremen Mite| General | LuT TabMiewkiemacipping | <)
001 M MNUMARIS/H | - Viewer Box

974 ME:
19780101 m M View All | ¥ Auto view all
Axial ‘ Sagittal | Coronal Profile |
Time Point: 03 NumberEdit
Mode
Mode: Volume Rendering ~
= Interactive Quality: Medium -
Qualiy: —Slider |
W Orientation
g W On
f '} Mode! cez -] Comboboxes
/ . ' z
! Projection Type: Perspective =
o
Location Lower Right =
o Settings
|v Background
Screenshot
/ W Annotations
’] Rendering
v
~ High resoDngeiiBose
09,91,80
9 00 A
P OR 0 0 @
e —— —

96

GUI Design in MeVisLab

11.1. MeVisLab Definition Language (MDL)

The MDL is more than just a GUI definition language.

It is a configuration and layout language.

It is implemented based on the architecture pattern Model-View-Control (MVC) (see the Wikipedia
entry about MVC for the general concept).

It is a declarative language with a focus on the logic, not the processing (see the Wikipedia entry
about declarative programming for the general concept). It focuses on the hierarchical structure of
the content, and offers a MLABTree node interface that can be addressed from scripting and used
for error reporting.

It offers a simple preprocessor (#ifdef/#include).

It is an application-specific language, tailored to the needs of MeVisLab. It adds a strong decoupling
of GUI and C++ modules and provides the basis for extensibility to MeVisLab.

It is used for GUI layout, calling script methods, installer scripts, . pr ef s files, and more.

The GUI part was inspired by HTML/JavaScript, which is mirrored by MDL/Python in MeVisLab. Both
combine a declarative language with an imperative language that adds the actual control flow.

In the following sections, a few interesting and important facts about the MDL are listed that will help
in using its full potential.

Tip

The integrated text editor MATE supports MDL syntax and Python with syntax highlighting
and auto-completion.

11.1.1. MDL Validator

The validation of MDL files is done with an MDL validator.

An MDL file can contain any content.

The validator defines what the MDL tree has to look like.

The validator takes:

¢ An MDL tree to validate.

< An MDL tree that defines the expected structure (typically MDLVal i dat or . def).

* The MDL style definitions (which can add prototypes, see Section 11.2.9, “Prototypes for Controls”).

The validator traverses the tree and prints errors/warnings if the tree does not match the expected
structure.

The tree that defines the expected structure is also written in MDL and is validated by itself.

The validator file defines what groups are allowed in each group (recursively) and what name/value
pairs are allowed.

It knows the expected value types and can warn for non-existent files, check Integers, Floats, field
names, etc.

97

http://en.wikipedia.org/wiki/Model%E2%80%93View%E2%80%93Controller
http://en.wikipedia.org/wiki/Model%E2%80%93View%E2%80%93Controller
http://en.wikipedia.org/wiki/Declarative_programming
http://en.wikipedia.org/wiki/Declarative_programming

GUI Design in MeVisLab

Excerpt of the validator for the general module definition:

G oup _Module {
al | owTags {

conment = STRI NG
aut hor = AUTHORS
= MLABFI LE

exanpl eNet wor k

}

al | onChi I dren {
Interface "
Commands
Descri ption

}
}

The validators of the specific module types then relate to the general module definition.

G oup M_Modul e {
val ue = NAME

allow = Mdul e <- allowed groups

al | owTags { <- allowed tags (nmake sure to use the right data types)
cl ass = STRI NG
DLL = DLLNAME

}

}

G oup I nvent or Modul e {
val ue = NAVE
allow = _Mdul e
al | owTags {

cl ass = STRI NG
hasG oupl nputs = BOOL
hasVi ewer = BOOL

}
}

For other validators like for fields, panels, etc., the principles work accordingly.
Usually, a developer does not have to deal with the validator aspect of the MDL. However, once a

new control is to be implemented, a validator should be written for that to avoid error messages, see
Section 11.3.3, “Creating Custom MDL Controls”.

11.1.2. MDL Controls

» MDL controls are derived from MLABWidgetControl, a C++ class.

» They create and control their QWidgets (the Qt/C++ base class of widgets).
» They provide a Python scripting interface.

» Are reparented to the QWidget they create, so that the controllers are automatically destroyed when
their QWidget is destroyed.

» Custom MDL controls can be created, see Section 11.3.3, “Creating Custom MDL Controls”.

An important effect of the Model-view-controller pattern is the separation of the interfaces (as fields) and
the actual controls defined in the windows section of an modules GUI definition.

The fields defined in the interface sections are the models.

98

GUI Design in MeVisLab

Figure 11.2. Fields as Model

Interface {
Parameters {
Field vector { type
Field apply { type

Vector3 }
Trigger }

| ~“xampleModule

N E Fields are the Model

The controls in the GUI are the view and also the controller.

Figure 11.3. Controls as View/Controller

Window { £ |
Box Example { pEEEIE
Field vector {} Vector: x Oy o0z 0
Button apply {} Apply I

} -]
})\ Y &
QMa%Window | mLABWindowControl_|
QGroupBox | mLABBoxControl _ |

ExampleModule

MLABPushButton [mLaBButtonControl |

Controls are the
View/Controller

For a set of fields/models, many different views can be built.

99

GUI Design in MeVisLab

Figure 11.4. Controls as Views/Controller

Window window2 {

Box Example {
Window windowl { Field wvector {}

Field wvector {} Button apply {}

} ' N
@ }

QmainWindow [wi aBwindowContrel || QMainWindow

QWidget [y aBFieldContra QGroupBox | MLABBoxControl |

QWidge

I QLabel I MLABFieldContro
] QLabel
MLABVectorWidget ; J

MLABVectorWidget

LABPushButton [mLABButtonContro |

ExampleModule

ASVeclorsrielda “vector

It is important to keep this Model-view-control design in mind, otherwise it is easy to mix up the definition
of fields (Interface section) with the GUI control of the field (Window section).

1. Model: defines a new field of type Vect or 3 named vect or :

Interface {
Par anmeters {
Field vector { type

Field apply { type

Vector 3 }
Trigger }

}
2. View/Controller: defines a GUI control that shows the value of the existing vect or field:

W ndow {
Box Exanpl e {
Field vector {}
Button apply {}

}

. Note
Admittedly, it's a bit misleading that the Fi el d is also used in the W ndow section for the
field controls.

From the point of view of the MDL controls, the Vi ew3D panel looks like this:

100

GUI Design in MeVisLab

Figure 11.5. View3D Panel with C++ Class Names of Included MDL Controls for
Scripting

,
4 Panel View3D

Probzand iliniicurn Sremen Mitte
001 M MUMARIS/
19780101 nventoiewerEomir MIF

i MLABButt@nG ol

Axial | Saglttall Coronal

Time Point:
~Mode
Mode: Volume Rendering ~
Interactive Quality: Medlum

Quality: ': ¢
- Orientation
W On

Hed Cube o MLABGeiEo-
Projection Type: |Perspective ~| [BkeiiCaiiize)
Location Lower Right

~ Settings
I¥ Background

Screenshot
¥ Annotations

v

’rRendering

109,91,80,Gray, 1

1.953,1.953,2.000
t1_mpr_sag_VICORA acquisition: 2007 3

11.1.3. MDL GUI definition

The GUI definition of a module is written into the . scri pt file of a module.

The Interface section is foremost used for Macro modules to declare fields. It is also used to declare
extra fields of C++ modules or fields that should be kept persistent:

* input fields
» output fields
» parameter fields

The fields defined here may also forward existing fields of sub modules (internal fields) instead of
defining new ones.

Declaring parameter fields of a C++ module has the advantage that these fields can be made persistent
to save their values along with the network. (Normally, internal module states are not saved when the
network is saved.)

The Description section is optional and can be used for all module types. It contains definitions for:

» Parameter field ranges (min/max)

» Persistence

. Editability

The Commands section is used to add Python script files and commands. (For details of the module
initialization, see MDL Reference, chapter “Commands”.)

101

GUI Design in MeVisLab

The Window section allows defining the GUI for the available Interface elements. The possible controls
can be split into the following groups:

« Input controls for viewing and editing field values (Field, CheckBox, etc.)
» Layout controls (Vertical, Horizontal, Box, etc.)

» Decoration controls (Label, Image, Separator, etc.)

See the MDL Reference for a complete list of available controls.

The number of Window sections — which is the number of panels for a module — is unlimited. See
Vi ew3D as an example for multiple panels.

11.1.4. A Note on Fields in Scripting Interfaces

“Field” has two meanings in MeVisLab:

1. The Field in the Parameters section declares a field for a module.
Interface {
Par ameters {
Field fieldNane { type = String }
}
}
2. The Field control in the Window section defines a GUI control.
W ndow {

Category {
Field fiel dNane {}
}
}

In scripting these objects have different class names:
1. MLABField

2. ML.ABFi el dCont r ol

Fields from a Scripting Perspective

Fields can be accessed from scripting. Take this integer field as an example:
Interface {
Paramet ers {
Field intFieldNane { type = Int }
}

}
Getting and setting the value:
ctx.field("intFieldNanme").val ue = 13
Getting and setting the value as a string (typically used for serialization purposes):
ctx.field("intFieldNane").stringValue = "13"

To force notification of all field listeners:

ctx.field("intFiel dName").touch()

102

GUI Design in MeVisLab

FieldListener

The FieldListener binds scripting commands to a field. The command will always be called when the
field issues a notification to its listeners.

‘ Note
There is an important difference between FieldListeners defined in the Commands section
and the ones defined in the Window section: The former is created when the module is
created, and thus is always available. The latter is only created when the window is created,
and it is destroyed when the window is destroyed. This will be explaind in the examples

below.

Example:

Il triggerButton Field is already defined in |nterface/Paraneter
Interface {
Paramet ers {
Field triggerButton { type = Trigger }
}
}

Commands {
source = $(LOCAL)/ Exanpl eToggl eBut t on. py
Fi el dLi stener triggerButton { command = cal | G obal }

}

Touching the trigger field in Python will cause a notification and the field listener will call the given
command, which is “callGlobal” in this example:

ctx.field("triggerButton").touch()

When “callGlobal” is called, there is no association to a window. The current window ID is 0, which
means there is no current window. This means if you call ct x. control ("control Name") in it, then
MeVisLab will print an error that it cannot find the control.

If the field listener is defined inside of a window, it is only active when the window is actually created.

W ndow {
Cat egory {
Fi el dLi stener triggerButton { command = cal |l Local }
}
}

When “callLocal” is called, the current window ID is set to the window in which the field listener is defined.
Calling ct x. control ("control Nane") in it will look inside this window for the control. This also means,
that control names must only be unique inside a window, and can be reused in multiple windows of
the same module.

103

GUI Design in MeVisLab

Figure 11.6. Command Execution Context

Command execution context

Python scripting
Global context (windowlID 0)
def callGlebal(): Elsl gl oba
ztzriiitig;?%z??l” cé&nﬁnd = callGlobal
not kn ownﬁ&

b
global context Window w (windowlD 1)

FieldListener { | —Different instances
command = calllocal of the same window
}
Window {
FieldListener {

command = callLocal

Window w (windowID 2) .

FieldListener {
command = callLocal

}

Accessing Controls from the Scripting Console

From the scripting console, looking up a control only works when the correct context is set. First, the
module context must be right. The scripting console must be opened from the context menu of a module

to have it as the current context. The scripting console that can be opened from the Scripting — Show
Scripting Console menu has the current network and not the selected module as context. Second, the
window ID is 0 by default. To look up a control the window ID must be set accordingly. For debugging
purposes, the function ct x. cont r ol Debug(" control Name") can be used in the scripting console as
an alternative to setting the current window ID. It looks for the control in all open windows.

The following figure demonstrates that the global scripting console is not associated to a selected
module in the network. Although the panel of the Test Li st Box module is open, the control cannot be
found. It can be found in the scripting console of the module itself.

104

GUI Design in MeVisLab

Figure 11.7. Contexts of the Scripting Console

Scripting View Metworks Panels Help

[N

py> from mevis import * Edit Network Script Ctri+E

py=> print ctx Start Metwork Script Ctrl+R
2016-03-02 15:02:30 Info: type: ExampleNetwork, name: ExampleNetwork B —

py>

py> from mevis import =
py> print ctx
2016-03-02 15:03:03 Info: type: TestListBox, Ypame: MyListBox

py=

Panel

Automatic Panel

Reload Definition F5
Related Files (3) L4
Show Enclosing Folder

Grouping v

11.2. Developing the ExampleToggleButton

In the following section, we will create a new Macro module with a simple on/off button. This is a standard
use case for toggling parameters (visible or invisible).

Section 11.2.1, “Creating the Macro Module”

Section 11.2.2, “Defining the Interfaces”

Section 11.2.3, “Programming the Button Action in Python”

Section 11.2.4, “Referencing the Command in the MDL Script”

Section 11.2.5, “Persistent Field Values”

11.2.1. Creating the Macro Module

1.

First of all, make sure that you have a user package defined as described in Section 8.2, “Creating
a User Package for Your Project” or create it now.

Then run the Project Wizard and select the link Macro Module. This starts the Wizard for Macro
Modules. Enter the following:

« Name: ExampleToggleButton

» Keyword: examples

» Target Package: Example/General
* Project: ExampleToggleButton
Click Next to proceed.

On the dialog Macro Module Properties, click Add Python file to have one created.

105

GUI Design in MeVisLab

5. On the dialog Module Field Interface, the fields of the module can be defined (more fields can be
added later).

a.

Click New to create a new field, then enter the following:
« Field Name: triggerButton

 Field Type: Trigger

* Field Comment:

+ Field Value:

Click again on New to create a second field:

+ Field Name: text

 Field Type: String

* Field Comment:

* Field Value:

6. Click Create to create the module.

In

the default file browser of your system, the folder {packagePat h}/Mdul es/ Macros/

Exanpl eToggl eBut t on is opened.

7. Click Close to finish the creation of the macro and to reload the module database to make the new
module available. Type “Exam” to have the search deliver a list of available modules, and instanciate
Exanpl eToggl eBut t on. Double-click the module to open its automatic panel.

Figure 11.8. ExampleToggleButton

7 Ponel BampeToggleButo =)

e [twe [Jou[wwe |

instanceName String ExampleToggleButton
triggerButton Trigger

text String

11.2.2. Defining the Interfaces

The automatic panel shows all defined fields. In the next step, we will edit the additional panel.

Right-

click the module and look at Related Files. Click the script file Exanpl eToggl eButt on. scri pt

to open it in the integrated text editor MATE.

The script file looks as follows:

I nter

face {

I nputs {}

Qut
Par

puts {}
anmeters {

Field triggerButton {

}

type = trigger

106

GUI Design in MeVisLab

Field text {
type = String
value = ""

}
}
}

Commands {
source = $(LOCAL)/ Exanpl eToggl eBut t on. py

}

In a first step, we add the W ndow section to create a visible panel.

W ndow {
Cat egory {
Box {
Button triggerButton { title = "On/OFf" }

}
}
}

After any changes in the . scri pt, save the file, select the module in MeVisLab, and press F5 to reload
the module. After the first addition of the W ndows section, double-click the module to open the new
panel. Panels that are already open are automatically updated upon reload with F5.

The box draws a simple frame around the element, usually with a title. By default, the title is the tag
value of the Box tag.

Box "A button" {
}

It can also be substituted by an explicit title element:

Box "A button" {
title = "Yes, a button"

}

At this point, the button has no effect yet. The action tied to the button will be added as a the Python
command in the next section. The Label uses the t ext field for its title.

W ndow {
Cat egory {
Box {
Button triggerButton { title = "On/OFf" }
Label { titleField = text }
}
}
}

11.2.3. Programming the Button Action in Python

In the Python script, the toggling of the button would need to have an effect, in this case it changes
the label text.

Initially, the variable t oggl eSt at e is False; upon pressing of the button it is toggled. If the t oggl eSt at e
gets True by pressing the button, then the label text is set to “On”, otherwise it is set to “Off".

Vari abl e
toggl eState = Fal se

Cal |l ed when button pressed
def buttonPressed():

107

GUI Design in MeVisLab

gl obal toggl eState
toggl eState = not toggleState
if toggleState:
ctx.field("text").val ue
el se:
ctx.field("text").val ue

"

"Gf"

The value of the text field, which is used as the title field of the label, is set depending onthe t oggl eSt at e
variable.

11.2.4. Referencing the Command in the MDL Script

There are two ways to handle the button press. First, it is possible to use a trigger field and a
Fi el dLi st ener. Note that a Fi el dLi st ener in the Commands section would not have the required
window context to access any controls in the window. However, since the but t onPressed() function
only accesses a field, this would also work in this case:

W ndow {
Fi el dLi stener triggerButton {
command = buttonPressed

}
Cat egory {
Box {
Button {
triggerButton { title = "On/OFf" }
title = "On/OF f "
}
Label { titleField = text }
}
}

}

Second, the button press can be directly handled without a field:

W ndow {
Cat egory {
Box {
Button {
title ="On/OFf"
command = butt onPressed
}
Label { titleField = text }
}
}
}

The example works now. However, the t oggl eSt at e value is not persistent. If the network is closed
and reloaded later, it is again initialized with Fal se. The next section will explain how values can be
made persistent.

108

GUI Design in MeVisLab

Figure 11.9. ExampleToggleButton

11.2.5. Persistent Field Values

Assume that the value of the variable t oggl eSt at e needs to be persistent, i.e., its last value should be
restored when the network is loaded at another time. We can use a persistent field for this. The fields
current value will be stored when the MeVisLab network is saved. In a first step, a Bool field for it is
added to the I nt er f ace section:

Interface {
I nputs {}
Qut puts {}
Par aneters {
Field text { type = String value = Of}
Field toggleState { type = Bool value = fal se}
}
}

For the Python script, it would mean a rewrite resulting in:

Cal |l ed when button pressed
def buttonPressed():
toggleState = ctx.field("toggl eState")
toggl eState. val ue = not toggl eSt ate. val ue
if toggl eState. val ue:
ctx.field("text").val ue
el se:
ctx.field("text").val ue

"“n"

"Gf"

The value of the t oggl eSt at e field is now persistent — if Exanpl eToggl eBut t on would be used in a
network, its last state would be saved with the network.

11.2.6. Implementing a Keyboard Shortcut

For a button, a keyboard shortcut could be implemented by adding an Accel control. In our example,
we add the key combination ALT+Q.

Interface {
I nputs {}
Qut puts {}
Par amet ers {
Field text { type = String value = "" }

109

GUI Design in MeVisLab

Field toggleState { type = Bool value = fal se}
Field triggerField { type = Trigger }
}
}

Commands {
source = $(LOCAL)/ Exanpl eToggl eBut t on. py
}

W ndow {
Accel {
key = ALT+Q
field = triggerField
command = buttonPressed
}
Cat egory {
Box {
Button {
nane = triggerButton
title ="On/OFf "
command = buttonPressed
}
Label { titleField = text }
}
}
}

The key has to be defined before the other GUI controls for which it should be used, so it is best entered

in the beginning of the W ndows section. The panel has to be active for the shortcut to have an effect.

11.2.7. Arranging Multiple Buttons

In a Box control, the default layouter is a Verti cal control:

Box {
Button {
nane = triggerButton
title = "On/OF "

}
Button {
nane = trigger2Button
title = "Bl ue/ G een"
}
Button {
nane = trigger3Button
title = "Big/Snall"
}

}

The layouter can be changed, see the MDL Reference for a list of possible layouters. For example, a
grid can be set:

Box {
|l ayout = grid
Button {
nane = triggerButton
title = "On/OF "

x =0y =0

}

Button {
nane = triggerButton
title = "Bl ue/ Geen"
x =1y =1

}

110

GUI Design in MeVisLab

Button {
nane = trigger3Button
title = "Big/ Snal | "
x =2y =0
}
}

Figure 11.10. Buttons in a Grid

9 Panel ExampleToggleButt... EI&I&J

Ty
Blue/Green

11.2.8. Auto Layouting with the AlignGroups Control

Have a look at the module Test Layout er !

11.2.9. Prototypes for Controls

It is possible to define overwrite default values for MDL controls. Prototypes are existing controls with
different default values. For example, if all following occurrences of the Vertical control should by default
expand in horizontal and vertical directions, the prototype declaration would look like this:

Vertical {
style {
Prot ot ype Vertical {
expandX = yes
expandY = yes
}
}
/1 the follow ng vertical now has the defaults as gi ven above
Vertical {
Label { title = "test" }
}
}

Prototypes can be defined for all MDL elements.

Prototypes do not inherit from each other, so if you overwrite, e.g., Vertical, you loose all the default
tags that are defined in the default prototype.

Styles inherit the prototypes from the style they are derived from, so you can overwrite individual
prototypes without affecting other prototypes from the default style.

See the module Test Pr ot ot ypes for an example.

11.2.10. Designing Larger GUIs

On the automatic panel of a module, all parameters are listed. Therefore, there is no necessity to add
all parameters as fields to your GUIs. Focus on those fields that the user needs to set or see.

If the module has a high number of fields, the controls can be arranged on the panel, e.g., by using
tabs or sub-panels.

As modules may have multiple windows, the GUI can be split into various panels. This is recommended
for settings that are possible, but do not relate strongly to other, more important settings of the module.

111

GUI Design in MeVisLab

For sharing parts of the GUI between panels, the Panel control can be used. It clones a defined
subregion of a module's W ndows section.

Excerpt from the Vi ew3D script file:

W ndow Vi ew3D {
Vertical {
expandX = NO
panel Name = Settings
TabVi ew {
TabVi eM t em General {
Box Vi ewer {
Hori zontal {
expandX = no

The thus defined panel “Settings” can be reused in a panel of its own.

W ndow Settings {
Panel {
panel = Settings
}

}

The Panel control also clones all FieldListeners contained in the cloned code, so that a cloned panel
should work like the original one. The window one gets when calling wi ndow() in the context of the
cloned script will be the window in which the Panel is, in this case the Vi ew3D window.

Figure 11.11. View3D Panels with the Panel Control

== b 5. 0w =

Proband Cliniicun Bremerris| General | LUT | Tlumination | Clippi
001 M US4 | - Viewer
19780101 |1 View Al |V Auto view

Aial

7 Lut Editor ViewdD

Editor

agttal | coronal | profe |

Time Point: 03

Mode
Mode: Volume Rendering
Viewer

General | LUT | Tlumination | Clipping | ;]|

Tnteractive Quality: [Medum <]
View All | ¥ Auto view all
Quality: —_— |
Orientation
W on |
Model Er— Edit | Window/Level | General
. = Range: [0,4095]
Projection Type: |Perspective . Index: 03] g
Location [Fower Right ~|
" Position: 0
Orientati Settings
rientation |
¥ Background Color: 4
 on Screenshot =
¥ Annotations opadty: [0.000
Model Cube ~ Rendert
endering "
Projection Type: |Perspective ~ I Settings

I High resolution render area

Relative Lut: r
Location Lower Right =
9 P {}| A1pka Factor: T —

Settings
01,8 Color Interpolation: [RGB -

f| sackground

o Screenshot Range

| @ Annotations
—— = Current range: [0.00,4095.00]
Rendering

New Range Min: 0

% High resolution render area
New Range Max: 4005
New Range Mode: | Clip Former LUT v,

Apply New Range‘ Update Range From Histogram ‘

wiol | sagitiel | Coronal | profile |
Time Point: | 0]
Mode
. [Votarne Rerderng =]
Interactive Quality: [Medum v|
Quality: —

Col. Interpol.: [RGB -

Undo Redo
Reset To Ramp

11.3. MDL Styles

As every panel needs some kind of style — or visual theme — for display, MeVisLab provides the

concept of styles. Styles are color and font schemes that can be derived from each other, and the base
of all styles is the _def aul t style.

First, it is important to know that there are two modes which affect what style is chosen: the Panel mode
and the Appl i cat i on mode. If you open panels inside of MeVisLab by double clicking on a module, the
panels are created in Panel mode. The Appl i cati on mode is used when running a macro module as

an application, either via Scripting — Start Network Script or from the commandline.

112

GUI Design in MeVisLab

Two default styles are predefined, one for each mode. Both are directly derived from _defaul t;
* Panel . def aul t is used in Panel mode (gray style).
e Application. default isusedin Applicati on mode (blue/green style).

The predefined style names from above consist of a prefix (“Panel”/“Application”) and the actual style
name (“default”). This allows for using the same style name for two different modes. The actual prefix
is detected by MeVisLab, this will be explained below.

11.3.1. How to Use MDL Styles

Styles can be set and locally derived in MDL controls. They affect the current control and also recursively
all its children.

For example, to specify the style for a single Window control the st yl e tag can be used like this:

W ndow {
style = Exi stingStyl eNane

:

To locally derive from an existing style, one can write:

W ndow {
styl e NewLocal Style {
derive = Application.default // inherit the default Application style
colors {
bg blue // background col or
fg = yellow // foreground col or

}
}

:

The deri ve tag can be omitted to inherit from the style that is currently active, regardless of which that
is (see also the style stack, which is mentioned below in “How MeVisLab Applies the Styles”). It is also
possible to omit the style prefix, in which case MeVisLab uses the detected one.

A local style can also be anonymous:

W ndow {
style {
colors { bg = blue button = red }
}
Box {
layout = Gid

Figure 11.12. Redesigned Panel

-
ExampleToagleBution

9 Panel ExampleToggleButt... EI&I&J
L —

Tip

MATE offers auto completion for style attributes. See the figure below.

113

GUI Design in MeVisLab

Figure 11.13. Entering Style Settings

Window {

atyle {
colors { bg = bl button = white }
i

black
blanchedalmaond %
Box { blue
layout = Grid |blueviolet

Eutton {

How MeVisLab Applies the Styles

Before a window is created, MeVisLab initializes a stack with the default style. The name of it is “<style
prefix>.default”, e.g., Appl i cati on. def aul t (see below how MeVisLab determines the style prefix).
Then it recursively creates all MDL controls, beginning with the Window control.

For each control, MeVisLab checks if either a style is specified or if a style is derived locally (local styles
are explained below). If one of both is true, then it pushes this style onto the stack and applies it to the
widgets that are created by the control. This style is also applied to all sub controls, unless they push
another style themselves. After the control is created, the style is popped again.

MeVisLab looks up styles as follows:

1. If the style name does not contain a dot, it prepends the style prefix and uses it if it exists.

2. If the style name does not contain a dot, it prepends the fallback style prefix and uses it if it exists.
3. Use the given style name as it is to look up the style.

How MeVisLab Determines the Style Prefix

In Appl i cati on mode, the style prefix is the name of the application macro module. The fallback
style prefix is either the value of the MDL preferences variable Appl i cati onStyl e, or “Application” if
Appl i cationStyl e is not specified.

In Panel mode the style prefix is either the value of the MDL preferences variable Panel Styl e, if it is
given, or “Panel”. The fallback style prefix is always “Panel”.

Figure 11.14. ExampleToggleButton with Application Style Panel

9 Panel ExampleToggleButt... EE

On/Off Big/Small ExampleTogaleBution
Blue/Green

To style a window like above for testing, use the st yl e tag as follows:

W ndow {
style = Application. defaul t
Cat egory {
Box {
}
}

}
11.3.2. Defining Global Styles

How to Define MDL Styles

114

GUI Design in MeVisLab

A style is defined globally using the DefineStyle tag. The style name may include a prefix separated by
a dot from the actual name, but it is not required (see “How MeVisLab Applies the Styles” above on how
MeVisLab looks up styles by name). There are two possibilities to position the definition of a named style:

« if globally defined in any *. def file, this style will be available to all windows of all modules under
the given name.

« if defined inside of a window, this style is only available inside of that window.

11.3.2.1. How to Define a Global Style

DefineStyl e AnyStyl eNane {
derive = default
colors {

bg = bl ack
fg = bl ack
button = bl ack

}
}

11.3.2.2. How to Define a New Default Style for Application Macro
Modules

It is possible to define new default styles for application macro modules. The style definition does not
have to be in the same . def file. You can have one global . def file where you define your styles. If
you want to use a style as default in multiple application macro modules, you can derive default styles
with the macro module names as prefix:

DefineStyl e BaseStyle {
derive = default

!

DefineStyl e Macrol. default {
derive = BaseStyl e

}

DefineStyl e Macro2. default {
derive = BaseStyl e

}

11.3.3. Creating Custom MDL Controls

Custom MDL controls can be created.
The following steps would be necessary to create a MDL control:

1. Define the control in a .def file (MDL) under the Modul es directory of a package. This will make the
control available and extend the existing MDL validator.

2. Implement the control, either in C++ (.h, .cpp) or in Python (.py). Put the files under the Sour ces
directory of a package.

Examples for this are in the MeVi sLab/ Exanpl es package. It includes the controls
* Col or Chooser Exanpl eControl ,

* Di agr amkExanpl eControl ,

* Pyt honCont r ol Exanpl e, and

* Doubl eSpi nBoxExanpl e

115

GUI Design in MeVisLab

Their definitions exist in Exanpl es/ Modul es/ Control s/, their implementations in
Exanpl es/ Sour ces/ Controls/ (C++) and Exanpl es/ Modul es/ Scri pts/ python/ (Python).
The modules Col or Chooser Exanpl eCont r ol Test , Di agr anExanpl eCont r ol Test, and
Pyt honExanpl eCont r ol sTest demonstrate using the controls.

For example, the ColorChooserExample files are:

« The WidgetControl definition, which includes a reference to the DLL that contains the compiled C+
+ implementation:

Exanpl es/ Modul es/ Cont r ol s/ Col or Chooser Exanpl eContr ol . def
¢ The C++ implementation:

Exanpl es/ Sour ces/ Cont r ol s/ MLABCol or Chooser Exanpl eCont r ol /
m abCol or Chooser Exanpl eControl . h

Exanpl es/ Sour ces/ Cont r ol s/ MLABCol or Chooser Exanpl eControl /
m abCol or Chooser Exanpl eControl . cpp

The PythonControlExample files are:
¢ The WidgetControl definition, which includes a reference to the implementing Python module:

Exanpl es/ Modul es/ Cont r ol s/ Pyt honCont r ol Exanpl es. def

¢ The Python implementation:

Exanpl es/ Modul es/ Scri pt s/ pyt hon/ Pyt honCont r ol Exanpl e. py

Figure 11.15. Color Chooser Example Control

A

Source code: MDL C++

11.4. Customize GUI Appearance Using Qt
Style Sheets (CSS)

By referencing Qt Style Sheet files in the MDL, the underlying Qt widgets can be styled from the MDL,
including tab bars, radio buttons, list view items, etc. For a list of available GUI elements, see Qt Widgets.

The method has to major drawbacks:
« The developer needs to learn something about the underlying Qt widgets.

¢ The solution somewhat depends on the underlying implementation of the MDL, which could change
over time, for example by using different Qt Widgets internally or just by using a newer Qt version.

The styling works for Qt widgets that are derived from QWidget.

116

http://doc.qt.io/qt-6/qtwidgets-index.html

GUI Design in MeVisLab

Note that it does not work for the MDL controls themselves, because they have no own visual
representation, but they aggregate Qt widgets.

Note

Avoid mixing the MDL styles and the CSS styles within the same MDL controls, because
MDL styles manipulate the QPalette of the underlying widgets and the style sheets override

the QPalette.

Let's have a look at the panel we already know from its element and control names.

Figure 11.16. View3D Panel with Qt Widgets

r
4 Panel View3D

Probzand
001 M
19780101

liniicurn Braemen Mitta
MUMARIS /A
MIF

RN QTabWidger
General | LUT OJEE[eEEton | Clipping | 4|

Viewer

Axial

View All | ¥ Auto view all
_vewa | OENShBULeR
‘ Sagittal | Coronal } Profile

-:-E-Q‘

OGratpBoOX

Time Point: 0 El:. SiﬂB@‘x

Mode
Mode:
Interactive Quality:
Quality:
Orientation
W on

Model
Projection Type:

Location

Volume Rendering ~
Medium -

Cube - QCembaBesk
Perspective ¥
Lower Right

Settings
v Background

Screenshot

W Annotations

Rendering

W High resd @B nEeEEg

Like for all modules, a module using the CSS style sheets would have a . scri pt in which the elements
of the GUI are defined. In addition, the stylesheet is referenced.

Interface {
Paranmeters {
Field nanme {
type = string
}

}

W ndow {

styl eSheet File = $(LOCAL)/ Test Styl eSheet s. css

Vertical Tabl {
expandY = yes
Box Box {

Field nanme { }

}

Box Buttons { | ayout = Hori zontal
Button { title = Sonmething }
Button { title = Testing }

}

Box ListView{ |ayout = Horizontal

117

GUI Design in MeVisLab

Li st Vi ew {
val ues = " Col um1, Col umm2$Val uel, Val ue2$Val ue3, Val ue4"
col umSepar ator =,
rowSeparator = $

}
}
SpacerY {}
}
Vertical Tab2 { expandY = yes
}

}
The styling of the elements is then done in the style sheet.

Excerpt from Test St yl eSheet s. css:

QrabW dget {
background: white;
}

QSt ackedW dget {
background: white;
}

QrabW dget:: pane { /* The tab wi dget frame */
border-top: 2px solid #C2C7CB;
}

QrabW dget : : t ab- bar {
left: 5px; /* nove to the right by 5px */
}

/* Style the tab using the tab sub-control. Note that
it reads QrabBar _not__ QTabW dget */
QrabBar: :tab {
border-i mage: url ("$(LOCAL)/style/tabl. png") 10 10 2 10;
bor der -t op: 10px transparent;
border-right: 10px transparent;
border-bottom O transparent;
border-left: 10px transparent;
m n-wi dt h: 8ex;
paddi ng: 2px;
}

QrabBar: : t ab: sel ect ed, QTabBar::tab: hover ({
border-i mage: wurl ("$(LOCAL)/styl e/tab2.png") 10 10 2 10;
}

QPushButton {
border-i mage: url ("$(LOCAL)/styl e/button.png") 6 10 6 10;

border-top: 6px transparent;

bor der-bottom 6px transparent;
border-right: 10px transparent;
border-left: 10px transparent;

}

To inspect the QWidgets of a panel you can use the Widget Explorer. It shows the widget hierarchy of all
windows and displays some information about the widgets, for example if the widget is directly owned
by a control. The Widget Explorer also allows for dynamically altering the style sheets.

Note that you cannot use the control names for CSS ID selector, because it does not set the object
name on the widget, but on the control. You can set the object name of the widget with the MDL tag

widgetName.

118

http://doc.qt.io/qt-6/stylesheet-syntax.html#selector-types

Chapter 12. Excursion: Image
Processing in ML

12.1. Some Advanced Information on Image
Processing

In this chapter you will find a brief survey of some more advanced image processing concepts used in
MeVisLab. Many of them are also discussed in the ML Guide, chapter “Image Processing Concepts”.
Please refer to this document for further information.

12.2. Structure of MeVisLab

In the following figure, the basic structure MeVisLab is shown:

Figure 12.1. MeVisLab Structure

MeVisLab IDE User-defined
Application
Networks, GUI Python
Macros (MDL Scripting) Scripting

MeVisLab Module Abstraction

N\ ;‘/
@\n modules CD

MeVisLab is based on C++ objects called modules which either belong to the ML type system developed
at MeVis or to the Open Inventor type system from SGI. Both module types offer a generic parameter
field system for parametrization and change notification. Open Inventor modules together form a scene
graph for interaction and rendering in OpenGL, while the ML modules can be connected to form an
image processing pipeline.

Image processing in the ML is demand-driven (in that only the required parts of an image output are
calculated) and tile-based (this is used for caching of results). As an additional benefit, many classes

119

Excursion: Image
Processing in ML

from the ITK and VTK libraries are provided in the ML type system through code-generated wrapper
modules.

Mixed modules belong to either system but can take input from the other system, thereby serving as
a bridge between systems.

MeVisLab unifies these two module systems with another internal layer that abstracts away the
differences between these systems. Stacked upon that layer is

» asystem to turn whole module networks into new macro modules with an interface of their own. Macro
modules may be built upon other macro modules.

* a GUI system where the elements are generated from a hierarchical description file, automatically
providing access to the parameter fields of the modules if desired.

» an interface to the scripting language Python with full access to the modules and GUI widgets,
including the ability to generate new modules or widgets.

Based on these functionality one can build, test and evaluate own applications with the integrated

development environment and — with the proper license — generate own installers with standalone
applications.

12.3. Coordinate Systems

In MeVisLab, three coordinate systems exist next to each other:
» World coordinates
* Voxel coordinates

» Device coordinates

Figure 12.2. Coordinate Systems

A J

rd L1 L L L 1 1
/ |
> > (T

world (mm) voxel device (pixel)

1ldToVoxel
xelToWorld

The blue rectangle shows the same region in the three coordinate systems.
World coordinates are:

» Global: Combine several objects in a view

» Absolute: Measure distances and angles

* Isotropic: All directions are equivalent

» Orthogonal: Coordinate axes are orthogonal to each other

Voxel coordinates are:

120

Excursion: Image
Processing in ML

Relative to an image
» Dependent on voxel spacing
e Continuous from [0..x,0..y,0..z], voxel center at 0.5

« Often non-isotropic, sometimes non-orthogonal

Direct relation to voxel location in memory
Device coordinates are:

» 2D coordinates in OpenGL viewport

* Measured in pixel

» Have their origin (0,0) in the top left corner of the device (with x-coordinates increasing to the right
and y-coordinates increasing downwards)

12.4. Affine Transformations

For mapping e.g., world to voxel coordinates, or device to world coordinates, affine transformations have
to be applied. This is done with homogeneous coordinates:

» Extend the (x,y,z) triple by an artificial coordinate with a fixed value 1.
« Affine transforms can then be represented by a single matrix multiplication.
Why not a 3x3 matrix? Two reasons:

1. One cannot construct a 3x3 matrix that will translate the point (0,0,0). The zeroes in the coordinate
vector cancel out all the coefficients.

2. Transformations could not be combined by multiplying the matrices.
Affine transformations have these elementary transforms:

» Translation (moves an object along a direction vector)

Rotation (rotates the object around an axis vector)

Scaling (shrinks/grows the object size)

Shearing (deforms the object; rare in medical image data)

Figure 12.3. Matrix Multiplication

’U;,_ l, Uy
' 1

(l-'._}y _ J'."L[t y 'Lry

v! t, v,

121

Excursion: Image
Processing in ML

Tip

Look at the example Chapter 5, Defining a Region of Interest (ROI) for the module
Wor | dToVoxel in action.

The voxel coordinate system is a continuous coordinate system. Voxel boundaries are at integer values,
voxel centers are 0.5 off. To transform integer voxel indices to voxel centers in world coordinates, either
add the value “0.5” to voxel indices or check the option Integer Voxel Coordinates in the modules
Wor | dVoxel Convert, SOM.Tr ansf or m and others.

Common pitfalls
» Computing the voxel volume: getVoxelSize() returns voxel spacing in x, y and z. The product of these
values is not the voxel volume if the voxel-to-world-matrix is not orthogonal. Solution: Use the absolute

value of the matrix determinant instead.

* Inventor using row vector conventions: ML and MeVisLab use the widespread column vector
conventions, that is vectors are written as columns and matrices are applied by left-multiplication.
Open Inventor, in contrast, uses row vector conventions, that is vectors are written as rows and
matrices are applied by right-multiplication. Solution: Use the matrix transposition to convert a matrix
from one convention to the other.

12.5. DICOM Data and Coordinates

A mixed type are DICOM "coordinates". They are mostly world coordinates but refer to the patient axes.
» Based on the patient's main body axes (axial/transverse, coronal, sagittal)

* Measured as 1 coordinate unit = 1 millimeter

* Right-handed

» Not standardized regarding their origin

Figure 12.4. World Coordinates in Context of the Human Body

ittal Plane

)
a
o

Coronal Plane

Transverse Plane

-

[Bouy Planes

The DICOM (Digital Imaging and Communications in Medicine) standard is a data format that groups
information into data sets. This way, the image data is always kept together with all meta information like
patient ID, study time, series time, acquisition data etc. The image slice itself is essentially just another
tag with pixel information.

DICOM tags have unique numbers, encoded as 2x4 numbers in hexadecimal notation (0000,0000). The
first four numbers are the data group, the second four numbers the data set/tag.

122

Excursion: Image
Processing in ML

Note
&

Although DICOM is a standard, often the data that is received / recorded does not follow
the standard. Wrongly used tags or missing mandatory tags may cause problems in data
processing.

Some typical modules for DICOM handling:

e DirectDi com nport is a module for DICOM import that reads images directly from slices, without
an intermediate representation.

It has a lot of options to control the import process, which can, e.g., determine which slices are
combined into an image stack.

e Di com nport is a new module for DICOM import. The new implementation does not yet provide all
known functionalities from Di r ect Di coml nport, most of them will be added in future releases. Its
main advantage is that the import process is faster and happens asynchronously.

* You can view the image-wide DICOM tags with the module Di coniTagBr owser .
* You can view and cut out frame-specific tags with the module Di conFr aneSel ect .
* You can modify DICOM tags with the module Di coniraghodi fy.

* You can also create a new DICOM header for an image file with the | mageSave module, tab Options,
Save DICOM header file only.

e Saving of loaded DICOM data to the filesystem or sending to a PACS (Picture Archiving and
Communication System) is possible with the Di conTool macro module.

e Basic support for querying and receiving DICOM data from a PACS is available through the
Di conQuery and Di conRecei ver modules.

Tip

For handling and manipulating DICOM data, the DICOM toolkit “DCMTK” (DICOM@offis)
is recommended. Parts of this toolkit are also used in MeVisLab.

Figure 12.5. The DICOM Tag Browser

fﬁ' Panel DicomTagBrowser P S
D Name |VR |Va|ue M
(0008,0023) ContentDate DA 20090205
(0008,0030) StudyTime TM 095919.015000
(0008,0031) SeriesTime TM 101052.031000
(0008,0032) AcquisitionTime T™M 100630.717500
(0008,0033) ContentTime TM 104828.401000
(0008,0050) AccessionNumber SH
(0008,0060) Modality CS MR
(0008,0070) Manufacturer LO SIEMENS
(0008,0080) InstitutionName LO Klinikum Bremen Mitte
(0008,0081) InstitutionAddress ST St Juergen Str 1,Bremen,Hansere...
(0008,0090) ReferringPhysicianName PN Stroke Unit Bremen Mitte Station ...
(0008,1010) StationName SH MRC25064
(0008,1030) StudyDescription LO KOPF~TEST_AG Fahle
(0008,103e) SeriesDescription LO t1_mpr_sag_VICORA
(0008,1050) PerformingPhysicianName PN Len
(0008,1070) OperatorsName PN Die
(0008,1090) ManufacturerModelName LO NUMARIS/4
-1 (0008,1140) ReferencedImageSequence SQ
=-[0]
(0008,1150) ReferencedSOPClassUID Ul 1.2.840.10008.5.1.4.1.1.4
(0008,1155) ReferencedSOPInstanceUID UI 1.3.12.2.1107.5.2.30.25064.20070...
= [1]
(0008,1150) ReferencedSOPClassUID Ul 1.2.840.10008.5.1.4.1.1.4 j
Name Filter: |

123

Excursion: Image
Processing in ML

12.6. Coordinate Systems in the MeVisLab
GUI

You can find information about the voxel and world matrix in the image properties on the Output
Inspector View.

The easiest (ideal) image is when the world and the voxel matrix correspond, so that one voxel is one
world unit, and the world matrix is coronal (not tilted in any way). In case of an image taken in the sagittal
position, voxel sizes may be different and the world matrix may be tilted.

Figure 12.6. Image Properties for an Ideal Image

Qutput Inspector: Locallmage.outimage (Image) [4

o | 30| + o8
Image Properties

Image Size: (64, 64, 64, 1, 1, 1)
Page Size: (54,64, 1,1, 1, 1)
Data Type: unsigned int16 Range: [0.0, 4095.0]

Voxel Size: 1,1, 1
‘orld Matrix: 1
a
a
1]
More Info... |

Options

Update Min Max I~ Auto
Set Default LUT W Auto
View Al ¥ Auto

Save Image As... |

o
o
1
0

== =]
rooo

Settings... |

Figure 12.7. Image Properties for a Sagittal Image

Qutput Inspector: Locallmage.outimage (Image) [4

* O B8 o
Image Properties
Image Size: (109,91,80,1, 1, 1)
Page Size: (54,48, 1, 1,1, 1)
Data Type: unsigned int16 Range: [0.0, 5179.0]
Voxel Size: 1,953, 1,953, 2
orld Matrix:0.0613 0.05734 -1.998 74.36
1.952 -0.0028660.06271 -133.9
-0.001065-1.952 -0.05875120.3
a a a 1

More Info... |

Options

Update Min Max I~ Auto
Set Default LUT W Auto
View Al ¥ Auto

Save Image As... |

Settings... |

Note

In DICOM, the voxel thickness does not necessarily correspond to the distance between
slices. In MeVisLab however, the calculated voxels close the slice distance.

124

Excursion: Image
Processing in ML

Tip

Also see the I nfo module and its help for further information on the displayed data,
especially the calculation of the slice thickness z.

Figure 12.8. Image Properties in the | nf o Module

¥ Panel Info l =NASS X
Main] Advanced] Time Points | Type Information] Internal]
Image Size
Y 100 Y: 91 Z: 80 C: 1T 1 U 1
Page Size
X 64 Y 48 Z: il G 1 T: 1 WU 1
Image Data
Type: unsigned int16 Min: 0 Max: 5179
Voxel Size
Y 1.95312 Y: 1.95313@ a
Volume Info
Voxel Volume: 0.00763 ml Total Volume: 6054.1 ml = 0.76 Mega Voxels
Image State
State: Ok

12.7. Data Types for DICOM and TIFF

The DICOM standard does not support pixel data types other than signed and unsigned integer, and
the maximum bit depth is 16. This is the reason why in MeVisLab, the data is saved as float and (u)int32
data in DCM/TIFF format. This data type is correctly encoded in the TIFF format, and the DICOM file
is written as if it was an (u)int16 image.

The data is saved as follows:

The TIFF file stored as part of a DCM/TIFF pair is a fairly standard TIFF file. For storing 3D images,
the SGI 3D TIFF extension is used. 4D images are stored as 3D, the time dimension being unfold
into the z-dimension.

The DCM file in a DCM/TIFF pair is a fairly standard DICOM file, except that it does not contain the
pixel data tag. The contents of such a file can be read with the dcndunp tool by DICOM@offis, for
example. Some information gathered during the original DICOM import, such as the individual time
points in a 4D data set and the values of frame specific tags, are stored in private DICOM tags. There
is no official documentation of these private tags.

In MeVisLab, the libraries i btiff and dcnt k (by DICOM@offis) are used to read these files. The
following applies:

When opening such a DCM/TIFF pair, the data type stored in the TIFF file has precedence over the
one in the DCM file. This mechanism is described in the help pages of the | nregeSave and | mageLoad
modules.

If a DICOM file contains illegal values, the data is not regarded as valid DICOM and is completely
ignored. The TIFF file is handled as if the DICOM file did not exist.

The MeVisLab binding (for example as used in | mageSave and | rageLoad) does not support the double
image data type for TIFF.

125

Excursion: Image
Processing in ML

As consequence, images with data of the type double cannot be saved as TIFF by | mageSave.
As a workaround, you can either convert the data type to float or use M.I neageFor mat Save and
M.I mageFor mat Load.

However, the images can be saved as RAW images with double data type.

®
®

Tip

For loading several TIFF files, use the module | mageLoadMul ti. This should not be
confused with loading a multi-page TIFF file (in which several images are saved); that format
is not supported by MeVisLab.

Tip

The page size delivered by the | mageLoad module is actually not determined by the
pageSi zeHi nt field, but by the file format module reading the image data. Only if the
file format allows reading the image data in different (or even arbitrary) pages, the
pageSi zeHi nt is used. (That is why it is called page size hint and not page size.) For the
TIFF format, the page size is fixed by the size of the tiles in the TIFF file holding the image
data. To change the page size for successive modules, | magePr opert yConvert needs to
be used. For RAW images, the page size hint can be set.

12.8. Image Processing Concepts: Pages,
Slices, VirtualVolumes, and More

In MeVisLab, a variety of image processing concepts is available. They differ in scope:

Page-based approaches:

» Page-based

* Voxel-based

» Slice-based

» Kernel-based

Semi-global approaches:

» Random Access (Tile requesting)

» Sequential Image Processing

* Virtual Volume

Global approaches:

e Temporary Global

* Global

* Memory Image

All those concepts are discussed in detail in the ML Guide, chapter “Image Processing Concepts”.

When choosing your approach, keep in mind that some of the concepts are not scaling well for larger
images. For example, the page-based approach can only be beneficial if the pages are of a size so
that they actually fit into memory, or can be administered by the internal ML host / cache. Always

126

Excursion: Image
Processing in ML

try to set the page sizes to some reasonable values, like 128x128x1x1x1x1. You can do this with
I magePr opert yConvert modules (insert them right after the loading modules in your network).

Tip

The ITK modules frequently produce memory allocation problems for large images because
they try to load the entire image at once. You can find out about the memory management
in the ITK module help. Look for something like PageExt =l ngExt or global “memory
management”. If you find these, the module cannot work page-based.

127

Chapter 13. Introduction to C++
Modules

There are different types of modules that may be developed by the user of MeVisLab:

Macro modules
Image processing (ML) modules

Open Inventor modules

There are several noticeable characteristics for all these modules types, and it is not always easy to
choose the best way of implementing a new project. In the following chapter, you will find information on:

Section 13.1, “Module and Connection Specifics on the C++ Level”

Section 13.2, “Some Tips for Module Design”

Section 13.3, “Programming Examples”

13.1. Module and Connection Specifics on
the C++ Level

ML modules on the C++-level:

Image processing modules are objects derived from class Modul e defined in the ML library and
therefore are also called ML modules.

Image inputs and outputs are connectors to objects of class PagedIl mage, which are defined in the
ML library.

Inputs and outputs for abstract data structures are connectors to pointers of objects derived from
class Base and are called Base objects.

Inventor modules on the C++-level:

Most Inventor modules are objects derived from class SoNode defined in the Open Inventor library.

Inventor inputs and outputs are connectors to objects derived from class SoNode defined in the Open
Inventor library. Many Inventor modules will return themselves as outputs (“self”). On inputs, they may
have connectors to child Inventor modules.

Some Inventor modules are objects derived from class SoEngi ne. They are used for calculations and
return their output not via output connectors but via fields.

Inventor modules may also have input and output connectors to Base objects and Image objects.

All standard Inventor nodes defined in the Open Inventor library are available in MeVisLab as Inventor
modules.

Modules

In Section 2.3, “MeVisLab Modules”, we introduced modules by their functions and looks. Here a brief
look at their programming basis:

1 Inventor Modules: green. Objects derived from class SoNode or SoEngine defined in the Open
Inventor library.

128

Introduction to C++ Modules

2 ML Modules: blue. Objects derived from class Module defined in the ML library.
3 Macro Modules: brown. MeVisLab intern objects of the type MLABMacroModule.
There is no special module type for MLBase objects.

Module Inputs/Outputs

1 Inventor: Inputs/Outputs: half-circles. Connectors from/to objects derived from class SoNode defined
in the Open Inventor library .

2 Image: Inputs/Outputs: triangles. Connectors from/to Image objects of type Pagedimage defined in
the ML library.

3 Base: Inputs/Outputs: squares. Connectors from/to objects derived from class Base defined in the
ML library.

13.2. Some Tips for Module Design

13.2.1. Macro Modules or C++ Modules?

Advantages of macros:
1. Macros are useful for creating a layer of abstraction by hierarchical grouping of existing modules.
2. Scripts can be edited on the fly:

* no compilation and reload of the module database necessary

 scripting possible on the module or network level

« scripting supported by the Scripting Assistant View (basically a recorder for actions performed
on the network)

Disadvantages:

With macros, only existing functionalities and algorithms can be used.

Conclusion:

» For rapid prototyping based on existing image processing algorithms, use macros.

» For implementing new image processing, write new ML or Open Inventor modules.

13.2.2. Combining Functionalities

It is possible to have ML and Open Inventor connectors in the same module. Two cases are possible:

» Type 1: ML -> visualization: Image data or properties are displayed by a visualization module. Usually
a SoSFxVI mage field gets random access to an ML image by get Til e(). Examples: SoVi ew2D,
d obal Statistics.

» Type 2: visualization -> ML: Modules generate an ML image from an Inventor scene. Examples:
Voxel i zel nvent or Scene, SoExani ner Vi ewer (hidden functionality).

Generally, however, it is not always a good solution to combine that, as the processes of image
processing and image visualization are usually separated.

Therefore, rather separate the ML and Open Inventor functionalities into two modules. This way,

129

Introduction to C++ Modules

« functionality is encapsulated and can be reused as module

« modules for the single steps may already be available in MeVisLab and spare you a new development

13.2.3. Tips for Module Testing

First, test your modules and networks with the MeVisLab TestCenter, see Chapter 16, Using the
TestCenter for an introduction and the TestCenter Reference for further information.

After being done with the module and macro tests, make sure to stress your network’s algorithms and
processing speed by testing with

* large data sets

» images with anisotropic voxels

 images with non-trivial world matrix (translated or rotated)

Many of the possible problems will only occur with these kinds of data.
In addition, keep in mind that modules

* need to run platform-independent

 should offer a well-designed panel for future users

 should come with a useful help and example network

13.3. Programming Examples

Besides the examples in the next chapters, several programming examples are available in the
MeVisLab software development kit.

For these modules to be available, the module group “Module Examples” has to be enabled, see
Preferences — Module Groups.

The module data can be found at

e Sources: Packages/ MeVi sLab/ Exanpl es/ Sour ces/ Exanpl es/ M./ . . .

e Modules: Packages/ MeVi sLab/ Exanpl es/ Modul es/ Exanpl es/ M/ . . .

Some modules are combined in one DLL, like the MLExample modules.
Tip

See the chapter Section 14.3, “Combining Two Modules in One Project” on how to combine
modules into one DLL.

Here is an overview of the most important example modules, listed by module name.

» Addl magesExanpl e (Class: Addl magesExanpl e; DLL: AddimagesExample)
Startup example for ML module programming.

* ProcessAl | PagesExanpl e (Class: ProcessAl | PagesExanpl e; DLL: ProcessAllPagesExample)
Shows how to process all pages using multi-threading and the TypedOutputHandler.

» d obal Pagedl mageExanpl e (Class: nl G obal Pagedl nageExanpl e; DLL: MLExample)

130

Introduction to C++ Modules

This module demonstrates how a Vi rt ual Vol ume and/or a TVi r t ual Vol une instance can be used
to get a random read/write access to an input image during page-based processing and to demand
driven image processing.

AsyncProcessAl | PagesExanpl e (Class: m AsyncProcessAl | PagesExanpl e; DLL:
MLBackgroundTasksExamples)

This module (like some others in the same DLL) demonstrates how image processing tasks can be
performed in the background of the main process so that the GUI stays responsive.

ReadDl COMragExanpl e (Class: ml ReadDl COMTagExanpl e; DLL: MLReadDICOMTagExample)
Shows how to read DICOM tags from the internal image representation.
Ker nel 31 n2Qut Exanpl e (Class: m Ker nel 31 n2Qut Exanpl e; DLL: MLKernelExamples)

Example class to demonstrate the implementation of a kernel-based algorithm with three inputs and
two outputs in the ML.

Ker nel Exanpl e (Class: m Ker nel Exanpl e; DLL: MLKernelExamples)
Example class to demonstrate the implementation of a kernel-based algorithm in the ML.
Separ abl eKer nel Exanpl e (Class: M Separ abl eKer nel Exanpl e; DLL: MLKernelExamples)

Example class of the implementation of a kernel-based algorithm in the ML which implements
separable kernel filtering.

Tip

Similar examples are available for MDL panels; for those, search for modules starting with
“Test...”.

131

Chapter 14. Developing ML Modules

In the following chapter, the development of ML modules will be shown in three examples.

1. An ML module that allows adding a user-defined constant value to image voxels, see Section 14.1
“Creating a New ML Module for Adding Values”.

2. A more complex ML module that calculates a simple average over voxel values of an entire image,
see Section 14.2, “Creating an ML Module For Simple Average”.

3. Combining the two ML modules in one project (which results in one DLL), with a discussion of the
pros and cons of such combinations, see Section 14.3, “Combining Two Modules in One Project”.

The following examples are developed very explicitly to give you some insight into the ML, the MeVis
image processing library. Another useful way to start with module development is to copy the source
code of an existing module that might already have some of the wanted functionality and adapt it to your
needs. For further information, please refer to the ML Guide.

‘ Note
Developing C++ modules requires a C++ development environment being available on your
computer, for example Visual C++ on Windows or Xcode on Mac OS X.

’ Note
It is recommended to open and compile the debug versions for development.

14.1. Creating a New ML Module for Adding
Values

In the following chapter, we will create a new ML module with the functionality of adding a value to all
voxels, in the following steps:

» Section 14.1.1, “Creating the Basic ML Module with the Project Wizard”

» Section 14.1.2, “Preparing the Project”

Section 14.1.3, “Programming the Functions of the ML Module”

Section 14.1.4, “GUI Creation/Optimizing”

Section 14.1.5, “Creating an Example Network and Help File”

Tip

This example is delivered with MeVisLab (. def file in $(1nstall Dir)Packages/
MeVi sLab/ Exanpl es/ Modul es/ Getti ngSt art ed/ MLSi npl eAddExanpl e, source files in
$(I nstal | Di r) Packages/ Exanpl es/ Sour ces/ Get ti ngSt art ed/ M_Si npl eAddExanpl e).
The module can be added via quick search.

14.1.1. Creating the Basic ML Module with the Project
Wizard

1. First of all, make sure that you have a user package defined as described in Section 8.2, “Creating
a User Package for Your Project” or create it now.

132

Developing ML Modules

2. Then run the Project Wizard and select the link ML Module. This starts the Wizard for C++/ML
Modules. Enter the following:

* Name: SimpleAdd

» Comment: Adds a constant double value to each voxel.
» See Also: Arithmeticl

e Target Package: Example/General

e Project: SimpleAdd

Click Next to proceed.

Figure 14.1. Entering the ML Module Properties

Module Properties ‘

Enter the general properties of the module.

~General Module Properties

Name: * |SimpIeAdd Author: * |1Doe

Comment: |Adds a constant double value to each voxel.

Keywords: |

See Also: |Arithmetic1

Genre: |Image Choose | [~ Add reference to example network
— Select Target Package

Package: * |Examp|e,"GeneraI j
~Project Properties

Directory Structure: Im

Project: * |SimpIeAdd Prefix: ML Select |
¥ Include project files

* : Required fields

< Back | Next = | Create | SaveSettingl Close |

3. Onthe dialog Imaging Module Properties, the inputs and outputs as well as possible sample code
can be added to the ML module.

133

Developing ML Modules

Figure 14.2. Entering the Imaging Module Properties

Imaging Module Properties ‘

Enter imaging properties of the module.
~Module Type
 Mew style ML module
@ e

—~Number of Input/Output Images
Inputs: | 1 i’ Outputs: | 1 i’
~Image Processing Methods
v Add calculateInputSubImageBox()
[” Modify inputfoutput data types

v Add calculateOutputSubImage() template

[v Add voxel loop to calculateOutputSubImage()

™ Use type free loop

< Back | Next = | Create | SaveSettingl Close |

Select the Module Type Classic ML Module. For information on the differences, see the MeVisLab
Reference Manual, chapter “ML Wizard".

Enter the following settings:

e Inputs: 1

Outputs: 1

Check Add calculateOutputSublmage() template.

Check Add voxel loop to calculateOutputSublmage().

On the dialog Additional Module Properties, the inputs and outputs as well as possible sample
code can be added to the ML module.

134

Developing ML Modules

Figure 14.3. Additional Module Properties

Additional Module Properties ‘

Enter additional properties of the module.

—~Parameter Handling
v Auto-update output images on field changes
[~ Add handleInput()

¥ Add activateAttachments()
~Documentation / GUI
[~ Add configuration hints

¥ : Add MDL window with fields:

< Back | Next = Create Save Setting Close

Make the following settings:

« Check Auto-update output images on field changes (adds handleNotification).
e Check Add activateAttachments().

* Check Add ML window with fields.

5. On the dialog Module Field Interface, the fields of the module can be defined (more fields can be
added later but this is the easiest way to add fields).

135

Developing ML Modules

Figure 14.4. Entering the ML Module Properties — Fields

r B

Module Field Interface ‘

Add fields to the interface of the module.

Name |T',rpe |Comment |Va|ue |Enum Values
constantValue Double This constant value is added to each voxel. 0

| 2]
Remaove | Remave All |
Field Name: |constant\l'a|ue Field Type: IDoubIe 'l

Field Comment: |This constant value is added to each voxel.

Field Value: |0

Enum Values: |

< Back | Next = | Create | Save Settingl Close

Click New to create a new field, then enter the following:
* Field Name: constantValue
e Field Type: Double
* Field Comment: This constant value is added to each voxel.
* Field Value: 0.
6. Click Create to create the module.
In the default file browser of your system, two folders are opened:
« folder with the source code: { packagePat h}/ Sour ces/ M./ M_Si npl eAdd

« folder with the module's GUI definition: { packagePat h}/ Modul es/ M./ M_Si npl eAdd

‘ Note
For a full list of all created files and their contents, refer to the MeVisLab Reference
Manual, chapter “ML Module — Created Files”.

The foundation of the module has been created with the Wizard. From here on, the programming starts.
Tip
The Wizard will not close automatically. This way, you can change settings or fields and
create the module once more.

After module creation, the module database needs to be reloaded.

136

Developing ML Modules

14.1.2. Preparing the Project

The Project Wizard creates a Cvakeli st s. t xt file that describes the typical projects settings and used
source files. This file can be translated manually with the CMake tool into a project file for your preferred
C++ development tool. But most Integrated Development Environments (IDEs) nowadays can open
CMake files directly.

Just make sure that the MLAB_ROOT environment variable is set on your system and points to the
Packages directory of your MeVisLab installation, because this is used to resolve the reference to the
'MeVisLab' project.

For further documentation about our use of CMake see: CMake for MeVisLab - Documentation.

14.1.3. Programming the Functions of the ML Module

Open the file M Si npl eAdd. cpp.

' Note
In the following code examples, the comment lines already available in the created . cpp
file are added for better overview.

14.1.3.1. Implementing cal cul at eQut put | magePr operti es

As we add a constant value to each voxel, we need to adjust the value range of the output image, which
results in:

inMn + const Val ue
i nMax + const Val ue

outM n
out Max

In code, this is:

/1! Sets properties of the output image at output outl ndex.

voi d Si npl eAdd: : cal cul at eQut put | nageProperties (int outlndex, Pagedl nage* outl mage)

{

/1 get the constant add val ue
const M.doubl e const ant Val ue = _const ant Val ueFl d- >get Doubl eVal ue();

/1 get input image's min and max val ues
const M.doubl e i nM nVal ue = getl nput | mage(0) - >get M nVoxel Val ue() ;
const M.doubl e i nMaxVal ue = getl nput | mage(0) - >get MaxVoxel Val ue() ;

/1 set the output image's nmin and max val ues

out put | mage- >set M nVoxel Val ue(i nM nVal ue + const ant Val ue) ;
out put | mage- >set MaxVoxel Val ue(i nMaxVal ue + const ant Val ue) ;

’ Note
out | ndex is the index number of the output connector.

14.1.3.2. Implementing cal cul at eQut put Subl mage

1. Loop over all voxels of the output page and add the constant value. The loop is already generated
by the wizard, so only the following line has to be added at the start of the method, to obtain the
constant value in the correct data type:

137

https://cmake.org/

Developing ML Modules

/1l Conmput e subi nage of output inmage outlndex frominput subimages.
const T constantValue = static_cast <T>(_const ant Val ueFl d- >get Doubl eVal ue());

That is the datatype of the output image which is the data type of the input image.

Then change the inner line of the following loop from *out Voxel = *i nVoxel 0; to *out Voxel =
*inVoxel 0 + const ant Val ue; so that the constant value is added to the value of the input voxel:

// Process all row voxels.
for (; p.x <= rowknd; ++p.x, ++outVoxel, ++i nVoxel 0)

{

*out Voxel = *inVoxel 0 + const ant Val ue;

}

Compile the project (this includes all module files) in the development environment.

(Re)start MeVisLab.

‘ Note

If the module was edited in the debug version, MeVisLab must be run in the debug mode.
The restart is necessary
« so that the Modul eNane. def file can be found and parsed by MeVisLab.

< so that the module DLL is copied to the correct location, from a temporary source folder to the lib
folder. (If a . def file exists but no DLL is found, the module is displayed in red in MeVisLab.)

The module is now available in the (quick) search. Add it to the network.

14.1.4. GUI Creation/Optimizing

1.

For optimizing the GUI of the module — that is the panel — open the . def file. You can do that
in two ways:

« Open the . def file in your development environment. The downside is that the development
environment does not support the MDL language of the . def file.

e Open the . def file in the inbuilt text editor MATE, by right-clicking the module in MeVisLab and

selecting Related Files -~ MLSimpleAdd.def from the context menu. The advantage is that
MATE supports MDL (and Python). Therefore, it is recommended to edit MDL files primarily with
MATE. (More information on MATE can be found in the MeVisLab Reference Manual, chapter
“MATE".)

Add the line st ep = 100 to the definition of the field const ant Val ue in order to adjust the constant
value conveniently. (Smaller steps are barely visible in the output.)

W ndow {
Vertical {
margin = 3
Fi el d const ant Val ue {
tooltip = "This constant value is added to each voxel ."
step = 100 /1 big change for big effect
}
}
}

Reload the module definition by right-clicking the module and selecting Reload Definition from the
context menu. This will only reload the GUI definition, not the module DLL.

138

Developing ML Modules

4. To check if everything worked, double-click the module to open the panel and test

Congratulations, you have now implemented your first page-based and demand-driven ML image
processing module!

As last step, we will create a little example network.
14.1.5. Creating an Example Network and Help File

1. Loadthe example network of the module via File - Open. Its name is automatically constructed as
<Mbdul eName>Exanpl e. nl ab. So far, the example network only includes the module itself.

2. Add two modules to the network, namely Local | mage and Vi ew2D. Connect the image input to the
bottom connector and the image output to the top connector of Si npl eAdd.

3. Double-click Si npl eAdd to open its panel and Vi ew2D to open the viewer. When you now change
the steps, the image display changes.

Figure 14.5. Example Network for SimpleAdd

SimpleAdd

Locallmage |E

7 pre smpetad, it

4. To create the help, right-click the new module and select Edit Help from the context menu. This
opens the integrated text editor MATE in a mode to edit a module's help file. See Section 27.9,
“Module Help Editor” for more information.

Now the module is ready for usage.

The module including the example network and help file are delivered with the examples of MeVisLab,
so feel free to check it out and play around with it.

14.2. Creating an ML Module For Simple
Average

In the following chapter, we will create a new ML module that calculates an average over voxel values,
in the following steps:

¢ Section 14.2.1, “Creating the Basic ML Module with the Project Wizard”

139

Developing ML Modules

e Section 14.2.2, “Editing the Header File of Si npl eAver age”

e Section 14.2.3, “Editing the CPP File of Si npl eAver age”

Tip
This example is delivered with MeVisLab (. def file in $(1nstallDir)Packages/
MeVi sLab/ Exanpl es/ Modul es/ Getti ngSt art ed/ MLSi npl eAver ageExanpl e, source

fles in $(InstallDir)Packages/ MeVi sLab/ Exanpl es/ Sour ces/ GettingSt art ed/
M.Si npl eAver age). The module can be added via quick search.

14.2.1. Creating the Basic ML Module with the Project
Wizard

For the following example, we expect the user package Exanpl e/ General to be available, see
Section 14.1.1, “Creating the Basic ML Module with the Project Wizard".

1. Run the Project Wizard and select the link ML Module. This starts the Wizard for C++/ML Modules.
Enter the following:

a. Name: SimpleAverage

b. Comment: Computes the average voxel value of an image.
c. Keywords: Statistics Average

d. See Also: ImageStatistics

e. Target Package: Example/General

f. Project: SimpleAverage

Click Next to proceed.

2. Onthe dialog Imaging Module Properties, the inputs and outputs as well as possible sample code
can be added to the ML module.

Select the Module Type Classic ML Module. For information on the differences, see the MeVisLab
Reference Manual, chapter “ML Wizard”.

Enter the following settings:

e Inputs: 1

e Qutputs: 1

e Check Add calculateOutputSublmage() template.

* Check Add voxel loop to calculateOutputSubimage().

‘ Note
Although we will have no real "output" of the module, it is helpful to create an output
here, as this will add some of the ML methods necessary for the module functionality.
It is easier to exchange or delete some code than to add new code sections manually.

Click Next to proceed.
3. On the dialog Additional Module Properties, check Add MDL window with fields.

Click Next to proceed.

140

Developing ML Modules

6.

7.

On the dialog Module Field Interface, create two new fields:
One field to keep the calculated value:

¢ Field Name: voxelValueAverage

e Field Type: Double

* Field Value: 0.

One field that will function as Update button:

« Field Name: update

« Field Type: Notify

Click Create to create the module.

In the default file browser of your system, two folders are opened:
 folder with the source code: { packagePat h}/ Sour ces/ M./ ML_Si npl eAver age

« folder with the module's GUI definition: { packagePat h}/ Modul es/ M./ MLSi npl eAver age

‘ Note
For a full list of all created files and their contents, refer to the MeVisLab Reference
Manual, chapter “ML Module — Created Files”.

Reload the module database.

Prepare the project, as described in Section 14.1.2, "Preparing the Project”.

14.2.2. Editing the Header File of Si npl eAver age

1.

2.

Open the file n Si npl eAver age. h.

Add the following two lines to the pri vat e section

/1!
Noti fyFi el d* _updat eFl d;

size_t _nunVoxel s;
M_doubl e _sunWVoxel Val ues;

They will be used as follows: All voxel values are added (_sunVoxel Val ues) and divided by the
number of counted voxels (_nunVoxel s).

Remove the following lines.

/]! Sets properties of the output inmmge at output outlndex.
virtual void cal cul at eCut put | magePr operti es(i nt out put | ndex,
Paged!| mage* out put | mage) ;

The virtual function calling cal cul at eQut put | magePr operti es has to be removed because there
will be no image output. If the line is not removed, a warning will be generated by the compiler.
(However, the cal cul at eQut put Subl mage template is necessary.)

14.2.3. Editing the CPP File of Si npl eAver age

Open the file M Si npl eAver age. cpp.

141

Developing ML Modules

‘ Note
In the following code examples, the comment lines already available in the created . cpp
file are added for better overview, when necessary.

1. Change the constructor call of the superclass from Mbdul e(1, 1) to Modul e(1, 0).
Si npl eAver age: : Si npl eAverage () : Mdul e(1, 0)
This leaves our module with one input and no output image.

2. Add the following code in the method handl eNot i fi cati on(Fi el d* field).

/1 Handl e changes of nodul e paraneters and input inage fields here
if (field == _updat eFl d)
{

_nunmVoxel s = 0;
_sumVoxel Val ues = 0;

processAl | Pages(-1);
M.doubl e result = 0

i f (_nunVoxels > 0)
{

result = _sumVoxel Val ues / static_cast<M.doubl e>(_numVoxel s) ;

}

_voxel Val ueAver ageFl d- >set Doubl eVal ue(resul t);

}

The code includes the important ML Modul e method processAl | Pages(). This method can be
used in algorithms that only extract information from an image (but do not modify it). As the
extraction of information is not driven by demand, the loop over all pages has to be implemented
with processAl | Pages() . The provided parameter '-1' causes the input image to be read-only for
optimization reasons. For further information, see the ML Guide.

3. Remove the following lines, as no image will be output by this module.

voi d Si npl eAver age: : cal cul at eQut put | magePr operti es(int /*outputl ndex*/,
Pagedl mage* out put | mage)

{

/'l Change properties of output image outputlnage here whose
/| defaults are inherited fromthe input image O (if there is one).

}

4. Inthe method cal cul at eQut put Subl nage(. ..), remove out put Subl mage and out put | ndex from
the method's signature. Result:
tenpl ate <typename T>
voi d Si npl eAver age: : cal cul at eQut put Subl mage (TSubl mage<T>*
int ,
TSubl mage<T>* i nput Subl mage0
)

out | ndex would reference an output image of the module which we do not have.

5. Replace the line:

const Subl mageBox val i dQut Box = out put Subl nage- >get Val i dRegi on()

with the line:

142

Developing ML Modules

const Subl mageBox i nBox = i nput Subl mage0- >get Val i dRegi on() ;
Resulting in:

/1 Conmput e subi nage of output inmage outlndex frominput subimages.
const Subl mageBox i nBox = i nput Subl mage0->get Val i dRegi on() ;

6. Remove the line
T *out Voxel = out put Subl mage- >get | magePoi nt er (p) ;
7. Replace all occurrences of val i dOut Box with i nBox.

8. Replace the line

*out Voxel = *i nVoxel O;

with the lines:

_sunVoxel Val ues += static_cast <M.doubl e>(*i nVoxel 0) ;
++_nunVoxel s;

Remove the ++out Voxel , from the inner for-loop over the voxel row.

Resulting in:

/] Process all row voxels.

for (; p.x <= rowknd; ++p.x, ++inOVoxel) {
_sunWVoxel Val ues += stati c_cast <M_doubl e>(*i nOVoxel) ;
++_nunVoxel s;

}

9. At last, compile the project. Then restart MeVisLab so that the new module is registered and added
to the module database.

10. In MeVisLab, instantiate the new module, right-click it and open the module's .script file.

In the .script file, enter the following lines before the W ndow section:

Description {
Fi el d voxel Val ueAverage { editable = No }

}

Setting the edi t abl e of a field to No (or Fal se or 0) has two consequences: firstly, the field is not
editable by the user which makes sense, because the field should be set from the C++ code only,
and secondly, the value of the field is not saved with the .mlab file which makes sense, because the
value needs to be calculated in a live network.

14.2.4. Testing the Module

Now you can use the new module in MeVisLab.

1. Add your new module Si npl eAver age and a Local | mage module to a new network. Connect them
and load an image.

2. Then double-click Si nmpl eAver age to open its automatic panel and click the Update button on the
module panel. The calculated output of Si nmpl eAver age is displayed.

A module with a similar functionality is available in MeVisLab, called | mageSt ati sti cs.

Add I mageSt ati sti cs via the quick search and compare its mean value with the displayed value of
Si npl eAver age. You will find that the results are almost the same apart from the rounding error in the
display.

143

Developing ML Modules

Tip
This test network is delivered as the example network for Si npl eAver ageExanpl e.

14.3. Combining Two Modules in One Project

In the following chapter, we will merge our two modules (Si npl eAdd and Si npl eAver age) into one
project, in the following steps:

» Section 14.3.1, “Copying the Source Files”

Section 14.3.2, “Editing and Recompiling the CVakeli st s. t xt File”

Section 14.3.3, “Editing the Project in the Development Environment”

Section 14.3.4, “Editing the Module Definition (.def)”

Section 14.3.1, “Copying the Source Files”

Per project, one DLL (. DLL/. dynl i b/. so) file is created and transferred, and the modules might share
common includes etc. within one project.

Therefore, this example is a showcase on how to build a larger library by augmenting an existing project.

In this example, we will merge the Si npl eAver age module into the Si npl eAdd project. For two modules,
this is an arbitrary decision; for larger projects, always merge into the existing project.

‘ Note
The source code of this example is not delivered with MeVisLab, as it would lead to module
name collisions with the examples above. If you want to implement this example, make sure
to change the module names or to move the original modules to another folder.

14.3.1. Copying the Source Files

Copy the m Si npl eAver age. cpp and m Si npl eAver age. h files to the source folder of Si npl eAdd.

14.3.2. Editing and Recompiling the CMvakelLi st s. t xt
File
1. Open the CvakelLi st s. t xt of your project in any text editor.

2. Add ni Si npl eAver age. h and nl Si npl eAver age. cpp to the t ar get _sour ces statement.

3. Resulting code (excerpt):

target _sources(M.Si npl eAddExanpl e PRI VATE
m Si npl eAddExanpl e. cpp
m Si npl eAddExanpl e. h
m Si npl eAver age. cpp
m Si nmpl eAver age. h
M.Si npl eAddExanpl el ni t. cpp
M.Si npl eAddExanpl el ni t. h
M_Si npl eAddExanpl eSyst em h

144

Developing ML Modules

4. Re-translate the CvakelLi st s. t xt file.

14.3.3. Editing the Project in the Development
Environment

Open the Si npl eAdd project in your development environment.

14.3.3.1. Editing Si npl eAver age. h

1. Open Si npl eAver age. h.

2. Exchange the line
#i ncl ude "M.Si npl eAver ageSyst em h"
by
#i ncl ude "M.Si npl eAddSyst em h"
Resulting in:

/1 Local includes
#i ncl ude "M.Si npl eAddSyst em h"

3. Exchange the macro in the class definition (this handles exporting symbols under Windows)
M_SI MPLEAVERAGE_EXPORT
by
M_S| MPLEADD EXPORT
Resulting in:

/1! Conputes the average voxel value of an image.
cl ass M.SI MPLEADD_EXPORT Si npl eAverage : public Mdul e

The new module in this project (i.e., Si npl eAdd) needs to be initialized for the runtime-type system.

14.3.3.2. Editing MLSi npl eAddI ni t. cpp

1. Open M.Si npl eAddl ni t . cpp.
2. Add the line
#i ncl ude "m Si npl eAver age. h"
below the line
#i ncl ude "m Si npl eAdd. h"
Resulting in:
/1 Include all nodul e headers ...
#i ncl ude "m Si npl eAdd. h"
#i ncl ude "m Si npl eAver age. h"
3. Add the line

Si npl eAverage: :initd ass();

below the line

145

Developing ML Modules

4,

Si npl eAdd: :initd ass();
Resulting in:

Si npl eAdd: :initd ass();
Si npl eAverage: :initd ass();

This registers the classes to the ML runtime type system.

Recompile the project.

‘ Note
m Si npl eAver age. cpp does not have to be edited.

14.3.4. Editing the Module Definition (.def)

1.

2.

Copy the file Si npl eAver age. scri pt to the folder containing the file Si npl eAdd. def .

Open the file M_Si npl eAver age. def in MATE.

Copy the definition of the module Si npl eAver age into the clipboard (this is at least from the line
M_Mbdul e Si npl eAver age {

to the last closing curly bracket (})

Open the file M_Si npl eAdd. def .

Paste the definition of the Si npl eAver age module below the definition of the Si npl eAdd module.
Exchange the line in the definition of the SimpleAverage module

DLL = "M.Si npl eAver age"

by the line

DLL = "M.Si npl eAdd"

Resulting code:

M_Modul e Si npl eAdd {

}

DLL = M.Si npl eAdd

genre = 00

aut hor = "JDoe"

coment = "Adds a constant double value to each voxel."
keywor ds =""

seeAl so = Arithneticl

exanpl eNet wor k
ext ernal Definition

$(LOCAL) / net wor ks/ Si nmpl eAddExanpl e. m ab
$(LOCAL) / Si npl eAdd. scri pt

M_Modul e Si npl eAver age {

exanpl eNet wor k
ext ernal Definition

$(LOCAL) / net wor ks/ Si npl eAver ageExanpl e. nl ab
$(LOCAL) / Si npl eAver age. scri pt

DLL = M.Si npl eAdd

genre = "

aut hor = "JDoe"

conment = "Conputes the average voxel value of an inmge."
keywor ds = "Statistics Average"

seeAl so =""

146

Developing ML Modules

14.3.5. Cleaning up Folders and Example Networks

1. Copy the example network and HTML documentation of the Si npl eAver age module to the according
folders of the Si npl eAdd module. The paths to those files should be relative, so they are still correct.

2. (Re)move the old files and folders of the Si npl eAver age module from the folders / Sour ces and /
Mbdul es so that no conflicts arise.

3. (Re)start MeVisLab.

Both modules can now be added, for example via a quick search. However, you will find that in the
About information, the same DLL will appear for both modules.

147

Chapter 15. Developing a Base
Communication

In the following chapter, we will develop an ML module owning a Base object in combination with an
Open Inventor module that will display the contents of the Base object.

Purpose of this example:

« shows how to implement an ML module without any image processing functionality (no input/output
image, hence no cal cul at eQut put Subl mage etc.).

« shows the use of an object derived from Base for communication between two modules.
* shows how to use an object derived from Base in an ML module and in an Open Inventor module.
The class Base is briefly referred to in the ML Guide, chapter “Base Objects”.

This will be our resulting network:

Figure 15.1. Example Network for ML Module and an Open Inventor Module

R EN

OP PP

5
£l

[)

o
v

Shape Type: ICube -

Translation: |x 1.7 Iy

2 I

The data processing works as follows:
¢ The ML module offers fields for parameterizing a simple scene.
e The parameters are 'transported' by a Base object to another module.

¢ The receiving Open Inventor module renders a simple scene on base of the parameters set in the
module with fields.

The example will be implemented with these elements:
¢ an M.BaseOaner module
e aBaseMessenger class

¢ a SoBaseRecei ver module

148

Developing a Base
Communication

Why this way of implementation?

e Separating the owner module from the receiver/visualization module is a lot more flexible than
integrating the functionality — this way, it is possible to use several receivers/visualization modules
with one messenger.

¢ The separation also means that the receiver does not have to know anything about the owner.

¢ Having an class derived from Base enables wrapping it as a scripting object so it can be used in
Python directly. Have a look at the scripting example for wrapping the BaseMessenger.

The example is created in the following chapters:

* Section 15.2, “Developing the M_BaseOaner Module and the BaseMessenger Class”

¢ Section 15.3, “Developing the SoBaseRecei ver Module”

15.1. A Note on Base Types Checks

15.1.1. Base Connectors and Field Types

When drawing a connection in MeVisLab, it is checked whether the basic connector type fits (MLImage,
Base, Open Inventor). If not, a “blocked” sign appears.

As Base objects can be of different derived types, it is possible to connect Base fields with incompatible
types, which might result in errors. To prevent this, the allowed Base object type(s) can be added to the
Base field in the C++ source of the module. The allowed Base types are then displayed in the mouse-
over information of a Base connector. This is especially helpful in cases where more than one Base
connector is available.

Figure 15.2. Mouse-over Information for Base Connectors

MLBase inC50List LBase inUndoContext
(MULL) Allowed: CSOList (MULL) Allowed: UndoContext

Figure 15.3. Mouse-over Information for Different Base Connectors in One
Module

LBase inCS0List LEase inVisualizationSettings
inTransformationProvider
(NULL) Allowed: CSOList (NULL) Allowed:

CS0VisualizationSettings (NULL) Allowed:
TransformationProvider

When connecting Base fields, the allowed types are checked and the connection is only possible for
types in the allowed-list. This check also happens when connecting fields across macro modules, as
the input/output fields of a macro “inherit” the allowed-list of the connected module fields.

While drawing a connection, the incompatible connectors are grayed out; if the connection is about to
be dropped on an incompatible connector, the intermediate connection rendering is displayed in red.

149

Developing a Base
Communication

Figure 15.4. Base Field Connection Checked for Type Compatibility

15.1.2. Overriding Base Type Checks

Sometimes it is useful to establish a connection although the Base field types are not compatible. For
example, if the allowed types are set incorrectly in C++ when the module is still in development.

Three override methods are available:
e In scripting: Drawing the Base connection in scripting always works. However, scripting
functions are available to check whether the types match: al | owedTypesByString() and

mat chesTypes(MLABM.BaseFi el d *fi el d), see the MLABMLBaseField Class Reference.

* Inthe . nl ab file: Base connections can always be created by editing the . m ab file manually.

15.1.3. Implementing Base Type Checks

Implementing the Base typ check is done in the C++ source.

To add an allowed type to a Base field, add the following C++ template method:

_nyBaseFi el d- >addAl | owedType<CSOLi st >() ;

There is a convenience template function available to set the initial value and the allowed type at the
same time, especially if the initial value is not NULL:

_myBaseFi el d- >set BaseVal ueAndAddAl | owedType(& nyCQut put Val ue) ;

This derives the allowed type from the argument, but the type can also be defined specifically:
_nmyBaseFi el d- >set BaseVal ueAndAddAl | owedType<I| ut Functi on>(& nySpeci al Qut put LUT) ;

It is possible to write

_myBaseFi el d- >set BaseVal ueAndAddAl | owedType<I| ut Functi on>(NULL) ;

but this is basically the same as

_myBaseFi el d- >addAl | owedType<I| ut Functi on>();

To add an allowed type to a Base field of an Inventor module, add the following C++ template method:
_nyBaseFi el d. addAl | owedType<CSOLi st >() ;

The addition of checks for allowed Base types is demonstrated in the following example, see
Section 15.2.8.1, “Adding the construction of a new BaseMessenger Object” and Section 15.3.4, “Editing
SoBaseRecei ver. cpp”.

150

Developing a Base
Communication

15.2. Developing the M_.BaseOmer Module and
the BaseMessenger Class

The ML module is of the class Mbdul e which is the base class from which all C++-based image
processing modules are derived. Usually, it is used to implement new algorithms for processing voxel
images. In our example, it will only offer the fields to parameterize the simple scene.

The class Mbdul e is explained in more detail in the ML Guide, chapter “Deriving Your Own Module from
Modul e”.

Technically, this module owns the object derived from Base we will implement later:
* it constructs and deconstructs the Base object in its constructor and destructor, respectively.
* it holds the pointer to the Base object.

* it parameterizes the Base object according to the values of its fields and touches the BaseField in
order to notify the receiving module(s) that the scene needs to be updated.

15.2.1. Creating the BaseCommunication Project in the
Wizard

To create the M_BaseOaner module in the BaseCommunication project, use the wizard.

First of all, make sure that you have a user package defined as described in Section 8.2, “Creating a

User Package for Your Project” or create it now. Then run the Project Wizard and select the option ML
Module. This starts the Wizard for C++/ML Modules.

1. On the dialog Module Properties, enter the following:
* Name: BaseOwner
« Comment: Module for setting parameters of a Base object via fields
* Keyword: Example
* See Also: SoBaseReceiver

» Target Package: your package, for example “Example/General’

L]

Project: BaseCommunication

151

Developing a Base
Communication

Figure 15.5. Project Wizard — Module Properties

(it €t o S ==
Module Properties ‘

Enter the general properties of the module.

~General Module Properties

Name: * |Ease0wner Author: * | JDoe

Comment: |Modu|e for setting parameters of a Base object via fields.

Keywords: |Examp|e

See Also: | SoBaseReceiver

Genre: | Choose | [~ Add reference to example network
~ Select Target Package

Package: * |Examp|e,"GeneraI j
~Project Properties

Directory Structure: Im

Project: * |EaseCommunication Prefix: ML Select |
¥ Include project files

* : Required fields

< Back | Next = | Create | SaveSettingl Close |

The project name is different to the module name here because the project will later include the
module M_.BaseOaner and the additional class BaseMessenger .

Click Next to proceed.

On the dialog Imaging Module Properties, all settings have to be removed as the module has no
image input/outputs.

» Keep New Style ML Module, as the setting is irrelevant for our example.
« Change the settings to 0 inputs and 0 outputs.

e Uncheck all options (Add calculatelnputSublmageBox and Add voxel loop to
calculateOutputSublimage).

152

Developing a Base
Communication

Figure 15.6. Project Wizard — Imaging Module Properties

(s - S =il
Imaging Module Properties ‘

Enter imaging properties of the module.
~Module Type
& MNew style ML module

" Classic ML module

—~Number of Input/Output Images

Inputs: I 0 3:_ Outputs: I 0 3:_

~Image Processing Methods
[~ Add calculateInputSublmageBox()

[~ Add voxel loop to calculateOutputSubImage()

Save Setting Close

Click Next.

3. On the dialog Additional Module Properties, the following settings are necessary:
e Check Add activateAttachements().
* Check Add MDL window with fields.

» Uncheck everything else.

153

Developing a Base
Communication

Figure 15.7. Project Wizard — Additional Module Properties

Additional Module Properties ‘

Enter additional properties of the module.
—~Parameter Handling
[” Auto-update output images on field changes
[~ Add handleInput()

[V i Add activateAttachments():
~Documentation / GUI
[~ Add configuration hints
¥ Add MDL window with fields

< Back Create Save Setting Close

Click Next.
4. Onthe dialog Module Field Interface, add the following five fields (their sequence is not important):
 Enter field:
» Field Name: outputMessenger
» Field Type: Base
» Field Comment: Output of the Base object holding the parameters for the Inventor scene.
 Enter field:

» Field Name: shapeType

Field Type: Enum

Field Comment: Selects the type of the rendered shape.

Field Value: 0
e Enum Values: Cube, Sphere
* New field:
« Field Name: translation
 Field Type: Vector3

» Field Comment: The translation of the rendered shape.

154

Developing a Base
Communication

* New field:
» Field Name: color
» Field Type: Color
« Field Comment: The color of the rendered shape.
* New field:
+ Field Name: diameter
« Field Type: Double
« Field Comment: The diameter of the rendered shape.

* Field Value: 1

Figure 15.8. Project Wizard — Module Field Interface

(it €t o S ==
Module Field Interface ‘

Add fields to the interface of the module.

Name |T',rpe |Comment |Va|ue |Enum Valu
outputMessenger Base Output of the Base object holding the parameters fo...

shapeType Enum Selects the type of the rendered shape. 0 Cube, Sph
translation Vector3 The translation of the rendered shape.

color Color The color of the rendered shape.
diameter Double The diameter of the rendered shape. 1

| Ol

Remaove | Remaove Alll
Field Name: |diameter Field Type: IDoubIe 'l

Field Comment: |The diameter of the rendered shape.

Field Value: |1

Enum Values: |

< Back | Next = Create Save Setting Close

5. Click Create to create the project.
In the default file browser of your system, two folders are opened:
« folder with the source code: { packagePat h}\ Sour ces\ M.\ ML.BaseCommuni cat i on

« folder with the module's GUI definition: { packagePat h}\ Modul es\ M.\ MLBaseCommuni cat i on

‘ Note
For a full list of all created files and their contents, see the MeVisLab Reference Manual,
chapter “ML Module (Wizard)”.

155

Developing a Base
Communication

6. Close the Wizard.

The code resulting from the wizard is:

e L T T
/1! The M. nodul e cl ass BaseOwner.

/1

/1 Module for setting paraneters of a Base object via fields.

e L T T

#i ncl ude "m BaseOaner. h"

M__START NAMVESPACE

/1! Inmplenments code for the runtime type systemof the M.
M._MODULE_CLASS SOURCE(BaseOaner, Mbdul €);

BaseOnner : : BaseOmer () : Mbdul e(0, 0)

{
/1 Suppress calls of handl eNotification on field changes to
// avoid side effects during initialization phase.
handl eNoti fi cati onOf () ;
// Add fields to the nodul e and set their val ues.
_out put Messenger Fl d = addBase(" out put Messenger", NULL);
static const char * const shapeTypeVal ues[] = { "Cube", "Sphere" };
_shapeTypeFl d = addEnun(" shapeType", shapeTypeVal ues, 2);
_shapeTypeF! d- >set EnunVal ue(0) ;
_transl ati onFld = addVector3("transl ation", Vector3());
_colorFld = addCol or("color", 1,1,1);
_diameter Fl d = addDoubl e("di aneter”, 1);
/'l Reactivate calls of handl eNotification on field changes.
handl eNot i fi cati onOn();
}
e L T T

voi d BaseOmner: : handl eNoti fication(Field* field)
{

/] Handl e changes of npdul e paraneters and input inmage fields here.

}

voi d BaseOwner: : acti vat eAttachnment s()

{
/] Update nenbers to new field state here.
/1 Call super class functionality to enable notification handling again.
Mbdul e: : acti vat eAtt achnment s() ;

}

M__END_NANESPACE

15.2.2. Adding New Files

Open your folder { packagePat h} / Sour ces/ M./ M.BaseCommuni cat i on and add two empty files:
* BaseMessenger. h

e BaseMessenger. cpp

156

Developing a Base
Communication

These will be used for the BaseMessenger class that transmits the field values from the ML module to
the Open Inventor module.

15.2.3. Adding References to the new Files in
CMakelLi st s. t xt

1. Open CMakeli sts. t xt of the project in a text editor.

2. Add references to the new files. Result:

target _sources(M.BaseComruni cati on PRI VATE
BaseMessenger . cpp
BaseMessenger. h
M.BaseCommuni cati onl ni t. cpp
M.BaseConmuni cationlnit.h
M.BaseCommuni cat i onSyst em h
m BaseOaner . cpp
m BaseOmner . h

)

3. Add the include paths for Base objects (M_Base) to the configuration:
find_package(MeVi sLab COVMPONENTS M. M_.Base HI NTS "$ENV{ MLAB_ROOT}" REQUI RED)

target _link_libraries(MBaseConmuni cati on
PUBLI C
MeVi sLab: : ML
MeVi sLab: : M_Base

)

4. Compile the Cvakeli sts. t xt file and open the project in your development environment.

15.2.4. Adding Contents to BaseMessenger. h

Open BaseMessenger . h and enter the following code:

/1! This class defines nmerely a paraneter container for
/1! visualization attributes and a shape enunerati on.

#pragma once

#i ncl ude <nl Modul el ncl udes. h>
#i ncl ude <nl Base. h>
#i ncl ude <m Li near Al gebr a. h>

/1 Local includes
#i ncl ude "M.BaseConmuni cati onSystem h"

M__START NANESPACE

//!' This enumeration lists all possible
/1! shape types used in the owner and recei ver nodul es.
enum Messenger ShapeType
{
ShapeTypeCube =
ShapeTypeSpher e
b

0,
=1

157

Developing a Base
Communication

/1! This class defines nerely a paraneter container for
/1! visualization attributes and a shape enuneration
cl ass MLBASECOMMUNI CATI ON_EXPORT BaseMessenger : public Base

{
public:

/1! Constructor.
BaseMessenger () ;

/1! Copy constructor.
BaseMessenger (const BaseMessenger & baseMessenger) ;

/1! Standard destructor
virtual ~BaseMessenger();

/1! \nane Methods to retrieve attributes

Il @

inline const Vector3& getPosition() const { return _position; }
inline const Vector3& get Col or () const { return _color; }
inline Mdoubl e getDi aneter() const { return _dianeter; }
inline Messenger ShapeType get ShapeType() const { return _shapeType; }
Il @

/1! \nane Methods to set attributes.

1@

inline void setPosition(const Vector3& newPosition) { _position = newPosition; }
inline void setCol or(const Vector3& newCol or) { _color = newCol or; }
inline void setDi anet er (M.doubl e newDi anet er) { _dianmeter = newDi aneter; }
inline void set ShapeType(Messenger ShapeType newType) { _shapeType = newlype; }
Il @

private:

/1" \nane Menber vari abl es
11 @

Vector3 _position;

Vector3 _col or;

M.doubl e _di aneter;

Messenger ShapeType _shapeType
Il @

/1! Inplenents interface for the runtine type systemof the M
M._CLASS HEADER(BaseMessenger)

M__END_NAMESPACE

15.2.5. Add Contents to BaseMessenger. cpp

Open BaseMessenger . cpp and enter the following code:

/1 Local includes
#i ncl ude "BaseMessenger. h"

M__START NANMESPACE

/1" Inmplements code for the runtine type systemof the M.

158

Developing a Base
Communication

M._MODULE CLASS SOURCE(BaseMessenger, Base);

BaseMessenger : : BaseMessenger () : Base()
/1 Set default val ues.
_position.assign(0.0, 0.0, 0.0);
_color.assign(1.0, 0.0, 0.0); // red

_diameter = 1.0;

}

BaseMessenger : : BaseMessenger (const BaseMessenger & baseMessenger) : Base()

/1 Just copy val ues of the given object.

_position = baseMessenger . get Position();

_col or = baseMessenger. get Col or () ;

_di ameter = baseMessenger. get Di aneter () ;
}
e e LR R R

BaseMessenger : : ~BaseMessenger ()

/1 Not needed.
}

M__END_NAMESPACE

15.2.6. Editing M_.BaseCommuni cati onl ni t. cpp

Add the initialization of the BaseMessenger class (runtime type system).
1. Open M_BaseConmuni cati onl ni t. cpp.

2. Add the include of BaseMessenger . h. Result:

/! Include all nodul e headers
#i ncl ude "nl BaseOmner. h"
#i ncl ude "BaseMessenger. h"

3. Add the initialization of BaseMessenger . h. Result:

i nt M_.BaseComuni cationlnit ()

{

/1l Add initdass calls fromall other nodul es here...
BaseOmer::initd ass();
BaseMessenger: :initd ass();

return 1;

}

At this point, the project should be compilable.

15.2.7. Editing m BaseOaner . h

Open nl BaseOaner . h.

159

Developing a Base
Communication

1. Add the include of BaseMessenger . h. Result:

/1 Local includes
#i ncl ude "M.BaseCommuni cati onSystem h"
#i ncl ude "BaseMessenger. h"

Add a destructor to the class:

/1! Constructor.
BaseOmner () ;

/1! Destructor.
~BaseOmner () ;

Add a private member variable of type BaseMessenger pointer since this module is the owner of
the Base object. Result:

private:

/1! \'nane Menber vari abl es.

1@

BaseMessenger* _baseMessenger;

1@

4. Add a private method to set the value in the Messenger object to the module’s field values:

/1 Inplenents interface for the runtine type systemof the M.
M._MODULE_CLASS HEADER(BaseOwner)

/1" Set the field values to the output nessenger.
voi d _set Fi el dVal uesToMessenger () ;

15.2.8. Editing m BaseOaner . cpp

15.2.8.1. Adding the construction of a new BaseMessenger Object

Open ni BaseOaner.cpp and add the construction of a new BaseMessenger object and its
parameterization to the constructor of the BaseOwmer module. Use set BaseVal ueAndAddAl | owed to
ensure that the base type will be checked when drawing connetions in the user interface.

Also, add the destruction of the _baseMessenger object to the destructor.

Result:

BaseOmner: : BaseOmer () : Modul e(0, 0)

{

/'l Suppress calls of handl eNotification on field changes to
/1 avoid side effects during initialization phase.
handl eNoti ficati onOfif();

/1l Allocate menory for the BaseMessenger object.
/! Delete the object in this nodul e's destructor.
M._CHECK _NEW _baseMessenger, BaseMessenger());

/1 Add fields for the interface.

/1 Set the pointer to the BaseMessenger object to the output field.
_out put Messenger Fl d = addBase(" out put Messenger ") ;

_out put Messenger Fl d- >set BaseVal ueAndAddAl | owedType(_baseMessenger); ;

static const char * const shapeTypeVal ues[] = { "Cube", "Sphere" };
_shapeTypeFl d = addEnum("shapeType", shapeTypeVal ues, 2);

160

Developing a Base
Communication

_shapeTypeFI d- >set EnunVal ue(0) ;
_translationFld = addVector3("translation");
_transl ati onFl d- >set Vect or 3Val ue(Vector3());
_colorFld = addCol or("col or");

_col or Fl d- >set Col or Val ue(1, 1, 1);

_dianmeterFl d = addDoubl e("di aneter");

_di anmet er Fl d- >set Doubl eVal ue(1);

_set Fi el dval uesToMessenger () ;
/| Reactivate calls of handl eNotification on field changes.

handl eNot i fi cati onOn();
}

I
BaseOwnner : : ~BaseOwner ()

M._DELETE(_baseMessenger) ;
}

15.2.8.2. Editing handleNotification

Change handl eNot i fi cati on so that it touches the output Base field after setting the module's field
values to the BaseMessenger object. Result:

voi d BaseOwner: : handl eNoti fication(Field* field)

{
/1 Handl e changes of nodul e paraneters and input inage fields here.
bool touchQutputs = fal se;
if ((field == _shapeTypeFl d) |]
(field == _translationFld) ||
(field == _col orFl d) |]
(field == _diameterFl d))
{
touchQut puts = true;
}
if (touchQutputs)
{
/1 Set the current paranmeter values to the nessenger object
/1 and touch the output field so the receiver generates its
/'l scene anew.
_set Fi el dVal uesToMessenger () ;
_out put Messenger Fl d- >t ouch() ;
}
}

15.2.8.3. Editing activateAttachments

After a saved network has been loaded and all the modules and their connection have been regenerated,
the acti vat eAt t achenent s methods are called. We use this to regenerate the Base object with the
saved parameters of the BaseOaner module.

Result:
voi d BaseOwner: : activat eAttachment s()

/1 Update nmenmbers to new field state here.
_set Fi el dVal uesToMessenger () ;

161

Developing a Base
Communication

_out put Messenger Fl d- >t ouch() ;

/1 Call super class functionality to enable notification handling again.
Modul e: : acti vat eAtt achment s() ;
}

15.2.8.4. Implementing Setting the Parameters in BaseMessenger

Implement the setting of the parameters in the BaseMessenger according to the module's fields after
the module has been loaded in a network (with restored field values) in activateAttachments(). Result:

voi d BaseOwner: :activateAttachnents ()

{

/1 Update nmenbers to new field state here.
_set Fi el dval uesToMessenger () ;

/1 Call super class functionality to enable notification handling again.
Modul e: : acti vat eAtt achnments ();
}

15.2.8.5. Implementing the method
_set Fi el dval uesToMessenger ()

voi d BaseOmner: : _set Fi el dVal uesToMessenger ()

{
_baseMessenger - >set Posi ti on(_transl ati onFl d- >get Vect or 3Val ue()) ;
_baseMessenger - >set Col or (_col or FI d- >get Vect or 3Val ue());
_baseMessenger - >set Di anet er (_di anet er Fl d- >get Doubl eVal ue());
_baseMessenger - >set ShapeType(
stati c_cast <Messenger ShapeType>(
_shapeTypeFl d- >get EnunVal ue()
)
e
}

M__END_NAMESPACE

Save the file nl BaseOaner . cpp.

15.2.9. Making M_.BaseConmuni cat i on classes known

Make the classes of the project MLBaseCommunication (and with it, the BaseMessenger) known to
other projects:

1. Open the file CvakelLi st s. t xt of the project in a text editor.
2. Change the last lines of the file, from:

m ab_i nst al | (M_.BaseConmuni cati on NS MeVi sLab)

to

m ab_i nst al | (M_.BaseConmuni cati on NS MeVi sLab EXPORT)
m ab_i nst al | _header s(M_.BaseConmuni cat i on)

Compile the project and restart MeVisLab. To check the final module, enter BaseOmner in the quick
search and add it.

162

Developing a Base
Communication

Figure 15.9. Resulting BaseOwmer Module

Shape Type: ICube 'l o

Base outputMessenger
Translation: |x 3 g
BaseMessenger Allowed:
Color: BaseMessenger

Diameter:

Tip

This example is delivered with MeVisLab (. def file in $(1nstall Dir)Packages/
MeVi sLab/ Exanpl es/ Modul es/ Getti ngSt art ed/ M_BaseConmuni cat i onExanpl e, source
files in $(InstallDir)Packages/ MeVi sLab/ Exanpl es/ Sour ces/ Getti ngStart ed/
M_BaseConmmuni cat i onExanpl e). The module can be added via quick search.

15.2.10. Adding an object wrapper for
M_BaseConmuni cat i on objects

To use the M_.BaseConmmuni cat i on in scripting, an object wrapper can be implemented. How this is done
is explained here.

15.3. Developing the SoBaseRecei ver Module

In this section, we will develop the Open Inventor module that is necessary to display the output of
M_BaseOaner .

Technically, this module receives the Base object and constructs a simple Open Inventor scene
internally on base of the parameter and attribute values in the received Base object.

Tip

For information on Open Inventor, see the Inventor Modules Help (for an introduction on
Open Inventor and module-related help) and the Inventor Reference (converted from the
original man pages).

The internal scene graph of this module could also be built as a network in MeVisLab:

Figure 15.10. SoBaseRecei ver Module Alternative

163

Developing a Base
Communication

As you can see, SoBaseRecei ver is essentially an Open Inventor separator module which has the
advantage that it comes with its own viewer. The other modules deliver the translation, the color and

the actual shape.

15.3.1. Creating the New Open Inventor Module with

the Wizard

1. First of all, make sure that you have a user package defined as described in Section 8.2, “Creating

a User Package for Your Project” or create it now.

2. Thenrun the Project Wizard and select the link Inventor Module. On the dialog Module Properties,

enter the following:

« Name: (So)BaseReceiver

Figure 15.11. Project Wizard — General Module Properties

Comment: Module renders an inventor scene that is parameterized by a BaseOwner module.
Keyword: Example

See Also: BaseOwner

Target Package: your package, for example “Example/General”

Project: BaseReceiver (“So” is added automatically)

fﬁ' Modules (C++)/Inventor Module e S

Module Properties

Enter the general properties of the module.

General Module Properties

Name: * |SoBaseRecei\rer Author: * | 1Doe

Comment: |M0du|e renders an Inventor scene that is parametrized by a BaseOwner module.
Keywords: |Examp|e

See Also: |BaseOwner

Genre: | Choose | ™ Add reference to example network
Select Target Package

Package: * |Examp|e,"GeneraI j
Project Properties

Directory Structure: |Classic =
Project: * |BaseRecei\rer1 Prefix: So Select

¥ Include project files

* : Required fields

< Back | Next = Create Save Setting| Close |

Click Next to proceed.

3. On the dialog Module Type, select SoSeparator and check the option Add Node Sensor.

164

Developing a Base
Communication

Figure 15.12. Project Wizard — Module Type

Module Type ‘

Select the type of the module to create.
~Module Type
" SoShape

 SoGroup

& SpSeparator
" SoNode
" SoView2DExtension

~Properties

| [~ Example code
[~ Verbose comments [~ Has group inputs

~Info

Creates an Inventor Separator.
If you set 'Has group inputs' it automatically has a multiple Inventor input connector.
Additionally, the state is pushed and popped

< Back | Next = | Create | Save Settingl Close

4. On the dialog Module Field Interface, enter one field:
« Field Name: inputMessenger
* Field Type: ML Base Object

* Field Comment: Input Base object holds the parameters for the inventor scene.

Figure 15.13. Project Wizard — Module Field Interface

‘Module Field Interface ‘

Add fields to the interface of the module.

Name |Type |Comment |Va|ue |Enum v
inputMessenger MLBase Input Base object holds the parameters for the Inventor scene.

ol
New | Remaove | Remave All |
Field Name: |inputMessenger Field Type: IML Base Object 'l

Field Comment: |Input Base object holds the parameters for the Inventor scene.|

Field Value: |

Enum Values: |

Field Sensor: I

’—Infc ‘

< Back Next = Create Save Setting Close |

165

Developing a Base
Communication

Tip

Why using a node sensor instead of a field sensor? In our example, it would make no
difference as we only have one input field. Usually, however, there will be more than
one field, and as each field sensor will add redundant code to the module, using a node
sensor that will react to any changes of the Open Inventor node is usually recommended.

5. Click Create to create the module.
In the default file browser of your system, two folders are opened:
« folder with the source code: { packagePat h}\ Sour ces\ So\ SoBaseRecei ver

« folder with the module's . def file definition: { packagePat h}\ Modul es\ So\ SoBaseRecei ver .

‘ Note
For a full list of all created files and their contents, see MeVisLab Reference Manual,
chapter “ML Module (Wizard)".

6. Close the Wizard.

The code resulting from the wizard is:

/1! The Inventor nodul e cl ass SoBaseRecei ver

11

/1 Modul e renders an Inventor scene that is paranmetrized by a BaseOwner nodul e.
#i ncl ude "SoBaseRecei ver. h"

#i ncl ude <l nventor/el enent s/ SoCacheEl enent . h>

SO_NODE_SOURCE(SoBaseRecei ver)

voi d SoBaseRecei ver::initd ass()

{
}

SO _NODE_| NI T_CLASS(SoBaseRecei ver, SoSeparator, "Separator");

SoBaseRecei ver : : SoBaseRecei ver ()

{
/'l Execute Inventor internal code for node construction.
SO_NODE_CONSTRUCTOR(SoBaseRecei ver) ;
SO_NODE_ADD_FI ELD(i nput Messenger, (NULL));
/'l Create a sensor calling _nodeChangedCB if any field changes. Use a priority O
/'l sensor to be sure that changes are not del ayed or coll ected.
_nodeSensor = new SoNodeSensor (SoBaseRecei ver : : nodeChangedCB, this);
_nodeSensor->setPriority(0);
_nodeSensor - >attach(this);
}

SoBaseRecei ver : : ~SoBaseRecei ver ()

{

// Renpbve the node sensor.
del ete _nodeSensor;

166

Developing a Base
Communication

voi d SoBaseRecei ver:: nodeChangedCB(voi d* data, SoSensor* sensor)

{

stati c_cast <SoBaseRecei ver *>(dat a) - >nodeChanged(
stati c_cast <SoNodeSensor *>(sensor)
e
}

voi d SoBaseRecei ver: : nodeChanged(SoNodeSensor * sensor)

/1l Get the field which caused the notification.
SoFi el d* field = sensor->get TriggerField();
/1 Handl e changed fields here

}

As the module is already of type SoSeparator, no additional include has to be made for that.

15.3.2. Editing CMakelLi st s. t xt of SoBaseReceiver

1. Open the Cvakeli st s. t xt of the SoBaseReceiver project in a text editor.

2. Add the inclusion of the M.BaseConmunication project to the find_package and
target _link_libraries calls. Result:

find_package(MeVi sLab COVPONENTS M. MLABBase OpenGL | nvent or Bi ndi ng M_BaseConmuni cati on H NTS

target _link_libraries(SoBaseReceiver
PUBLI C
MeVi sLab: : M.BaseConmuni cat i on

MeVi sLab: : M_

MeVi sLab: : M_Base

MeVi sLab: : OpenGL

MeVi sLab: : | nvent or Bi ndi ng
Openl nvent or : : OQpenl nvent or

)

3. Create a project file for your development environment out of the CvakelLi st s. t xt file.

15.3.3. Edit SoBaseRecei ver. h

1. Open SoBaseRecei ver. h.

2. Add a forward declaration (in a doxygen comment group) between the includes and the class
declaration. Forward declarations are used here because in the header file, it is not necessary to
know the actual classes because only pointer are declared here. The definition of the classes is
used in the . cpp file where the according header files of the used classes must be included.

#i ncl ude "m API . h"

/1! \'nane Forward decl arations
1@

cl ass Somwateri al ;

cl ass SoTransl ati on;

cl ass SoSwi tch;

cl ass SoSphere;

cl ass SoCube;

1@

3. Add private member variables to reference parts of the internal scene graph:

167

Developing a Base
Communication

private:

/1! \name Menber vari abl es

1@

/1" The node providing the color properties to the output scene.
SoMwaterial* _material;

/1" The node providing the translation of the output scene.
SoTransl ati on* _transl ati on;

/1! A node to switch between the shapes 'cube' and 'sphere' as
/1! well as to turn off any output shape.

SoSwi t ch* _shapeSwi t ch;

/1! The output shape: cube.

SoCube* _cube;

/1! The out put shape: sphere.

SoSpher e* _sphere;

1@

4. Add a private method to set the received parameters to the output scene graph:

/1! Paraneterizes the internal scene graph.
voi d _paraneterizeSceneG aph();

b
15.3.4. Editing SoBaseRecei ver. cpp

1. Open SoBaseRecei ver. cpp.

2. Add includes. Result:

#i ncl ude <l nventor/el enent s/ SoCacheEl enent . h>
#i ncl ude <I nvent or/ nodes/ Solat eri al . h>

#i ncl ude <l nventor/nodes/ SoTr ansl ati on. h>

#i ncl ude <l nventor/nodes/ SoSwi tch. h>

#i ncl ude <l nvent or/ nodes/ SoSpher e. h>

#i ncl ude <I nvent or/ nodes/ SoCube. h>

#

ncl ude <BaseMessenger. h>

3. Change the constructor to generate the scene graph here. Set the allowed Base type to the input
Base field.

Result:

L e e
/1' Constructor, creates fields and scene graph

L e e
SoBaseRecei ver: : SoBaseRecei ver ()

{

/| Execute inventor internal stuff for node construction.
SO_NODE_CONSTRUCTOR(SoBaseRecei ver) ;

SO _NODE_ADD_FI ELD(i nput Messenger, (NULL));

i nput Messenger . addAl | owedType<ni : : BaseMessenger >() ;

/1 Create scene graph

/1 Add nodes that influence the whol e scene
/'l independent on the actual shape
_translation = new SoTransl ation();

addChi l d(_transl ation);

_material = new SoMaterial ();
addChi l d(_material);

/1 Create subgraph to switch the shapes

168

Developing a Base
Communication

_shapeSwi tch = new SoSwi tch();
addChi | d(_shapeSwi t ch) ;

_cube = new SoCube();
_shapeSwi t ch- >addChi | d(_cube) ;

_sphere = new SoSphere();
_shapeSwi t ch- >addChi | d(_sphere);

/'l Create a sensor calling _nodeChangedCB if any field changes.

/1l Use a priority O sensor to be sure that changes are not

/1 del ayed or coll ected.

_nodeSensor = new SoNodeSensor (SoBaseRecei ver : : nodeChangedCB, this);
_nodeSensor->setPriority(0);

_nodeSensor - >attach(this);

/] Update the parameters of the internal scene graph

/] according to the connected BaseMessenger
_paranet eri zeSceneG aph() ;

}
4. Call the updating of the internal scene graph if the input field has changed. Result:

/1' Called on any change on the node, field might by al so NULL

voi d SoBaseRecei ver: : nodeChanged(SoNodeSensor * sensor)

{
/] Get the field which caused the notification.
SoFi el d* field = sensor->getTriggerField();
/1 Handl e changed fields here
if (field == & nput Messenger)
{
_paranet eri zeSceneG aph() ;
}
}

5. Implement the method that sets the parameters of the output scene according to the
BaseMessenger's parameters. Result:

voi d SoBaseRecei ver::_paraneteri zeSceneG aph()

/1 check if the BaseMessenger is valid
m : : BaseMessenger * baseMessenger =
m base_cast <nl : : BaseMessenger *>(i nput Messenger . get Val ue()) ;

i f (baseMessenger)

{

/] set paraneters for all shapes
m ::Vector3 position = baseMessenger - >get Position();
_transl ati on->transl ati on. set Val ue(position[0], position[1l], position[2]);

m ::Vector3 col or = baseMessenger - >get Col or () ;
_material ->diffuseCol or. set Val ue(SbVec3f (color[0], color[1], color[2]));

const doubl e di aneter = baseMessenger->get Di aneter ();

_cube->width = dianeter;
_cube->hei ght = di ameter;
_cube->depth = diameter;

_sphere->radius = dianeter * 0.5;

swi tch (baseMessenger - >get ShapeType())

169

Developing a Base
Communication

{
case m :: ShapeTypeCube:
_shapeSwi t ch- >whi chChi | d. set Val ue(0);
br eak;
case m :: ShapeTypeSpher e:
_shapeSwi t ch- >whi chChi | d. set Val ue(1);
br eak;
defaul t:
_shapeSwi t ch- >whi chChi | d. set Val ue(-1);
br eak;
}
}
el se
{
/] no output scene
_shapeSwi t ch- >whi chChi | d. set Val ue(-1);
}
}

The project should compile now, and both modules can be used in a network. The BaseOaner can
parameterize a shape and the SoBaseRecei ver renders a shape with that parameterization.

Tip

This example is delivered with MeVisLab (. def file in $(1nstall Dir)Packages/
MeVi sLab/ Exanpl es/ Modul es/ Getti ngSt art ed/ SoBaseRecei ver Exanpl e, source
files in $(InstallDir)Packages/ MeVi sLab/ Exanpl es/ Sour ces/ Getti ngStarted/
SoBaseRecei ver Exanpl €). The module can be added via quick search.

170

Chapter 16. Using the TestCenter

In the following chapter, we will introduce you to using the MeVisLab TestCenter.

» Section 16.1, “Introduction to Testing in MeVisLab”

» Section 16.2, “Developing a Test Case”

16.1. Introduction to Testing in MeVisLab

‘ Note
In the following section, we only have a brief look at the concepts of the TestCenter. For
detailed information and references, see the TestCenter Reference and the TestCenter

Manual.

The testing of macro modules, networks, applications and scriptable functionality in MeVisLab is done
with the TestCenter.

Tip
On the C++ level, GoogleTest can be used.

What makes a test? Possible definitions:

» A test compares results against expectations.
» Atest uses a parameterized algorithm to generate data that is compared to expected results.
» Atestis a specification that can easily be verified.

Two main categories of test cases can be created with the TestCenter:

» Generic test cases: Tests a larger set of modules by applying a test case generically.
» Functional test cases: Tests specific functionalities of a single module or network.

A test case in MeVisLab consists of

* aset of test functions
* input data
* (optional) a network

Tip

A network provides the context for a module to be tested, such as inputs/outputs/other
modules for comparison. A network might be unnecessary for testing scripting functionality
only, but might still be useful if you want to add a module, connect it to another module,
and then remove again, etc.

TestCases are similar to macro modules, with two differences:

» They are not handled by the general module database but by a specific test case database, the
MLABTestCaseDatabase.

» The TestCase database must be initialized explicitly.

TestCases are located in the TestCases directories of the packages, parallel to the folders “Modules”
and “Sources”.

171

Using the TestCenter

The test case creation and management is supported by the special macro module (Test CaseManager)
which is implemented in the MeVisLab GUI and will be used in our example.

‘ Note
Test cases cannot be deleted in the TestCaseManager. To delete a test case, delete the
folder of the test case on your system and click Reload All in the TestCaseManager.

The name of a test function consists of three parts:

» One of the following predefined keywords to define the test type:
e TEST: a function that is executed once.

« FIELDVALUETEST: a test based on interactively predefined settings of fields and comparison of
computed field values with expected results.

« ITERATIVETEST: a test based on a list of given parameter and a function that is executed for each
parameter.

» An arbitrary string used for sorting.
» An arbitrary name of the function for display purposes.

16.2. Developing a Test Case

In this section, we will develop a test case for the Thr eshol d module. The Thr eshol d module transforms
the input image to a binary image with:

» voxel values below the threshold being set to the minimum image value.
» voxel values at or above the threshold being set to the maximum image value.

The Test Pat t er n module will be used for the input image.

The I mageSt at i sti cs module will be used for verifying the test results.
16.2.1. Creating a New Test Case

1L Open the TestCaseManager via the menu bar, File -~ Run Test Case Manager.
2. Select the Test Creation tab.
3. Enter the following:

« Name: MyThresholdTest

* Type: the type of your module, this selects a sub-directory in the test directory.

« Package: your package, for example “Example/General” (this is the example user package
created in Section 8.2, “Creating a User Package for Your Project”)

« Comment: Tests the Threshold module.

‘ Note
As we will build the network in the next step, start with an empty network here. If you
already had a network that could be used as test case, you could import it here.

172

Using the TestCenter

Figure 16.1. Creating a New Test Case

(= ey

Test Selection | Test Reports Test Creation | Configuration |

~General

Name: | MyThresholdTest

Type: ML =

Package: |Examp|e,"GeneraI j

Directory Structure: | Classic

Project: |

Comment: |Tests the Threshold module.|

Auto Fill Fields From Module... | Reset Fields|

~ Test Network

Test Network: [Empty Network |

Network: |

Browse... |

Create |

For detailed help, see the TestCenter Manual and Reference.
4. Click Create to create the test case.

The test case is created and the Test Selection tab is opened, where you can now find the new test
case.

173

Using the TestCenter

Figure 16.2. New Test Case in Test Selection

:
R T

Test Selection | Test Reports | Test Creation | Configuration |
Reload All Testsl Open Network Filel Edit Files | Reload |
Test Cases | = Test Functions |
& Example/General
B8 MyThresholdTest

-~ FMEstable/Release

- FMEstable/ReleaseMeVis
- FMEwork/PCL

-~ FMEwork/ReleaseMeVis
- FMEwork/VTK

- MeVisLab/Examples

-~ MeVisLab/IDE

—- MeVisLab/Standard

- AccumulateImageTest
- ArithmeticOTest

- Arithmeticl Test

- Arithmetic2Test

- BaseBypassOpTest

- BaseBypassTest

- BaseClearTest

- BaseSwitchTest

- BitMorphologyTest

- BoolArithmeticTest

- BoolIntTest

- BoolStringTest

- BoundingBoxTest

frn W B e B B e W e W

-
-
-
-
-
-
-
=

m

oo[x
o@os

Filter TestCases

8]«

¥ Log info messages
[~ Stop on error

v

[~ Python coverage

[~ Secure testing

I~ Bullseye coverage

For detailed help, see the TestCenter Manual and Reference.

In your package path, a new folder Testcases/ Functi onal Tests/ MyThreshol dTest is created.
M/ Thr eshol dTest contains the necessary files for the test case:

 MyThreshol dTest . def : for the test case definition, similar to the MeVisLab module definition files.
Contains the keyword “FunctionalTestCase”, a timeout parameter and the reference to the script file,
in this case MyThr eshol dTest . py.

e MyThreshol dTest . nl ab: the example network, empty so far
e My/Threshol dTest . py: the Python scripting for the test case

174

Using the TestCenter

Figure 16.3. New Test Case in the Package Path

o5 |
Ol_}\lv| .« ML » MyThresholdTest v|"?|| My ThresholdTest durchsuchen p|
Organisieren + oo Offnen ~ Brennen MNeuer Ordner ==« [liéil
4 || MeVisLab “ Name i Typ
. Networks N
=] MyThresholdTest.def Export Definition F...
4 . PackageGroup i
|| MyThresholdTest.mlab MLAB-Datei
4 | Example . .
#| MyThresholdTest.py PY-Datei
4 | General ~ .
. || MyThresholdTest.pyc PYC-Datei
J bin
. Configuration
> | Documentation
J lib
» 1 Modules L
. Projects
| Sources
4 | TestCases
4 | FunctionalTests
4 ML
. MyThresholdTest - (7 i v
— MyThresholdTest.def Anderungsdatum: 07.03.2016 10:47
— Export Definition File Grofie: 464 Bytes

16.2.2. Populating the Test Network

Our test case is associated with a test network, so in the next step, we need to add the necessary
modules to the so far empty network.

1. Inthe TestCaseManager, select the new test case and click Open Network File. The empty network
opens in MeVisLab.
2. Add the three required modules:
* Threshol d
e TestPattern
* I mageStatistics
3. Connect the modules as can be seen in Figure 16.4, “Basic Test Case Setup”.
4. Save the network.

16.2.3. Editing the Module Settings

For the test case, a setup is necessary with which the function of the Thr eshol d can be tested. This
can easily be done when the voxel values in the image correspond to the position on the x-axis that is
determined by the threshold value n.

1. Modify the Test Pat t er n parameters:
¢ ImageSize: X =256 and Y = Z = 1. This draws a horizontal line.
« Pattern: XRamp. This creates a gradient from voxel value 0 to 255.
< Auto: check this option to generate an output image automatically.
2. Modify the Thr eshol d parameters:

e Comparison: set this to < (less than).
e Then - Write: set this to ImgMin.

* Else - Write: set this to ImgMax.
3. Modify the | mageSt at i sti cs parameters, so that the Inner Interval is Min = Max = 255. This way,
all voxels with the value = 255 will count as inner voxels. (Min and Max could also be set to 0; in this

175

Using the TestCenter

case the voxels with value = 0 would count as inner voxels — the decision between inner and outer
here is arbitrary and irrelevant as long as the correct fields are compared later.)
4. Save the network again.

With this setup, the voxel values in the created image are equal to the position on the x-axis. Voxels
below the threshold are set to value = 0, voxels above the threshold are set to value = 255. For example,
for athreshold of 75, 75 voxels are set to 0 (counting as outer Voxels) and 181 voxels above the threshold
are set to 255 (counting as inner voxels), as can be seen in the results on the | mageSt ati sti cs panel.

Figure 16.4. Basic Test Case Setup

3 Mask Status:
Comparison:

™ Per slice Current Slice:
Threshold:

Inner Interval: |Min: 255 Max:
™ Use relative threshold I I

Adjacent Widths: Lower: | 0 Upper: |

R
Write: Img Min 'I

User Value: 1 Main | Adjacent | Bounding Boxes |

Value Total Inner

Else

Voxels: 256 181
Write: Img Max 'I Volume (mm~3): 256 181
0

User Value: | Min Value: 0.00

Max Value:

(17 Pane Testpatem L IE1] 23) Sum:

Mean:
age Size || Page Size B

Variance:

Std.Dev.:

Voxels Out Of Range: 0
¥ Results valid Update Mode: |Update ~ Update

X
Yo
&2
=
T
u

Image Data uadraticForms |
Pattern: XRamp hd

Data Type: |unswgned int8 j
Voxel Size: X 1 Iy 1|z 1
Fill Value 1: 0

Fill Value 2: 255

| ¥ Auto I Apply

16.2.4. Creating a First Test Script with Manual
Threshold Setting

In the next step, the actual test script needs to be programmed. In our case, the threshold needs to be
set and the results have to be verified.

1. Inthe TestCaseManager, select the test case and click Edit Files. The files open in the integrated
text editor MATE. The generated file MyThr eshol dTest . py looks like this:

#from Test Support inport Fields
#f rom Test Support. Macros i nport *

#def TEST_exanpl eFunction():

176

Using the TestCenter

2.

3.

5.

6.

""" Testing foobar
Fi el ds. set Val ue(" MyModul e. f 00", 1)
EXPECT_EQ 2, Fi el ds. get Val ue(" MyModul e. bar"))

Remove the comment symbol # from the lines.

Rename exanpl eFuncti on to something recognizable, for example “TEST_ ManualTest_75". The
tests are executed in alphabetic order. If you need to execute them in a certain order, you can add
numbers to the tests, e.g. TEST001 , TESTO002, etc. Note that this is generally considered bad
practice - test cases should be independent of each other.

Add the actual function. Three actions are needed:

a. The threshold has to be set to a value, for example “75".

b. ThelnmageStati stics module has to be updated.

c. lIthasto be verified that the value for the outer voxels corresponds to the entered threshold value.

This is done with the following Python code:

Fi el ds. set Val ue(" Threshol d. t hreshol d", 75)
EXPECT_EQ Fi el ds. get Val ue(" | nageSt ati sti cs. out er Voxel s"), 75)

Tip

The function EXPECT_EQ checks whether two given values are equal. It is a Python
function modeled after the macro of the same name in the GoogleTest library. For quick
help, right-click the name in MATE and select Show Help for 'EXPECT_EQ'. Further
information on the TestCenter macros and functions can be found in the TestCenter
Reference.

Save the script. The resulting code for this manual (static) test is:

from Test Support inport Fields
from Test Support. Macros inport *

def TEST_Manual Test _75 ():
""" .- Basic test for threshold val ues --
Fi el ds. set Val ue(" Thr eshol d. t hreshol d", 75)
EXPECT_EQ Fi el ds. get Val ue(" | nageSt ati sti cs. out er Voxel s"), 75)

‘ Note
Test Support . Macr os provides a number of functions of the form EXPECT_xxx and
ASSERT_xxx. Importing them using wildcard import is a convenient way to provide auto
completion for all these functions. To avoid complains from your linter, you may want
to import only the needed functions instead.

In the TestCaseManager, select the test case and click Reload to reload the test case. The new
test function will be listed on the right.

177

Using the TestCenter

Figure 16.5. Test Functions in the TestCaseManager

:

Test Selection | Test Reports | Test Creation | Configuration |

Reload All Testsl Open Network Filel Edit Files | Reload |

Test Cases gl = Test Functions
- Example/General “-i¥] ManualTest 75

“ MyThresholdTest
- FMEstable/Release
FMEstable/ReleaseMeVis
FMEwork/PCL
FMEwork/ReleaseMeVis
FMEwork/VTK
MeVisLab/Examples
MeVisLab/IDE
MeVisLab/Standard
- AccumulateImageTest
- ArithmeticOTest
- Arithmeticl Test
- Arithmetic2Test
- BaseBypassOpTest
- BaseBypassTest
- BaseClearTest
- BaseSwitchTest
- BitMorphologyTest
- BoolArithmeticTest
- BoolIntTest
- BoolStringTest
- BoundingBoxTest

- - - - -
ol i Sl Sl Sl S Sl o}

oo[x
ool

8]«

Filter TestCases

¥ Log info messages
o 9 [~ Stop on error
[~ Python coverage

A4

[~ Secure testing

I~ Bullseye coverage

For detailed help, see the TestCenter Manual and Reference.

Tip

When hovering over the test function with the mouse, the function's comment is
displayed as a tool tip.

7. Finally, click on Run to run the test function. The option Secure Testing defines that the test case
is run in another instance of MeVisLab; you might want to keep it checked.

The report should look as follows:

178

Using the TestCenter

Figure 16.6. Report for ManualTest_75

T ReportViewer = | B ||

Test Result
MyThresholdTest
Ok 0.014s

Author JDoe

Maintainer
Test Definition Example/General/TestCases/FunctionalTests/ML/MyThresholdTest/MyThresholdTest def (Line 9)

Collapse all

I View failed only
I Hide infos
[Hide system messages

(=) ManualTest75 o.007s

Info Setfield Threshold threshold to value 75 Line: 8
Ok EXPECT_EQ(Fields.getvValue('lmageStatistics.outerVoxels™), 75). 75 (long) == 75 (int) Line: 9

Tip

For defining the test functions status, the MeVisLab debug console is used (OK, Error,
Warning), see also “ExampleTestCasel” in the test cases for the MeVi sLab/ St andar d
package.

Excursion:; About Context and Fields

When using the Scripting Assistant (see MeVisLab Reference Manual, chapter “Scripting
Assistant”), the following scripting line would be offered when setting the threshold value:
ctx.field("Threshol d.threshol d").val ue = 75. The context “ctx” is the context from which the
scripting is called up. When called up in an ML module, the context would be the ML module. If called
up in a macro module, the context would be the macro module. The context also defines which context-
sensitive help link is offered in the integrated text editor MATE.

For testing, however, using “ctx.field” is not the sensible approach because this way, the value for the
field is directly set and will remain as set even after the closure of the test function and the start of the
next test function. This might result in undefined conditions of the test case. The better solution here
is to set the value with Fi el ds. set Val ue(" Threshol d. t hreshol d", 75). This sets the value only for
the currently running function and then sets it back to the saved value the field had before calling the
function.

16.2.5. Automating the Test Case with the
FieldValueTestCaseEditor

One possibility to automate our example test is to use the Fi el dval ueTest CaseEdi t or module. With
it, field-value test cases can be created.

Tip

Aside of the module described in the following chapter, other modules are available to
handle field-value test cases, for example Fi el dval ueTest CaseGener at or for the fully
automated generation of test cases based on parameters and their permutations. Use the
Quick Search to find more FieldValueTestCase modules.

179

Using the TestCenter

Add the module Fi el dval ueTest CaseEdi t or to your test network and save the network.

Figure 16.7. The Fi el dval ueTest CaseEdi t or Panel

Apply Parameterizationl Verify Expected Resultsl Resize Columns”

Parameterization | Expected Results | Results To ¢ ﬂl

Module Field |Type |\.|'alue |

Use drag'n drop to put fields in the lists. Trigger fields are draggable from the
"Automatic Panel" or the ModuleInspector.

Load sve | saveas || cose ||

The user interface is split into three main parts:

e The FieldValue (FV) Test Cases list is on the left. There are three buttons to add (+), remove (-) and
duplicate (*) test cases.
« The FV test case editing is done on the right. Here, test cases can be (re)named and parameterized.

¢ The listed FV test cases are saved as one set in an XML file, which is handled on the bottom of the
window.

. Note
To save the FV test case set later, a data folder has to exist below the test case, for example
MyThr eshol dTest/ dat a. If no data folder exists yet, create it now.

To create a small set of three FV test cases for different threshold values, proceed as follows:

1. Click on the + button beneath the FV TestCases list to add a new test case.
Enter the FV TestCase name, for example “Threshold_75" and press RETURN.

3. Add the necessary parameters, in our case the threshold value of the module Threshol d. To do
this, drag the field from the module's panel onto the Parametrization tab.

n

180

Using the TestCenter

Figure 16.8. Dragging Fields into the Parameter List

TestCases Apply Parameterlzahonl Verify Expected Resultsl Resize Columns”
Threshold_075

Parameterlzatlorﬂ Expected Results | Results To J_

Module | Field | Type | Value |
Threshold threshold Double 75.0

TestCase Name: IThreshold 075

Use drag'n drop to put fields in the lists. Tngger fields are draggable from the
"Automatic Panel" or the ModuleInspectc

Lond |'\m|m” cose ||

[~ Use relative threshold

~Then
Write: |1mg Min

User Value: |

~“Flea
cise

Write: |1mg Max

User Value: |

Click on the Expected Results tab to enter the expected result. In our case, it is a value of “75” for
the out er Voxel s parameter, so drag this parameter into the list and edit the value, if necessary.

181

Using the TestCenter

Figure 16.9. Dragging Fields into the Expected Results List

7 Panel FieldValue]

TestCases Apply Parameterizationl Verify Expected Resultsl Resize Columnsl
Threshold_075
Parameterization | Expected Results || Results To ¢ ﬂl

Module | Field Type | value |
ImageStati... outerVoxels Integer 75

TestCase Name: IThreshold_O?S
P |-

‘ | $(NETWORK)

Use drag'n drop to put fields in the lists. Trigger fi are draggable from the
| "Automatic Panel" or the Modulel ctor

[~ Per slice

Inner Interval: Min:
Adjacent Widths: Lower:
~Results

Main | Adjacent | Bounding Boxes |
Value
Voxels:

Volume (mm~3):

Min Value: 0.00

Max Value: 255.00

Sum: 46155.00

Mean: 180.29
180.29
13522
116.28

Voxels Out Of Range:
¥ Results valid Update Mode: |Update ~ Update |

5. Select your FV test case and click the * button twice to duplicate the entry, as we need two further
test cases for threshold = 125 and threshold = 175.

6. Edit each new FV test case by adapting the name of the function, the used threshold value, and
the expected result value.

‘ Note
The processing order is alphabetically, so for sorting the order of your test cases, enter
the test case names accordingly.
7. Inthe field on bottom, enter the path and file name as $(NETWORK) / dat a/ t hr eshol dDat a. xn , then
click Save.

182

Using the TestCenter

Figure 16.10. The Resulting Panel

——

TestCases ! | Apply Parameterizationl Verify Expected Resultsl Resize Columns||
Threshold_075

Threshold_125 Parameterization Expected Results | Results To!‘l’
Threshold_175

Module Field |T',rpe |Va|ue |
ImageStati... outerVoxels Integer 175

TestCase Name: IThreshoId_l}'S

Use drag'n drop to put fields in the lists. Trigger fields are draggable from the
| | = | "Automatic Panel" or the ModuleInspector.

$(METWORK)/data/thresholdData.xml

8. For integrating the new FV test cases, add the following two things to your scripting code:

e Addi mport os so thatyour function can use the Python functions for handling platform-dependent
strings.

* Add the new test function beneath the first:

def FI ELDVALUETEST_Aut omati cTest _1():
return os. path.join(Base. getDataDirectory(), "threshol dData.xm ")

The return path expects the test case data file we just created.
9. Inthe TestCaseManager, reload the test case.

183

Using the TestCenter

Figure 16.11. Our Automatic FieldValue Tests Added

(EE ey

Test Selection | Test Reports | Test Creation | Configuration |

Reload All Tests Open Network File| ~ Edit Files | Reload |

Test Cases gl =

- Example/General
“ MyThresholdTest
-~ FMEstable/Release
- FMEstable/ReleaseMeVis
- FMEwork/PCL
-~ FMEwork/ReleaseMeVis
- FMEwork/VTK
- MeVisLab/Examples
-~ MeVisLab/IDE
—- MeVisLab/Standard
- AccumulateImageTest
- ArithmeticOTest
- Arithmeticl Test
- Arithmetic2Test
- BaseBypassOpTest
- BaseBypassTest
- BaseClearTest
- BaseSwitchTest
- BitMorphologyTest
- BoolArithmeticTest
- BoolIntTest
- BoolStringTest
- BoundingBoxTest

Threshold_075
Threshold_125
Threshold_175

M- - T

-
-
-
-
-
-
-
=

oo[x
ool

oL

Filter TestCases

¥ Log info messages
~ Pyiho [~ Stop on error
n cover:
i a8 [~ Secure testing

I~ Bullseye coverage

A4

For detailed help, see the TestCenter Manual and Reference.

10. Select “AutomaticTest_1" and run it. The report should look as follows:

Figure 16.12. Report for AutomaticTest_1

T T . o

Test Result 2016-03-07 12:40
MyThresholdTest
Ok 0.027s

Author JDoe

Maintainer
Test Definition Example/General/TestCases/FunctionalTests/ML/MyThresholdTest/MyThresholdTest. def {Line 9)

Colapse all

I view failed only
I Hide infos
I Hide system messages

(=] AutomaticTest1 Threshold 075 o000os #

Info Setfield Threshold threshold to value 75.0 Line: 281

(=] AutomaticTest 1 Threshold 125 0.00ss T%

Info Setfield Threshold.threshold to value 125.0 Line: 281

(=] Aut ticTest 1 Threshold 175 oo00s: ¥

Info Setfield Threshold threshold tovalue 1750 Line 281

184

Using the TestCenter

Tip
If you want to use only a subset of the field-value test cases, explicitly add the relevant

subset at the end of the line, for example:

return os. path.join(Base.getDataDirectory(), "threshol dbata.xm "), \
[' Threshol d_075', ' Threshol d_175"]

This way, only the test cases for threshold values of 75 and 175 would be run, while the
test case for value 125 would be omitted.

Tip

For another field-test example, see “ExampleTestCase5” in the test cases for the
MeVi sLab/ St andar d package.

16.2.6. Automating the Test Case with an Iterative Test

For this, the test function we implemented first will be used with a parameter instead of a fixed threshold
value, and the parameter is changed in the test function.

1.

2.

3.

Add the new test function:

def | TERATI VETEST_Aut omati cTest _2():
return {' 075 :075,"' 125" : 125, 175" : 175}, conput eVoxel s

Instead of a simple list, we use the Python's dictionary class here to have a nicer listing.

. Note
The processing order is alphabetically (and not given by the dictionary's order!), so for
setting the order of your test cases here, enter the dictionary names accordingly.

Add the actual test:
def conput eVoxel s(threshol d):
Fi el ds. set Val ue(" Threshol d. t hr eshol d*, threshol d)
EXPECT_EQ Fi el ds. get Val ue(" 1 mageSt ati sti cs. out er Voxel s"), threshol d)

The conput eVoxel s function is essentially the same function as entered for the manual test case,
but now using the parameter t hr eshol d. The function is called for every entry in the dictionary.

In the TestCaseManager, reload the test case.

185

Using the TestCenter

Figure 16.13. Our lterative Test in the Test Center

P Tencaravarooe L o

Test Selection | Test Reports | Test Creation | Configuration |

Reload All Tests

Open Network Filel

Edit Files |

Reload |

Test Cases

Test Functions

= Example/General

“ MyThresholdTest
+- FMEstable/Release

+- FMEstable/ReleaseMeVis
- FMEwork/PCL

t- FMEwork/ReleaseMeVis
t- FMEwork/VTK
£
£
=

- MeVisLab/Examples

-~ MeVisLab/IDE

—- MeVisLab/Standard

- AccumulateImageTest
- ArithmeticOTest

- Arithmeticl Test

- Arithmetic2Test

- BaseBypassOpTest
- BaseBypassTest

- BaseClearTest

- BaseSwitchTest

- BitMorphologyTest
- BoolArithmeticTest
- BoolIntTest

- BoolStringTest

- BoundingBoxTest

frn W B e B B e W e W

m

[AutomaticTest_1
AutomaticTest_2
075
125
175

oo[x

|Filter TestCases

8]«

ool

Debug NeMorkl

¥ Log info messages
[~ Python coverage

I~ Bullseye coverage

[~ Stop on error

[~ Secure testing

A4

4. select“AutomaticTest_2" and click on Run to run the test function. The report should look as follows:

For detailed help, see the TestCenter Manual and Reference.

186

Using the TestCenter

Figure 16.14. Report for AutomaticTest_2

G e aamnty)

2016-03-07 12:58

Test Result
MyThresholdTest

Ok 0.032s

Author JDoe

Maintainer
Test Definition Example/General/TestCases/FunctionalTests/ML/MyThresholdTest/MyThresholdTest def (Line 9)

Collapse al

[View failed only
[~ Hide infos
[~ Hide system messages

(=) AutomaticTest2 075 000z &

Info Setfield Threshold.threshold to value 61
Ok EXPECT_EQ(Fields.getValue("ImageStatistics.outerVoxels™), threshold): 61 (long) == 81 (int)

(=) AutomaticTest2 125 o o0ss T8

Info Setfield Threshold threshold to value 125
Ok EXPECT_EQ(Fields.getvalue("lmageStatistics.outerVoxels”), threshold): 125 (long) == 125 (int)

(=) AutomaticTest2 175 oo10s T

Info Setfield Thresholdthreshold to value 175
Ok EXPECT_EQ(Fields.getValue("ImageStatistics.outerVoxels™), threshold). 175 (long) == 175 (int)

16.2.7. Grouping Test Functions

TEST functions can be grouped. This is useful for grouping tests in the Test function list.

1. For a quick example, simply copy “ManualTest_75" and change the “75” in name and value to
“125". (In reality, nobody would want to group such redundant test cases but would make use of
the automation approaches as described above.) Make sure to give the test a new number, so the
resulting test function name might be “TEST004_ManualTest_125".

2. Add the group definition:

def GROUP_Thr eshol dG oup() :
return (TEST_Manual Test 75, TEST_Manual Test _125)

3. Save the scripting.

4. In the TestCaseManager, reload the test case. The new “ThresholdGroup” appears in the test
functions list. It looks and works similar to the automatic tests.

187

Using the TestCenter

Figure 16.15. Grouped Test Functions

rfﬁ' TestCaseManager =T i2_1
Test Selection] Test Reports] Test Creation] Configuration]
Reload All Tests Open Network File | Edit Files | Reload |

Test Cases

Test Functions

-1 Example/General
MyThresholdTest
FMEstable/Release
FMEstable/ReleaseMeVis
FMEwork/PCL
FMEwork/ReleaseMeVis
FMEwork/VTK
MeVisLab/Examples
MeVisLab/IDE
MeVisLab/Standard

LSRR SR -y

(IR e e S IR S S e S

ManualTest_75
ManualTest_125
+ AutomaticTest_1
+ AutomaticTest_2

]

16.2.8. Enhancing Test Reports with ScreenShots

Screenshots can easily be created with the Scr eenShot method.

Here a quick example:

1. Create a new test case called “MyScreenShotTest".

2. To the example network, add the modules Local | mage and Vi ew2D and connect them. Save the

network.

3. Then edit the scripting:

< Configure the Local | nrage module by setting the image path:

Fi el ds. set Val ue("Local | mage. nane",

" $(DenoDat aPat h) / Bone. tiff")

» Configure the Vi ew2D module, for example by setting the slice:

Fi el ds. set Val ue(" Vi ew2D. start Sl i ce",

0)

* Add the screenshot method and store the result in a variable:

result

= ScreenShot . creat ek f screenScr eenShot (" Vi ew2D. sel f",

« Add two lines that make the result available in the report:

Loggi ng. show mage(" My screenshot ",
Loggi ng. showFi | e("Li nk to screenshot file",

The full code is:

from Test Support
from Test Support. Macros i nport

i nport Fi el ds,

result)
resul t)

Loggi ng, ScreenShot

*

"screentest.png")

def TEST Cr

eat e_ScreenShot ():

Creates a single screenshot
Fi el ds. set Val ue("Local | rage. nanme",
Fi el ds. set Val ue("Vi ew2D. start Slice",
resul t
Loggi ng. show mage("My screenshot",

"$(DenpDat aPat h) / Bone. tiff")

0)

Loggi ng. showFi | e("Link to screenshot file",

4. Save it all and run the test function.

= Screenshot . creat eOf f scr eenScr eenShot (" Vi ew2D. sel ",
result)

resul t)

"screentest.png")

188

Using the TestCenter

The report should look as follows:

Figure 16.16. Report for ScreenShot Example

F e T EE

Test Result 2016-03-07 13:18
MyScreenshotTest

Ok 0249s

Author JDoe
Maintainer
Test Definition Example/GeneralTestCases/FunctionalTests/ML/MyScreenshotTest/MyScreenshotTest def (Line 9)

Collapse all

[~ View failed only
[Hide infos
[~ Hide system messages

E] Create ScreenShot o0.216s

Info Setfield Locallmage.name to value $(DemoDataPath)/Bone fiff Line: 8
Info Setfield View2D. stariSlice to value 0 Line: 9
ImageShow My screenshot Line: 11

a0 mm -|

Lsor ods
SCEN:
LUT C/W: 439.962 56 L

FileShow Linkto screenshotfile Line 12
screentest png |

Tip
For a more complex screenshot example, see “ExampleTestCase4” in the test cases for

the MeVi sLab/ St andar d package.

This was a short, practical introduction to the MeVisLab TestCenter. For further information, see the
TestCenter Reference.

16.2.9. Disabling Test Functions

It may be desired to disable test functions when they always fail because of a known bug. To do so
append the prefix "DISABLED_" to the function name.

Test functions can also be disabled depending on a condition using the
di sabl eTest Functi onl f (condi ti on) decorator. condi ti on can be a truth value or a callable.

from Test Support. Base i nport di sabl eTest Functi onl f
from Test Support. Macros inport *

189

Using the TestCenter

def canCreat eScreenShot s():
if [...]:
return True
el se:
return Fal se

Disable this test function if screenshots cannot be created:
@li sabl eTest Functi onl f (not canCreat eScr eenShot s())
def TEST_Create_ScreenShot ():

[...]

Disable this test function if the platformis unix:
@li sabl eTest Functi onl f (M_AB. i sUni x)
def TEST_Test Wt hW n32API () :

[...]

190

	Getting Started
	Table of Contents
	Chapter 1. Before We Start
	1.1. Welcome to MeVisLab
	1.2. Coverage of the Document
	1.3. Intended Audience
	1.4. Conventions Used in This Document
	1.4.1. Activities
	1.4.2. Formatting

	1.5. How to Read This Document
	1.6. Related MeVisLab Documents
	1.7. Glossary (abbreviated)
	ML, MDL, Open Inventor — Some Important Terms Explained

	Chapter 2. The Nuts and Bolts of MeVisLab
	2.1. MeVisLab Basics
	2.2. Development in MeVisLab
	2.3. MeVisLab Modules
	2.4. Fields
	2.5. Networks
	2.6. Overview of Important Files
	2.7. User Interfaces Controls
	2.8. Scripting
	2.9. How to Find More Information on Networks and Modules

	Chapter 3. Loading and Viewing Images
	3.1. The MeVisLab GUI
	3.2. Searching and Adding Modules
	3.3. Using the ImageLoad Module
	3.4. Adding Viewers to ImageLoad
	3.4.1. Adding the View2D Module
	3.4.2. Adding the View3D Module

	3.5. Alternative Ways to Load Images
	3.5.1. Dragging Images onto the Workspace
	3.5.2. Using the LocalImage Module

	3.6. A Note on Importing DICOM Images

	Chapter 4. Implementing a Contour Filter
	4.1. Loading the Input Image
	4.2. Implementing the Contour Filter
	4.3. Parameter Connection for Synchronization

	Chapter 5. Defining a Region of Interest (ROI)
	5.1. Creating a Viewer with a Selection Rectangle
	5.2. Adding a Second Viewer for the Subimage
	5.3. Adding the Interactivity for the Viewers

	Chapter 6. Excursion: Functionality Overview
	6.1. Image Handling and Processing
	6.1.1. Image Handling
	6.1.2. Image Properties
	6.1.3. Basic Image Processing
	6.1.4. Filter
	6.1.5. Segmentation

	6.2. Visualization
	6.2.1. 2D Viewing
	6.2.2. 3D Viewing
	6.2.3. Lookup Tables

	6.3. Data Objects
	6.3.1. Markers
	6.3.2. Curves
	6.3.3. Contours
	6.3.4. Surface objects

	6.4. Miscellaneous
	6.4.1. Fields
	6.4.2. Diagnostic

	Chapter 7. Creating an Open Inventor Scene
	7.1. Introduction to Open Inventor
	7.2. Creating the Applicator
	7.3. Creating the Interaction
	7.4. Creating the Anatomical Image
	7.5. Finishing the Complete Open Inventor Scene

	Chapter 8. Starting Development with Package Creation
	8.1. What are Packages
	8.2. Creating a User Package for Your Project

	Chapter 9. Introduction to Macro Modules
	Chapter 10. Developing a Macro Module for an Applicator
	10.1. Creating a Basic Global Macro
	10.2. Adding the Macro Parameters and Panel
	10.3. Programming the Python Script
	10.4. Addition: Shifting the Whole Tip

	Chapter 11. GUI Design in MeVisLab
	11.1. MeVisLab Definition Language (MDL)
	11.1.1. MDL Validator
	11.1.2. MDL Controls
	11.1.3. MDL GUI definition
	11.1.4. A Note on Fields in Scripting Interfaces

	11.2. Developing the ExampleToggleButton
	11.2.1. Creating the Macro Module
	11.2.2. Defining the Interfaces
	11.2.3. Programming the Button Action in Python
	11.2.4. Referencing the Command in the MDL Script
	11.2.5. Persistent Field Values
	11.2.6. Implementing a Keyboard Shortcut
	11.2.7. Arranging Multiple Buttons
	11.2.8. Auto Layouting with the AlignGroups Control
	11.2.9. Prototypes for Controls
	11.2.10. Designing Larger GUIs

	11.3. MDL Styles
	11.3.1. How to Use MDL Styles
	11.3.2. Defining Global Styles
	11.3.2.1. How to Define a Global Style
	11.3.2.2. How to Define a New Default Style for Application Macro Modules

	11.3.3. Creating Custom MDL Controls

	11.4. Customize GUI Appearance Using Qt Style Sheets (CSS)

	Chapter 12. Excursion: Image Processing in ML
	12.1. Some Advanced Information on Image Processing
	12.2. Structure of MeVisLab
	12.3. Coordinate Systems
	12.4. Affine Transformations
	12.5. DICOM Data and Coordinates
	12.6. Coordinate Systems in the MeVisLab GUI
	12.7. Data Types for DICOM and TIFF
	12.8. Image Processing Concepts: Pages, Slices, VirtualVolumes, and More

	Chapter 13. Introduction to C++ Modules
	13.1. Module and Connection Specifics on the C++ Level
	13.2. Some Tips for Module Design
	13.2.1. Macro Modules or C++ Modules?
	13.2.2. Combining Functionalities
	13.2.3. Tips for Module Testing

	13.3. Programming Examples

	Chapter 14. Developing ML Modules
	14.1. Creating a New ML Module for Adding Values
	14.1.1. Creating the Basic ML Module with the Project Wizard
	14.1.2. Preparing the Project
	14.1.3. Programming the Functions of the ML Module
	14.1.3.1. Implementing calculateOutputImageProperties
	14.1.3.2. Implementing calculateOutputSubImage

	14.1.4. GUI Creation/Optimizing
	14.1.5. Creating an Example Network and Help File

	14.2. Creating an ML Module For Simple Average
	14.2.1. Creating the Basic ML Module with the Project Wizard
	14.2.2. Editing the Header File of SimpleAverage
	14.2.3. Editing the CPP File of SimpleAverage
	14.2.4. Testing the Module

	14.3. Combining Two Modules in One Project
	14.3.1. Copying the Source Files
	14.3.2. Editing and Recompiling the CMakeLists.txt File
	14.3.3. Editing the Project in the Development Environment
	14.3.3.1. Editing SimpleAverage.h
	14.3.3.2. Editing MLSimpleAddInit.cpp

	14.3.4. Editing the Module Definition (.def)
	14.3.5. Cleaning up Folders and Example Networks

	Chapter 15. Developing a Base Communication
	15.1. A Note on Base Types Checks
	15.1.1. Base Connectors and Field Types
	15.1.2. Overriding Base Type Checks
	15.1.3. Implementing Base Type Checks

	15.2. Developing the MLBaseOwner Module and the BaseMessenger Class
	15.2.1. Creating the BaseCommunication Project in the Wizard
	15.2.2. Adding New Files
	15.2.3. Adding References to the new Files in CMakeLists.txt
	15.2.4. Adding Contents to BaseMessenger.h
	15.2.5. Add Contents to BaseMessenger.cpp
	15.2.6. Editing MLBaseCommunicationInit.cpp
	15.2.7. Editing mlBaseOwner.h
	15.2.8. Editing mlBaseOwner.cpp
	15.2.8.1. Adding the construction of a new BaseMessenger Object
	15.2.8.2. Editing handleNotification
	15.2.8.3. Editing activateAttachments
	15.2.8.4. Implementing Setting the Parameters in BaseMessenger
	15.2.8.5. Implementing the method _setFieldValuesToMessenger()

	15.2.9. Making MLBaseCommunication classes known
	15.2.10. Adding an object wrapper for MLBaseCommunication objects

	15.3. Developing the SoBaseReceiver Module
	15.3.1. Creating the New Open Inventor Module with the Wizard
	15.3.2. Editing CMakeLists.txt of SoBaseReceiver
	15.3.3. Edit SoBaseReceiver.h
	15.3.4. Editing SoBaseReceiver.cpp

	Chapter 16. Using the TestCenter
	16.1. Introduction to Testing in MeVisLab
	16.2. Developing a Test Case
	16.2.1. Creating a New Test Case
	16.2.2. Populating the Test Network
	16.2.3. Editing the Module Settings
	16.2.4. Creating a First Test Script with Manual Threshold Setting
	16.2.5. Automating the Test Case with the FieldValueTestCaseEditor
	16.2.6. Automating the Test Case with an Iterative Test
	16.2.7. Grouping Test Functions
	16.2.8. Enhancing Test Reports with ScreenShots
	16.2.9. Disabling Test Functions

