MeVisLab Definition
Language (MDL) Reference

MeVisLab Definition
Language (MDL) Reference

MeVisLab Definition Language (MDL) Reference

Abstract

This document describes the MDL (MeVisLab Definition Language) of MeVisLab and was published
on 2025-06-26.

Table of Contents

L. MIDL SYNTAX 1 otieeiiiiiti ettt ettt et et e e 8
1.1, TAQS @NA VAIUES ...ttt e et e e et e et e e e e e et e e et e eeanaees 8
O = To B B T = R Y 011 ST 9
I R € {011 o1 PP 12
Y T -1 o] L= PP 12
ST | o Ter 18 o [T 0 To T PR 12
1.6. Conditions and Special SAatEMENTSccoviiiiiiiiee e 13
A 0o T1 110 [=] ¢ | £ ST 13
1.8. Naming Conventions and LiMitatioNSoveiiiiiiiiiiiieeii e 14
I V[To F= 11 o o PPN 14

2. Module (ADSract) DECIArAtIONcouuuiiiiiiii e e e e enees 15
P I 101 (=T 1 = o TSP 19
A B L= Tol] o] (o] o E PP PPPPTTRSPPIN 23
AR T O] 1411 4 =g [0 R PSPPSR 25
A e =T (1] 1= o (o = PPN 27
R ST B =T o] [0 011 o | PP PPTTR PP 28
2.6. MLIMOAUIE ..ot e ettt et et e et e e et e et e e e e ean s 29
2.7, INVENTOIMOTUIE ... e e e e e et e e e e et e e e eanaaes 30
P T /=T £0]1Y To Lo 11][P 30
e B T (o |] (T o 1= PPN 31
2.10. NEtWOIKPANEIot e e et e eean e 32

3. Other Module-Related MDL FEAIUIEScc.uiiitiiii e e e e e e eees 34
3.1. Module Genre Definitioniiiiiiii e e 34
3.2. ModuleGroup DefiNitiONoceeeuiiiiii et 35
3.3, Preloading DLLScoouiiiiiiiiiie et 35

S U I 0o 0o] TP 37
4.1. GUI Example Modules in MeViSLabo 37
4.2. ABSEract GUI CONLIOISeeiiiiee et e e e e e e 37

4.2.1. CoNtrol (ADSIIACT) ...eeeviieiiii et 37
4.2.2. Frame (ADSTIFACE)uiieiiiiiiii et a e 44
4.2.3. EXEBCULE ...ttt e e eas 45
4.3. Layout Group CONLIOIScoouiiieiiiii et 45
I 70t YLV o (o YT PTR 45
R T O (=T o [o] Y PP 47
G TG T Y /=4 (o7 | PP 48
I o To T o] o - | PPN 48
.35, TaADIE . e 49
N G T] [« IO PP PPPTTRP 52
G R = 1|1 (0]] = o) P PPN 54
4.3.8. SPIIIET .ot 54
4,39, BOX ittt et et e e aae 57
4.3.10. SCIOIVIBW ...t e e e e e e et e eeaa e eees 58
A.3.10. TADVIBW ..ttt ettt ettt et e e et e e e e e 59
4.3.11.1. TabVIBWITEIM ..ot e e 62
4.3.12. FrEEFIOAL ...t e 63
4.4, USEr INPUL GUI CONMIOISiiiiiiiieeiiit et e e e e e ab e eenes 64
I = Lo PSP UPPPPTR 64
A.4.2. FieldLabel e 68
O T = 10 {1 (0] o PP PTPTPTN 69
N o To | =T (o o PP 71
4.4.5. COMMONBULIONGIOUD ...uiiiriiiiiiieiii ettt ettt e e e r e e e e 72
4.4.6. PUShBUIIONGIOUD ..ceitiiiiiiitiie ettt ettt e et e e e e e 75
4.4.7. RAQIOBULIONGIOUPDeiiitiieiiiiie ettt ettt e et e et e e et e e e e et e e e eabaaeeene 75
4.4.8. TOOIBULIONGIOUPeteetineieeii ettt ettt e ettt e et b e e et e eeeena s 76
e I 1T 0]] = - | PP 76

MeVisLab Definition
Language (MDL) Reference

O O g T= ol {20) PP 79
ot I @ .41 0 To = o) P 80
44,12, MENUBAL ... 81
e T @] o] ¢ =l [PRSPPI 82
I S I 1= = o [PP 82
ST N[0 0] =T =l [USSR 84
T =1 (o] o[P 85
oy - 1 (= I o = 86
I T [T [PP 87
e T 101 =T Y= 1S T [PN 87
4.4.20. TAUMBDWREEI ...couniiii et 89
O N I (AT SRR 90
s o |V 01T (= PPN 91
4.4.23. HYPErLADEIcoveii e 93
O S N 11 1 = o) PP 93
T L) YT PP 95
T oo Y41 S 98

4.5, Decoration GUI CONLIOIScvuuiiiiii i e e e e e e e e eaes 101
A5.1. LADEI ..o 101
2 | 4 =T PP 102
TG R Y=o = > o] 102
S S o 1] o] YO 103

4. 5.5, PrOGIESSBaAl .vuiiiiii et 103

4.6. MENU GUI CONMIOISiiiiieiiiiii e e e e e e e e e e e et e eaneeeaes 104
G I 0T o 18] 011, L= o [PP 104
A.6.2. SUDMENU ..coutiiiiiii et e et aae 105
4.6.2.1. MENUITEIM .ot e e anas 105

4.6.2.2. SBPAIALION ettt 106

4.7. CompleX GUI CONLIOIScuuiiiiiee e e e e e e e eaes 106
Nt R - 1 o = P 106
o D)Y g - 141 od = 0 = N 107
T 1= =T PPN 108
B e\ {1 210 1= 109
T Y (o1 o o = P 110
4.7.6. SCreenShOtGAllEIYiiiiiiii e e 111
A.7.7. WEDENGINEVIBW ...eiiiiiiiii ettt e e e e e e e et eeaaaes 111
4.7.8. GraphiCSVIBW ...cuuuiiiiieiii et e e e e e e e e e e eaeas 113
e TR 1 =1 00111 To 1= AV P 113

4.8. Event Handling CONLIOISiiiniiiiiei e e e e e e e e eaes 120
A.8. 1. ACCEI e 120
B Y 1= o | 11 (= 121

Ve I @ 1 g (=T gl D= TS T [N @] o] o] = 123
e Tt AN [T [{10 1 123
e = (ol 1 I A PSP 124
4.9.3. SHYIES it 126
4.9.3.1. DEfINESIYIE ..oiciiiie e 126

LT I = 5] = 0] o PP 130
LT ST A = T 1 131
o 1= P 132

List of Figures

4.1, Category VS. VEITICAIcouuiiii e et 47
4.2. TestVerticalLayout MOTUIE oo et e e e eees 48
4.3. TestHorizontalLayout MOTUIEccoouiiiii et 49
4.4, TestTableLayout MOGUIE ..ot 52
4.5, TestGridLayout MOTUIE ... 54
4.6. TestSplitterLayout MOAUIEiiiiiii et 57
4.7. TesStBOXLAYOUL MOTUIEiiiiii it e et e e et e e e e e eeees 58
4.8. SCrOlIVIEW EXAMPIE ...ttt ettt et e e 59
4.9. TestTabViewLayout MOAUIEooiiiiiiiiii et 62
4.10. VeCtOrEdit EXAMPIE ..ot 86
4.11. IntervalSlider EXAMPIEcoouuiiiiiiiiii ettt 89
4.12. ThumMBWRhEEI EXAMPIE ...t 90
4.13. TeStHYPErTEXt MOUUIEc.ouiiiie et e e 92
4.14. TeSILIStBOX MOUUIEoouniiiii ettt e enens 95
4.15. TeSILIStVIEW MOAUIE ... oot ettt e s 98
4.16. TestICONVIEW MOTUIEui et 100
4.17. ProgressBar EXAMPIEiiiiiiiiiiiiiie ettt 104
4.18. TeStPOPUPMENU MOAUIEcooiiiii et e et e e e e e 104
4.19. TeSIVIEWEIS MOTUIEot ettt e e 109
4.20. TeStEVENTFIItEr MOUIE ... oot 122
4.21. TESISLYIES MOTUIEoeiiiii e et 126

List of Tables

2.1. Value formats by field type

List of Examples

T VAV T To [0 11 N 46
Y =Y ¢ 1 o7 | PO RPSPRPRN 48
R T = (o] g7.d0] o] - | PP 49
S 1= o] L= 51
T €11 o PP 53
T ST o] 11 =] T TSP SPPPTTR 56
O G = 10) GO PSRPOt 58
4.8, SCIOIVIBW ..ceeieiit i e et 59
L T = 1 o AV = PR 61
O T @0 a g o o] =0) GRS 81
A.1L. MEBNUBAL ..o e e e e e e 81
N @] (o] ¢ o || SN 82
R T I 1= o [PSSP 84
e S N[0 [g o =T = [PP 85
TV L= Tox (o] o [PP 86
T B = 1 (= T2 1T T 87
s R [T = 87
S T [0 =Y V7= 11 [0 [T PRSP 88
4,19, TRUMDBWREEI ... e e 89
4,20, HYPEITEXE oneiiiiiitiie ettt et et et e et et et et e et et anas 92
A.21. HYPErLADEL ... e e e 93
Oy W1 =T) PPt 94
T I) VAT PPN 98
S Tolo) ¢ AV T= T 100
4.25. ProgreSSBar ... oot 104
4.26. PopupMenu, SubMenu, and MENUITEMcoouiiiiiiiiiiici e 104
A.27. PANEL e 107
TV 1 Y PSPPI 109
S B V=T o {1 (Y PRSP 122

Chapter 1. MDL Syntax

This is a short introduction to the MeVisLab Definition Language (MDL), in which all . def, . scri pt and
various other files for the MeVisLab are written. The MDL is a configuration and layouting language, not
a real programming language. You can set tags and values for the tags, but there are some extensions
to this static scheme.

If found in . def or. scri pt files, the MDL is used for layouting the GUI of modules. That is the arranging
of fields implemented in C++ on a module panel or adding new fields and functionality to modules,
especially to macro modules.

Besides just layouting the GUI for a module, the MDL offers adding commands that call scripting
methods (Python) on occasions like altering a field's value or opening a module's panel. The MDL
controls can be scripted with Python, a scripting link into the MeVisLab Scripting Reference is given
where appropriate.

MDL is tag-based. Typically, a tag is set to a certain value or to a group of tags. There are also special
tags to conditionally parse parts of a file or to test for miscellaneous conditions.

1.1. Tags and Values

Setting a tag is simple:

TAGNAME = VALUE

The equal sign = has to be used between every tag and its value, except for groups, where the value
is optional (see Groups). TAGNAME as well as VALUE need to be a single token. If a token should
contain whitespace, there are various ways to quote this value.

The most simple way is to enclose a value containing whitespace in quotes:

nyTag = "Exanple with whitespace and \"quotes\" and a \\ backsl ash "

Quotes and backslashes are escaped using backslashes, which can be cumbersome when frequent
usage is required. There are two alternative ways to enclose long values that contain special characters:

/1 Enclosing with "* *"

dr oppedFi | eCommand = "* py: ctx.field("fileNanme").val ue args[0] *"

/1 Enclosing with @@
dr oppedFi | eCommand = @ py: ctx.field("fileName").value = args[0] @@

Inside strings starting with a quote-star "* and ending with a star-quote *", or inside strings enclosed
in double @ characters @@ you can use all characters without escaping them except for the backslash
character. Only if you want to use a sequence of characters that is the same as the ending of the used
delimiters, you need to escape them with backslashes.

If you use any kind of quoting, you need to escape backslashes with a double backslash\\ .

Overview of quoting and the characters you need to escape with a backslash:

Escape " with\" oruse' in Python instead.

Escape \ with\\.

"k x 0

Escape *" with *\ ",

MDL Syntax

Escape\ with\\.

Escape @awith @ @

Escape \ with\\.

1.2. Tag Data Types

The different tags in the MDL have different data types. Those data types are listed here with a general
explanation. A more detailed explanation can be found at the actual tags.

STRI NG
An arbitrary description string. If the string contains spaces, it has to be enclosed in quotes.

The tag data of type STRI NG may be translated to other languages by an internationalization
mechanism.

This type is used as a control's narme, asitstitl e, conment, what sThi s- and t ool Ti p text.

Examples:

title
coment

SonmeExanpl eTitl e
"Thi s exanpl e comrent contai ns spaces”

STRI NGLI ST
A list of strings, separated by commas or spaces.

This type is used for the genr e and gr oup and various other tags.

Examples:
genre = Lung
group = "Rel ease, LungPrivate"

AUTHORS
A list of comma separated strings. The authors have to be written as "FirstName LastName".

Have a look at the detailed description of the author tag.

NANVE
A unique identifier that must not contain spaces.

This type is used for identifying objects across script, scripting, and C++ code. Tags such asitem
modul e, DLL, fi el d panel or depr ecat edNane are of this type.

NAMELI ST
A list of unique identifiers, separated by commas. The unique identifiers must not contain spaces.

This type is used for the fi | t er tag of the EventFilter.

To get a list of the possible values of the filter tag, use the auto-completion of the text editor
MATE.

BOOL
A boolean value.

Possible values are Yes (alternatives: Tr ue, 1, On) and No (alternatives: Fal se, 0, OF f).

Ul NT
An unsigned integer value.

I NT
An integer value.

MDL Syntax

FLOAT
A floating-point value.

ENUM
One of a fixed list of unique identifiers.

Have a look at the detailed description of tags of type ENUMfor the possible values and the default
value. Also, the possible values are shown in MATE's auto-completion.

Fl ELD
A unigque and existing identifier of a field.

This type is used, i.e., for the fi el d tag of the Accel.

FI ELDLI ST
A list of unique and existing field identifiers, separated by commas.

This type is used for the list of fields in the Persistence description.

Fl ELDEXPRESSI ON
An expression that is based on field values.

This type is used for the tags ni n, max, dependsOn, and vi si bl eOn.
The following operators are supported (precedence in order of appearance):
()
Parentheses
* |l
Logical or expression (lazy-evaluated)
¢ &&
Logical and expression (lazy-evaluated)
e == |= < <= > >=

Comparison; Boolean fields and expressions are compared as boolean, numbers are compared
as numbers, and everything else is compared as strings. If the right hand side is a regexp, the
left hand expression is matched to the regexp.

o + -

Addition and subtraction; numbers are handled as expected. If one of the arguments is not a
number, the values are concatenated as strings, or the second argument is removed from the
first argument string if found.

o *

Multiplication, only applicable on numeric arguments

Unary minus that can be used in front of parentheses and numbers or number fields
o !

Unary not that can be used in front of parentheses and boolean fields

* [sequence of digits (with optional . somewhere but not in the first place)]

10

MDL Syntax

Numeric value
e fiel dName
The name of a field (may also be a qualified hame with modulename.fieldname)

Bool Fields are interpreted as their bool value, all other fields are interpreted as their string or
numeric value, depending on the operation applied.

e "String"

A string constant that is given in quotes. Note that there is no way of quoting " inside of a string
at the moment.

* /regexp/[i]
A regular expression, the optional i after the closing / makes the expression case-insensitive
Regular expression can only be used on the right hand side of a comparison.
Note that there is no way of quoting / inside of a string at the moment.

Some operations are provided as functions, i.e., like

functi onName(argurmentO, ...)

* mi n(): Returns the minimum value of all arguments.

* max() : Returns the maximum value of all arguments.

« abs(): Returns the absolute (positive) value of argument.

e if(condition, argTrue, argFalse): Returns the second argument if the first argument
evaluates to Tr ue; otherwise, the third argument is returned.

PATH
A relative or absolute path to a directory. If it is a relative path, useful variables are listed in
Section 1.4, “Variables”.

The path delimiter is a /, independent of the platform.

FI LE
Same as PATH but with a specified file. This file can be, e.g., a scripting file (. py), an HTML file
(. ht M), or a network file (. m ab).

SCRI PT
A unique name of a scripting function implemented in a separated and included scripting file, or a
single line of scripting code.

COLOR
A color definition, explained in more detail here.

KEYSEQUENCE
A keysequence or shortcut to trigger certain functionality. The set string may be translated to other
languages by an internationalization mechanism.

A KEYSEQUENCE is used in menus and in the Accel.

Rl CHTEXT
A string containing HTML formatting.

This type is used in the TextView or similar controls.

11

MDL Syntax

A table with all supported HTML tags can be found in the chapter RichText.

FORMATSTRI NG
A C-like expression for formatting a (floating-point) number.

Have a look at the NumberEdit control for more information.

REGEXP
A regular expression for string matching.

This type is used in the LineEdit control for validating the entered string.

QrsLor
A Qt slot that is triggered if a control emits a signal.

This type is used in the Menultem.

1.3. Groups

Group tags are used for hierarchical tags. This means that you can build not only flat tag lists but also
complete tree hierarchies. A group tag starts with a tag name, an optional value, and an opening curly
brace, it ends with a closing curly brace. Inside of the braces, you can set normal tags with values or
other group tags:
nyG oup exanpl eG oup {

nornmal Tag = "This is a normal tag"

groupl nsi de {
i nsi deTag = "Anot her exanple tag"
}
}

tagOnl yGroup {
normal Tag = "This group has no val ue"
}

In contrast to normal tags, a group tag does not need to have a value. The second example above
shows a group that has only the tag name but no value before the group is opened.

1.4. Variables

The MDL has some predefined variables that are useful for its purposes. To get the value of a variable,
write its name inside a pair of parentheses with a dollar sign prefix: $(VARNAME) .

The following variables are defined:

LOCAL - Contains the full path of the currently parsed file.
HOME - The home directory of the user.
Packagel denti fi er - A unique name with the structure: MLAB_PackageG oup_PackageName

In addition to these predefined variables, you can get the values of all tags from the nevi sl ab. pr ef s file.

Variables in MDL can be escaped by writing $(* VARNAME*) , which expands to $(VARNAME) .

1.5. Including Files

The MDL allows you to include files with the #i ncl ude statement. This is equivalent to pasting the given
file at the position of the include statement:

#i nclude $(LOCAL)/anotherfile.script
The same file can be included multiple times at different places in an MDL file. It is recommended to

name included files either . scri pt or. i nc. You should not use the . def extension, as this is reserved
for module definition files and would be read automatically by MeVisLab on startup.

12

MDL Syntax

1.6. Conditions and Special Statements

The MDL allows parsing or skipping parts of files depending on conditions. Additionally, there are
statements that enable simple debugging and message printing.

#i f set and #i f nset are used to test if a variable is set to one of the following values: Yes, Tr ue, On, or
1. If the variable is not set or has a different value, the block is not parsed.

The variables can be defined in the mevi sl ab. pref s file.

#i fset ApplicationAdvanced {
/1 1f $(ApplicationAdvanced) is defined and set to Yes, True, On, or 1, parse inside this block
Fi el d advancedField {}

}

#i fnset Applicati onAdvanced {
/1 1f $(ApplicationAdvanced) is undefined or not set to Yes, parse the follow ng bl ock
Field normal Field {}

}

#i fdef and #i f ndef are used to test for existence of variables (and not its value)

#i f def CPU {
/Il 1f $(CPU) is defined, parse inside this block
cpuTag = "$(CPU)"

}

#i f ndef CPU {
/1 1f $(CPU) is undefined, parse the follow ng bl ock
cpuTag = "CPU unknown"

}

The #i f statement is another conditional for parsing blocks. With #i f you can test the boolean value
of a variable or compare two variables as strings or numbers, or compare a variable with a static string.
The following operations are possible for a comparison: <, >, ==, >=, <=, | =

#if $(DEBUG {
/'l Parse this if DEBUG is a defined variable and has the bool ean value Yes (True, On, or 1)
debugTag = "Debugging is fun"

#if "$(VERSION) >= $(M NVERSION) " {
/1 1f the variables can be parsed as floating-point nunbers, make numeric conparison;
/'l otherw se, a |lexical conparison is perforned
f eat ureFor Version = true

#if "$(HOVE) == $(LOCAL)" {
/'l Parse this if the current MDL file resides in the user's honme directory
nyHome = "is ny castle"

}

The #echo statement allows you to print out the value of variables or any other string to the console,
which can be very useful for debugging:

#f $(DEBUG {
#echo "HOMVE-Dir is $(HOWE)"
}

The #abort statement is used to print an error message and to stop the parser:

#i f ndef Defaul t Font {
#abort "No default font avail able!"

}

1.7. Comments

Comments in MDL are the same as in C++:

/Il This is a cooment before a tag

nyTag = nyVal ue

/*

The following tags are not parsed, as they are inside a comment bl ock
tag0l = unparsed

t ag02 unpar sed

*/

anot her Tag = anotherValue // Comment after tag/value pair

13

MDL Syntax

Comments can be placed anywhere in the MDL file, except between a tag and its value.

1.8. Naming Conventions and Limitations

Although it is not needed by the parser, it is recommended to use tag names without whitespace and to
separate words in tag names with uppercase characters. Both of the following examples are allowed,
but the latter is recommended:

"Tag with four words" = "The Val ue"
tagWt hFour Wwrds = "The Val ue"

You can use any character sequence for tag names as long as they are parsable as one tag. To start
tag names with characters that end or start new syntactic constructs, for example, { or =, you have to
enclose them in quotes or use the same methods as for values.

1.9. Validation

MeVisLab contains a complete definition of allowed MDL tags and throws warnings if the validation of
an MDL script fails. Usually, it adds a link to the online documentation so that you can see which tags
are possible in the scope you are in.

14

Chapter 2. Module (Abstract)
Declaration

MeVisLab supports three different types of modules, which are derived from an abstract module:
* MLModule - An image processing module using the ML.
* InventorModule - A visualization module derived from an Openinventor node.

* MacroModule - A macro module that encapsulates an internal network, and has its own panel and
script.

The following module tags are supported by all module types. Details on the different modules are given
in the following sections.

Dynamic scripting: MLABModule (common base class), MLABMLModule, MLABInventorModule,
MLABMacroModule

[M_.Modul e] | nvent or Modul e|] Macr oModul e] NAMVE {

genre = STRI NGLI ST

aut hor = AUTHORS

status = STRI NG

group = STRI NGLI ST

coment = STRI NG

keywor ds = STRING

exanpl eNet wor k = FILE

seeAl so = STRI NG

docunent ati on = FILE

hasTransl ati on BOOL [No]

transl at i onvbdul es = STRI NGLI ST

transl ati onLanguages STRI NGLI ST
depr ecat edNane = STRI NG
external Definition = FILE

associ at edTest s = STRI NGLI ST
relatedFile = FILE

FI ELDEXPRESSI ON
FI ELDEXPRESSI ON

acti vel nput | ndex
acti veQut put | ndex

expor t edW ndow = STRING
Interface {
I nputs {
Field NAME {...}
}

Qut puts {
Field NAME {...}

:

Paraneters {
Field NAME {...}

)
}

Description {
Field NAME {...}

}
Commands {
source = FlILE

/'l nore source tags. ..

15

Module (Abstract) Declaration

i nportPath = PATH

/1 more inmportPath tags...

i ni t Command = SCRI PT
wakeupConmmand = SCRI PT
dr oppedFi | eCommand = SCRI PT
dr oppedFi | esCommand = SCRI PT
Fi el dLi stener [FIELD] { ... }

}
Depl oynment {
directory = PATH

file = FILE

nodul e = NAME
DLL = NAME

}
Persi stence {
fields = FIELDLI ST

Modul e NAMVE {
fields = FI ELDLI ST

}
}

Net wor kPanel {
info = EXPRESSI ON
Button [FIELD} { ... }
}
W ndow [NAME] {
.
/1 more w ndows. . .
}
genre = GENRENAMES
Specifies one or more genre this module is in. Genres are separated by comma and have to be
declared in the global genre file of MeVisLab. If a given genre is not defined, you will get a validator
warning and the module is put into the "Other" genre. The genre tag is used to generate automatic

entries in the Modules menu of MeVisLab and in the documentation. A module can be in multiple
genres.

Example: genre = "I mage, Diffusion"

See also: Section 3.1, “Module Genre Definition”

aut hor = AUTHORS
Sets the author(s) of the module, starting with the primary author. Authors have to be separated by
comma and should contain both first and last names.
Examples:
author = "Author1, Author2"

author = "Firstl Lastl, First2 Last2"

However, if you list a single author, do not use the format "Last, First" as this results in a pair of
authors with just one last name each. Just state the author's name with "First Last".

16

Module (Abstract) Declaration

Warning

Do not write anything except the authors' names in this tag, because the names are
used for automatic documentation generation.

status = STRI NG
Sets the status of the module.

Currently used words are:
* Stable

* Wirk-in-progress

* Test

* Deprecated

group = STRI NGLI ST
Sets a list of group names separated by comma. If no group is set, the module is always visible in
MeVisLab. If a list of groups is set, the module is only visible in MeVisLab if one of the groups is
enabled in the MeVisLab prefs file (mevi sl ab. pr ef s) via the "EnabledGroups" tag.

‘ Note
Visible means that the user can find the module in the search dialogs and in the Modules
menu. The modules can still be loaded from a saved network or inside an application,
even if they are not visible.

Special groups:

- Release: if the string contains the keyword "release"”, the module is only visible in the MeVisLab
release version; otherwise, it is not visible in the release version, regardless of the other groups.

- Deprecated: if the string contains the keyword "deprecated", you have to enable the "deprecated"
group in MeVisLab's preferences to see those modules, regardless of the other groups.

Examples:

group = Deprecated // nodule will only be visible if "EnabledG oups" contains
"deprecat ed"

group = Release // nodule will be visible in MeVisLab rel ease

group = LungPrivate // nodule will only be visible if "Enabl edG oups" contains
"LungPrivate" and if MeVisLab is not in rel ease node

group = Rel ease, LungPrivate // module will only be visible if "Enabl edG oups”
contai ns "LungPrivate"

comment = STRI NG
Sets a short comment that is shown in the MeVisLab help system and on the network.

(We recommend that you only write a short comment here and use the module documentation for
further information.)

keywords = STRI NG
Sets keywords that are used in the MeVisLab search to find a module by its keywords. The keywords
are separated by space.

Make sure that you only use adequate keywords; otherwise, your module will be found more often
than wanted. Having no keywords decreases the chance that someone finds the module.

17

Module (Abstract) Declaration

You do not need to set any part of a module's name as a keyword; it does not help in the least. For
example, refrain from setting "examiner viewer" as keywords for the module SoExaminerViewer.

exanpl eNetwork = FI LE
Sets an example MeVisLab network that the user can open to see how the module could be used
in connection with other module.

This tag can be used multiple times for a module to link to a number of example networks.

seeAl so = STRI NG
Sets a reference to other modules that are related to this module, separated by space.

Example: seeAl so = " SoVi ew2D SoOrt hoVi ew2D"

external Definition = FILE
Defines a module's interface, GUI windows, and field properties in an external file, typically with the
file extension . scri pt. It is advised to use the naming convention $(LOCAL) / Modul eName. scri pt
if you use this tag. The advantage of using this feature is that the MDL file needs only be parsed
when the module is really created and not when MeVisLab is started. Make sure that you still provide
the simple tags (aut hor, comment, etc.) in the . def file so that they are available when MeVisLab
is started.

Example: ext er nal Definition = $(LOCAL)/ Modul eNare. scri pt
Tip

This is typically used in MacroModules, especially when they are applications, to avoid
that MeVisLab reads the entire application definition on startup.

associ atedTests = STRINGLI ST
Specifies a list of functional tests that are associated to the module.

Use the macro module TestCaseManager to generate new tests or to browse and modify existing
tests.

See the document TestCenter Manual for more information about functional test cases for specific
modules.

hasTransl ati on = BOCL
Defines whether this module has translations. If a module has translations, then all MDL strings
of that module and all occurrences of ctx.translate() in its Python source files will be collected and
written to a . t s file. See Translations for more information.

transl ati onMbdul es = STRI NGLI ST
Defines a comma-separated list of modules that also have translations. See Translations for more
information.

transl ati onLanguages = STRI NGLI ST
Defines a comma-separated list of language initials. For example, "en,de,it". See Translations for
more information.

depr ecat edName = STRI NG
Defines an old, deprecated name for this module, so that networks that contain a module with this
name can still be loaded even if the module name was changed.

relatedFile = FILE
References a file that belongs to this module and should appear in the list of related files in the
module context menu (besides the automatic entries). It is advised to reference files relative to
$(LOCAL) . The tag can be used multiple times.

Example: rel atedFil e = $(LOCAL)/. ./ SomeShar edConfi gFi | e. xni

18

Module (Abstract) Declaration

activel nput | ndex = FI ELDEXPRESSI ON
The given field expression is evaluated and the calculated integer index is used to highlight the
active input connector (e.g., for modules like Switch). Negative values mean that no connector will
be active, with the exception of -3, which means that all connectors are active.

activeCQut put | ndex = FI ELDEXPRESSI ON
The given field expression is evaluated and the calculated integer index is used to highlight the active
output connector (e.g., for modules like BaseSwitch). Negative values mean that no connector will
be active, with the exception of -3, which means that all connectors are active.

export edW ndow = STRI NG

. Note
Only evaluated by the MeVisLab Web Toolkit, which is not part of the public SDK.

Gives the names of GUI panels that should be available remotely. This may also be the name
of a panel of a submodule by giving the name as submodulename.panelname. This tag may be
used multiple times. If the given panels reference fields of submodules, these fields are exported
automatically as fields of the remote module under the name submodulename.fieldname.

2.1. Interface

The Interface section is used to declare any extra fields of a module. While it is possible to use the
interface section in an ML/InventorModule, it is typically only used for MacroModule, since the ML and
Inventor modules get their fields automatically from C++. If you want to add a description for a C++ field,
refer to the Description section.

The Interface section can contain three subgroups: Inputs, Outputs, and Parameters. Inputs and Outputs
are typically Image, SoNode, or MLBase fields, while the Parameters section typically holds parameter
fields like floats, vectors, or color. The declared fields can be both standalone script fields or they can
alias an internal field of the internal network of a MacroModule.

Interface {
I nputs {
Field ...
}
Qut puts {
Field ...
}
Paraneters {
Field ...
}
}

In each of the subgroups, a field is defined as follows:

Fiel d NAME {
type = ENUM
val ue = STRING
coment = STRI NG
hi dden = BOOL [No]
priority = INT [100]
edi tabl e = BOOL [Yes]
per si st ent = BOOL [Yes]
isFilePath = BOOL [No]
mn = FI ELDEXPRESSI ON
max = FI ELDEXPRESSI ON
i nternal Name = FI ELD
al | onedTypes = STRI NG
| egacyVal ue = STRING
Vi si bl eOn = FI ELDEXPRESSI ON
dependsOn = FI ELDEXPRESSI ON

19

Module (Abstract) Declaration

/1 for enuns:

items {
i tem NAMVE {
title = STRI NG
depr ecat edName = STRI NG

/1 nore deprecat edNane tags

}

/'l old, deprecated enum syntax:
val ues = STRI NG
}

type = ENUM
Defines the type of the field (is automatically given if i nt er nal Name is used).

Possible values:

» String

Integer (alias: Int)
* IntVector2
* IntVector3
* IntVector6
* Float

» Double

* Bool

» Trigger

* Vector2

* Vector3

* Vector4

* Vector6

* Plane

* Rotation
» Color

* Matrix

* Enum

* SoNode

* MLBase
e Image

* IntegerList (alias: IntList)

* DoubleList

20

Module (Abstract) Declaration

» Vector2List
» Vector3List
» Vector4List
val ue = STRI NG

Sets a default value for the field (it will only be assigned when a module is newly created, not on
reload of a module), it will be overwritten by a stored value when loaded from a network.

Table 2.1. Value formats by field type

Type Value Format Example

Bool Yes, True, 1, and On evaluate|Yes
to True (case-insensitive), all
other strings to False

Color Three floating-point values|"1.0 0.5 0.0"
(RGB) in the range 0.0to 1.0
Double A single floating-point value 0.33
Enum The name of an enum item item2
Float A single floating-point value 0.33
Image N/a: images are programatically|N/a
specified
Integer A single integer value 7
Matrix 16 floating-point values; if|"1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

less are given, then missing|0.0 0.0 1.00.00.00.00.01.0"
elements are taken from the

identity
MLBase N/a: base objects are|N/a
programatically specified
Plane Four floating-point values "12.0 14.0 5.23 33.0"
Rotation Four floating-point values "9.0 2.22 7.33 55.2"
SoNode N/a: nodes are programatically|N/a
specified
String A string that must be quoted if it|"A string with spaces"
contains spaces
Trigger N/a: a trigger has no value, but|N/a
triggers an action
Vector2, Vector3, Vector4 Two, three, or four floating-point|“234.33 221.0 223.0 11.23"
values

| egacyVal ue = STRI NG
Sets a default value for the field when a module is loaded from a network and no value was specified
for the field in the saved network. This allows to give a new default value with the value tag and to
keep old networks working by setting a compatible legacyValue for old networks.

comment = STRI NG
Sets a comment describing the field. This comment is shown as a tooltip for input or output fields.

hi dden = BOOL (defaul t: No)
Sets whether the field should be visible in the MeVisLab network. This can be used to hide existing
input or output images.

21

Module (Abstract) Declaration

priority = INT (default: 100)
Sets the natification priority of the field. A value of 0 means that the field has high priority and GUI
controls depending on this field will be updated immediately when the field changes.

editable = BOOL (default: Yes)
Sets whether the field should be editable by default. Also sets the per si st ent attribute to the same
value if not specified explicitly.

persistent = BOOL (default: Yes)
Sets whether the field value should be stored in networks, i.e., on saving to disk and on copy&paste.

i sFilePath = BOCOL (default: No)
Only applicable for fields of type String. Marks the field as containing a file path. When saving to
a network file, the value of this field will be expressed with a defined set of path variables, such
as $(NETWORK) , to make the network relocatable. Also provides Field controls with an automatic
browse button.

Tip
If the user enters a file path in such a control containing any path variables, the visible
path will be automatically expanded, and a toggle icon is shown. To force this automatic

expansion via scripting, use setPersistentValue() instead of setStringValue()/setValue()
on the string field.

m n = Fl ELDEXPRESS| ON
Sets a minimum value for the field. It only works on Number fields. The value can be given as a
float value or as an expression containing other fields, which provides and updates the minimum
value if these fields change.

max = Fl ELDEXPRESSI ON
Sets a maximum value for the field. It only works on Number fields. The value can be given as a
float value or as an expression containing other fields, which provides and updates the maximum
value if these fields change.

vi si bl eOn = FI ELDEXPRESSI ON
Sets an expression that is used to decide whether the field should be visible on the GUI. In case
of an input/output field, the field's connector on the network is shown/hidden depending on the
expression. In case of a parameter field, the expression is used as visibleOn default for all MDL
GUI controls that display this field. A visibleOn tag in a GUI control overrides the field's default for
that GUI control.

dependsOn = FI ELDEXPRESSI ON
Sets an expression that is used to decide whether the field should be enabled/disabled on the GUI.
In case of an input/output field, the field's connector on the network is rendered in an active/non-
active state depending on the expression. In case of a parameter field, the expression is used as
dependsOn default for all MDL GUI controls that display this field. A dependsOn tag in a GUI control
overrides the field's default for that GUI control.

i nternal Nane = FlI ELD
Defines that the field should alias an internal field of the internal network of a macro module.

If the internal name is given, the t ype of the generated field cannot be selected and is given by
the internal field.

al | onedTypes = STRI NG
Gives the names — separated by whitespace — of Base types this field accepts or provides. Only
valid for fields of t ype MLBase.

This is used by MeVisLab as a hint for which MLBase fields can be connected. Specifying this should
not be necessary if i nt er nal Namre was given for a field, as the type information of that field will be
used in this case. Note that this is only a hint, you will still be able to set any Base object by scripting.

22

Module (Abstract) Declaration

As long as the specified type(s) is/are not loaded by the runtime type system of MeVisLab, the
type(s) cannot be resolved and MLBase fields of any type are allowed to be connected to this field.
Base types are automatically loaded if other modules that use this type are loaded in MeVisLab.

depr ecat edName = NAME
Sets an old name to the field, which allows to rename fields in MacroModules/C++ and keep old
networks and scripts working. If any depr ecat edNane appears anywhere in a GUI description, a
stored network, or in scripting, it is automatically mapped to the name of this field.

Any number of depr ecat edName tags can be given; they are all parsed.

itens
Specifies the enumeration items if the field is of type Enum.

item = NAME
Specifies the (token) name of the item.

title = STRING
Specifies the user visible name of the item.

depr ecat edName = STRI NG
Specifies an old, deprecated name for the item, which can be used with setStringValue and
causes the enum to take the value of the item instead of the deprecated value.

This tag is used to allow old networks and scripts to work even if enum items have changed
or are completely removed.

val ues = STRI NG
Defines the enum values in a comma-separated list.

This tag is deprecated and should no longer be used, use i t ens instead.

2.2. Description

The Description section can be used in addition to the Interface section to assign extra properties to
existing C++ fields. No new fields can be created in the Description section; only properties can be
added to existing fields.

Description {

Fiel d NAME {
val ue = STRI NG
| egacyVal ue = STRING
coment = STRI NG
hi dden = BOOL [No]
priority = INT [100]
edi tabl e = BOOL [Yes]
per si st ent = BOOL [Yes]
i sFil ePath = BOOL [No]
mn = FI ELDEXPRESSI ON
max = FI ELDEXPRESSI ON
Vi si bl eOn = FI ELDEXPRESSI ON
dependsOn = Fl ELDEXPRESSI ON
deprecat edName = NAME
renoved = BOOL [No]

/1 for enuns:
items {
i tem NAMVE {
title = STRING
deprecat edName = STRI NG

/1 nore deprecat edNane tags

}

23

Module (Abstract) Declaration

val ue = STRI NG
Sets a default value for the field, which will be assigned only when the module is newly created
and not when reloading the module. This default value will be overwritten by a stored value when
loaded from a network.

. Note
If you specify a value in both the Interface section and the Description section, the value
from the Description section will take precedence.

| egacyVal ue = STRI NG
Sets a default value for the field when a module is loaded from a network and no value was specified
for the field in the saved network. This allows to give a new default value with the value tag and to
keep old networks working by setting a compatible legacyValue for old networks.

comrent = STRI NG
Sets a comment describing the field, which is shown at the input and output field as a tooltip.

hi dden = BOOL (default: No)
Sets whether the field should be visible in the MeVisLab network. This can be used to hide existing
input or output fields.

priority = INT (default: 100)
Sets the notification priority of the field, a value of 0 means that the field has high priority and GUI
controls depending on this field will be updated immediately when the field changes.

editable = BOOL (default: Yes)
Sets whether the field should be editable by default. Also sets the per si st ent attribute to the same
value if not specified explicitly.

persistent = BOOL (default: Yes)
Sets whether the field value should be stored in networks, i.e., on saving to disk and on copy&paste.

isFilePath = BOOL (default: No)
See Interface isFilePath tag.

m n = FlI ELDEXPRESSI ON
See Interface min tag.

max = Fl ELDEXPRESSI ON
See Interface max tag.

vi si bl eOn = FI ELDEXPRESSI ON
See Interface visibleOn tag.

dependsOn = FI ELDEXPRESSI ON
See Interface dependsOn tag.

depr ecat edNamre = NAME
Sets an old name to the field, which allows to rename fields in MacroModules/C++ and keep old
networks and scripts working. If the depr ecat edName appears anywhere in a GUI description, a
stored network, or in scripting, it is automatically mapped to the name of this field.

Any number of depr ecat edName tags can be given; they are all parsed.

renoved = BOCOL (default: No)
Declares this field as being removed and avoids warnings when a network containing stored values
for the removed field is loaded.

itens
Specifies the enumeration items if the field is of type Enum.

24

Module (Abstract) Declaration

item = NAME
Specifies the (token) name of the item.

title = STRING
Specifies the user visible name of the item.

depr ecat edName = STRI NG
Specifies an old, deprecated name for the item, which can be used with setStringValue and
causes the enum to take the value of the item instead of the old value.

This tag is used to allow old networks and scripts to work even if enum items have changed
or are completely removed.

2.3. Commands

The Commands section is used to add script files and commands to the module.

The general sequence for a module initialization is:

1.

2.

3.

4,

5.

Initialization of Modules fields.

Script call to i ni t Command.

Creation of FieldListeners.

Restoration of outside field connections to other modules in a loaded network.

Script call to wakeupCormmand.

The detailed order is:

1. Creation of the internal C++ ML/Inventor class or loading the internal MeVisLab network of the
MacroModule.

2. Reading internal fields from C++.

3. Creation of self/instanceName fields.

4. Creation of Interface fields (given in the | nt er f ace section) and parsing of tags in the I nt er f ace
and Descri pti on section (except for min/max values).

5. Restoration of persistent stored fields (via setStringValue).

6. Loading of Python given in Commands sour ce tags.

7. Creation of min/max values (from the | nt er f ace and Descri pti on section).

8. Script call to i ni t Cormand.

9. Creation of FieldListeners given in the Conmands section.

10. Field connections to other modules in a network that is restored (from disk or paste buffer) are done.

11. Script call to wakeupCormmand.

Commands {

source = FILE

/1 nore source files...

i mportPath = PATH

/1 more inportPath tags...

25

Module (Abstract) Declaration

i ni t Command = SCRI PT
wakeupConmand = SCRI PT
finali zeConmand = SCRI PT
dr oppedFi | eCommand = SCRI PT
dr oppedFi | esCommand = SCRI PT
st ori ngToUndoHi st or yCommrand = SCRI PT
r est or edFr onmndoHi st or yCommand = SCRI PT

nodul el t enCr eat edConmand = SCRI PT
runAppl i cati onCommand = SCRI PT
Fi el dLi stener [FIELD] { ... }
o
source = FILE
Sets a script file to be loaded in the script context of this module. Python variables, classes, and

functions declared in the file are available in all script calls to this module. This tag can be used for
multiple files, the files are parsed in the order of declaration

The file extension . py specifies Python script files.
Example: source = $(LOCAL)/ Modul eNane. py

i mportPath = PATH
Adds a directory to the import path of the module's Python package. Each instance of a MeVisLab
module has its own Python package containing different instances of the specified source modules.
Python modules and packages from the import path must be imported relatively (see section Intra-
package References of the Python documentation).

Example: i mportPath = $(LOCAL)/../../Werever/ Your Shar edPyt honModul es

i nit Conmand = SCRI PT
Defines a script command that is called when the module is created on a network. At the time of
this call, the field connections to other modules in the network have not yet been established.

wakeupConmand = SCRI PT
Defines a script command that is called after the module is created on a network and all other
modules have been also created and after all field connections have been established.

finalizeConmand = SCRI PT
Defines a script command that is called when the module's script context is deleted. It can be used
to clean up resources that need to be removed or cleared.

This command is called when a module is reloaded or when it is finally deleted, which may occur
later than expected because of the undo/redo buffer.

Typically, all Python resources are cleaned automatically, so you will probably never need this
command.

dr oppedFi | eCommand = SCRI PT
Defines a script command that is called when the user drops a file, directory, or URL on the module's
box on the network. For example, this is used in the ImageLoad module to accept dropped filenames.

dr oppedFi | esConmand = SCRI PT
Defines a script command that is called when the user drops files, directories, or URLs on the
module's box on the network. For example, this is used in the ImageLoad module to accept dropped
filenames.

st ori ngToUndoHi st oryCommand = SCRI PT
Defines a script command that is called when a module is removed from the network and placed
into the undo history

26

https://docs.python.org/3/reference/import.html#packages
https://docs.python.org/3/tutorial/modules.html#intra-package-references
https://docs.python.org/3/tutorial/modules.html#intra-package-references

Module (Abstract) Declaration

r est or edFr onmndoHi st or yCommand = SCRI PT
Defines a script command that is called when a module is readded to the network from the undo
history

nodul el t enCr eat edCommand = SCRI PT
Defines a script command that is called when the network model item gets created. This typically
happens when the network becomes visible in the MeVisLab IDE.

runAppl i cati onConmmand = SCRI PT
Defines a scripting command that is called when a macro module is started as an application, before
the macro's window is shown.

. Note
This command is only available with a valid ADK license. Have a look at the ADK
documentation, chapter Advanced Commands for further information.

Fi el dLi stener [FIELD]
The Commands section can contain multiple FieldListeners, see FieldListener for details on what a
FieldListener can be used for. The listeners declared in the commands section are active after the
module has been created until the module is deleted. This is typically used to provide functionality
to a MacroModule's fields and react on field changes that are independent of the user interface. If
you want to have a FieldListener that changes the user interface (i.e., that accesses controls), use
a FieldListener inside of a GUI control somewhere in a Window.

Note

Scripting methods and functions without parameter can be called by a command by a simple:
comrand = met hodNane
If the called method or function needs parameters, the scripting string needs to be escaped:

conmand = "* py: nethodName(1,2,3) *"

2.4. Persistence

The Persistence section allows to make the values of internal fields of a MacroModule persistent. It
allows to specify a list of fully qualified field names as well as fields grouped by internal modules. In
contrast of defining a field on the interface of the macro module, only its value is stored and restored, the
persistent fields are not available on the macro module interface. A typical use case is making internal
settings persistent.

Per si stence {
fields = FI ELDLI ST

Modul e NAME {
fields = FI ELDLI ST

}

fields = FIELDLI ST
Defines the fields that are to be stored as a comma-separated list, typically modulename.fieldname.
This tag can be used multiple times.

Modul e = NAME
Defines a section for fields of the given module. This tag can be used multiple times.

The fields listed in the Module tag are given without the leading module name, since that is already
given by the section.

27

Module (Abstract) Declaration

2.5. Deployment

The Deployment section allows to tell MeVisLab about dynamic dependencies of the module that are
required when the module should be deployed to another computer. The Modul eDependencyAnal yzer
module allows to find most dependencies automatically, but if you, e.g., depend on other directories or
if you add modules dynamically in your module, you need to specify these in the Depl oynent section.
All tags that are listed below can appear multiple times inside of the same Deployment section.

Depl oynment {

directory = PATH
file = FILE
nodul e = NAME
DLL = NAME
I'ibrary = NAME
obj ect W apper = NAME
wi dget Cont r ol = NAME
prel oadDLL = NAME
scri pt Ext ensi on = NAME
renot eBaseHandl er = NAME

/1 Section for files to be deployed on the web server.
/Il This feature is not available in the public SDK

web {
directory = PATH
file = FILE

}

directory = PATH
Defines an additional directory that this module depends on.

file = FILE
Defines an additional file that this module depends on.

nodul e = NAME
Defines an additional module that this module depends on.

DLL = NAME
Defines an additional DLL that this module depends on. The name is given without system-specific
pre-/postfix, so that the tag works cross-platform. The DLL is copied to the bi n folder of the
standalone application.

library = NAME
Defines an additional library that this module depends on. The dependency analyzer will look for
a NAME.mli file in all Packages inside the Configuration/Installers/Libraries directory. A typical use
case is to add a complete ThirdParty library, including the license information and additional files.

Have a look in MeVi s/ ThirdParty/ Configuration/Installers/Libraries for some example
.nli files.

obj ect Wapper = NAME
Defines an additional ObjectWrapper that this module depends on. This will search for the given
wrapper and put its . def file into the installer. For example, obj ect W apper = CSOLi st will add
the scripting wrapper for CSOList to the installer.

wi dget Control = NAME
Defines an additional WidgetControl that this module depends on. This will search for the given
WidgetControl and putits . def file into the installer. For example, obj ect W apper = GLSLText Vi ew
will add the GLSLTextView control to the installer.

Note that WidgetControls are typically auto-detected, but in DynamicFrame scenarios, it can make
sense to use this tag anyways.

28

Module (Abstract) Declaration

scri pt Ext ensi on = NAME
Defines an additional ScriptExtension that this module depends on. This will search for the given
extension and put its . def file into the installer. For example, scri pt Ext ensi on = Di coniool s will
add the DicomTools script extension to the installer.

renot eBaseHandl er = NAME
Defines an additional RemoteBaseHandler that this module depends on. This will search for
the given handler and put its . def file into the installer. For example, r enot eBaseHandl er =
Abstract | t emvbdel will add the AbstractitemModel handler to the installer.

prel oadDLL = NAME
Defines an additional PreloadDLL that this module depends on. This will search for the given
PreloadDLL and put its . def file into the installer.

Note that this does not cause preloading of a DLL directly, it merely searches for the PreloadDLL
tag in the global MDL tree and adds the corresponding . def file to the installer.

2.6. MLModule

Defines a module that contains a C++ image processing module derived from Module in the ML.
Typically used tags can be found at the Module's definition.

Dynamic scripting: MLABMLModule

M.-Modul e NAME {

cl ass = NAME
DLL = NAME
proj ect Sour ce = PATH

/'l tags from Modul e
}

class = NAME (default: same as M.Modul e NAME)
Sets the name of the C++ module that should be created via the ML runtime system.

Tip

This can be used to have the same internal C++ class for a number of MeVisLab
modules with different names and default values, or if you do not want the internal name
to appear as the MeVisLab module name.

DLL = NAME
Specifies the dynamic load library where the C++ class for this module is defined in. The name is
given without a system-specific pre-/postfix.

Example: DLL = M.Base

proj ect Source = PATH
Specifies the path to the project sources. This optional tag is used to make, e.g., the project
file available in the module's context menu and the Modulelnspector. MeVisLab looks for the
CMakeli st s. t xt in the referenced directory to create or update the project file if needed.

This option should not be needed if a project is placed within a package that is known to MeVisLab.
However, if the project is located at some different place, use this option with either an absolute
or a relative path.

Example (relative): pr oj ect Source = $(LOCAL)/../../../../../Fool Bar/ MyProj ect

Example (absolute): pr oj ect Source = $(MLAB_MY_PACKAGE) / Sour ces/ M./ MyPr oj ect

29

Module (Abstract) Declaration

2.7. InventorModule

Defines a module that contains a C++ visualization module derived from an Openlnventor SoNode or
SoEngine class.

Typically used tags can be found at the Module's definition.

Dynamic scripting: MLABInventorModule

I nvent or Modul e NAME {

cl ass = NAME
DLL = NAME
proj ect Source = PATH
hasGroupl nputs = BOOL [No]
hasVi ewer = BOOL [No]
hybri dM_.Mbdul e = BOOL [No]

/1 tags from Modul e
}

class = NAME (default: same as |nventor Modul e NAVE)
Sets the name of the C++ module that should be created via the Openinventor runtime system.

Tip

This can be used to have the same internal C++ class for a number of MeVisLab
modules with different names and default values, or if you do not want the internal name
to appear as the MeVisLab module name.

DLL = NAME
Specifies the dynamic load library (DLL) where the C++ class for this module is defined in. The
name is given without a system-specific pre-/postfix.

Example: DLL = SoVi ew2D

proj ect Source = PATH
see MLModule.

hasG oupl nputs = BOOL (defaul t: No)
Sets whether the module is derived from a SoGroup and should have dynamic SoNode inputs.

hasVi ewer = BOOL (default: No)
Sets whether the module should have a viewer. This is typically used on SoGroup derived nodes
that should have an Inventor viewer.

hybri dM_Modul e = BOOL (default: No)
Sets whether the InventorModule contains a fully functional MLModule whose fields appear as if
they were the fields of the InventorModule. This is an advanced feature and should typically not be
needed by a module author.

2.8. MacroModule

Defines a macro module that can contain an internal network. Typically, a MacroModule has an Interface
section that defines the fields of the macro. The fields can be aliased from internal fields or can be
standalone fields.

Typically used tags can be found at the Module's definition.

MacroModules should use the ext er nal Defi niti on tag to define their Interface and Windows in an
extra Modul eNane. scri pt file, which should be named like the module itself.

30

Module (Abstract) Declaration

If the ext er nal Defi ni ti on tagis given, MeVisLab automatically loads the network with the same name
and the extension . m ab. If the module only contains scripting and does not require an internal network,
use the scri pt Onl y tag to tell MeVisLab.

Dynamic scripting: MLABMacroModule
Macr oModul e NAMVE {

scriptOnly
onl yOnel nst ance

BOOL [No]
BOOL [No]

/1 tags from Modul e
}

scriptOnly = BOOL (default: No)
Sets whether an internal network is loaded/required.

onl yOnel nstance = BOOL (default: No)
Sets whether only one instance of this module can be started as an application; additionally created
versions just show the already running application. This is used for applications that the user should
only be able to start once.

2.9. FieldListener

The FieldListener listens to fields and calls the script command given in the conmand tag whenever
the field changes.

The fields are given as the value tag and/or with multiple | i st enFi el d tag.
There are two possible uses for a FieldListener:

1. They can be created in the Commands section of a Module.

2. They can be used anywhere in the control hierarchy of a Window.

1. If used in the Commands section, the FieldListener is active throughout the entire lifespan of
a module instance (from creation to deletion) and reacts to any field changes whether there is an
open module panel or not. Because of this, such a FieldListener cannot access the controls of the
user interface of the module with scripting, just the fields of the module.

2. If used somewhere inside of a Window, the FieldListener is an invisible user interface element
that is only active (and created) when the Window is actually created. Such a FieldListener
can access all other user interface controls within that Window that are named using the
ct x. control (nanme) Python function.

Note

Since part of a Window can be created multiple times using the Panel GUI control,
multiple instances of the same FieldListener in a Window can exist at the same time
and will all work and change the user interface via the ct x. control (nane). The
limitation to this is that only controls can be accessed that are also cloned by the Panel
control; otherwise, the ct x. cont r ol (name) function will return NULL. This means that
you should put your FieldListeners (which are in the user interface) close to the GUI
elements you are accessing so that they are also cloned if a subpanel is extracted.

Fi el dLi stener [FIELD] {

init = BOOL [No]
cal | Later = BOOL [No]
listenField = FI ELD

...

comrand = SCRI PT

31

Module (Abstract) Declaration

}

listenField = FIELD
Listens to the given field.

This tag can be used multiple times to listen to a number of fields with the same FieldListener

command = SCRI PT (argunent: changedFi el d)
Defines the script command that is executed when one of the fields changes. The changed field is
passed as the first argument to the command.

init = BOOL (default: No)
Sets whether the command is triggered once when the FieldListener is created. The first of the fields
it listens to is passed to the command.

Tip
This is especially useful when the FieldListener updates some user interface control

and needs to be initiated initially to provide a correct user interface.

call Later = BOOL (default: No)
Sets whether the FieldListener is scheduled for the next time the event loop is processed, rather
than immediately when the field changes. You will only get one notification if multiple fields changed
since the last event loop processing. If more than one field is being listened to, the command is
called without a field pointer, as the FieldListener does not know which of the fields have changed
since the last event loop.

Warning

Be careful, setting cal | Lat er to Yes can cause infinite loops of field notifications! Only
use it when you know what you are doing!

2.10. NetworkPanel

The NetworkPanel section allows to define a basic user interface on the body of the module in the
network view. Currently, only an information string and a (icon) button are supported.

Net wor kPanel {
info = FI ELDEXPRESSI ON

Button [FIELD] {

synbol = FI ELDEXPRESSI ON
col or = FI ELDEXPRESSI ON
comrand = SCRI PT

vi si bl eOn = FI ELDEXPRESSI ON
dependsOn = FI ELDEXPRESSI ON

}

info = FI ELDEXPRESSI ON
Defines an expression that returns a string displayed in the module body. See dependsOn for an
explanation of how expressions work. Note that there are some special functions that are especially
useful in this context:

A # in front of a field name returns a string with a value that is formatted for display. For enum
fields, this is the current value's title instead of the raw value. For numeric fields, the precision of
the value is restricted.

The r epl ace function can be used to replace constants in a fixed string with field values.

Note that the resulting string should be short; longer strings might be truncated to avoid overly large
module bodies.

32

Module (Abstract) Declaration

Button [Fl ELD]
Defines a small icon button. A field can be given to get some default functionality: A trigger field will
display a reload icon, which will touch the field if clicked. A boolean field will display a check icon
if it is checked and will toggle the field's value if clicked. A color field will display an icon with the
current color and will raise a color select dialog if clicked.

The behavior of the button can be further customized with the following tags:

synbol = FlI ELDEXPRESSI ON
Defines the symbol to display. There are some pre-defined symbols: recycle, start, stop, pause,
check, clear, and deny. It is also possible to give a full file name of an image file. This image
should be a white icon on transparent background to support the color tag.

Note that this expects an expression; so if you just want to set a different symbol, you need
to write something like:

synbol = "* "start" *"

col or = Fl ELDEXPRESSI ON
Defines the color for the symbol as an expression. The color can be a HTML color specification
like #FFOAB8O0 (as string) or the value of a color field. Note that to set a static color, it must be
written like:

color = "* "#FFOA80" *"

command = SCRI PT
Defines the script command to execute when the button has been clicked. This overrides the
default behavior if a field has been specified.

dependsOn = FI ELDEXPRESSI ON
Defines the condition when the button should be clickable. This is useful to indicate some state
of the module.

vi si bl eOn = FI ELDEXPRESSI ON
Defines the condition when the button should be visible. It might make sense to hide the button
if it is without function in some mode of a module.

33

Chapter 3. Other Module-Related MDL
Features

3.1. Module Genre Definition

A module in MeVisLab can belong to multiple genres, which are specified with the genre tag. The
available genres are specified in MeVi sLab/ St andar d/ Mbdul es/ | DE/ Genr e. def and can also be
extended via user genres.

‘ Note
The names of the genres are defined by the value behind the Genre tag. These genre
names may not contain spaces or special characters and are used in the genre tag in the
modules' definition. If you want a more specific title, you can use the ti t | e tag of a Genre
to define a string visible to the user.

Extract of Genre.def:

G obal Genres {
Genre FileMain {
title = File
Genre = DI COM

Cenre InventorFile {
title = Inventor
}
Cenre File {
title = Msc
}
}

Separator = ""

Genre | mageMai n {

title = I nage
Cenre = Info
CGenre = Scal e
Cenre = Cenerators

Genre | mage {
title = Msc
}
}

}

Example of a module that belongs to two genres:

M.Modul e MyModul e {
genre = DI COM Scal e
}

If you are a MeVisLab core developer at MeVis, you can add genres in the Genr e. def file.

If you are an external developer and you still need your own genres, you can add a UserGenres section
to your . def file (on the top level):

User Genres {
Genre SonebodysGenreMin {
title = "Alonger title for the genre"
Genre SonebodysGenre {
}

}

Genre +Diffusion {
Genre DiffExtra {
}

}

34

Other Module-
Related MDL Features

As you can see above, there are two notations:
1. Adding a new root genre by just giving a Genre tag with the name of the new genre.

2. Extending a known genre with new entries by writing a + and an existing genre name (defined in
Genr e. def).

Example: Genre +l mageMain { Genre = SomeNewSubGenre }

‘ Note
UserGenres and GlobalGenres are only reloaded when MeVisLab is restarted or when the
entire database is reloaded.

3.2. ModuleGroup Definition

A module in MeVisLab can be given the membership of one or several ModuleGroups via the group tag.
A ModuleGroup consists of the group tag ID and extra semantic information about this ID given via the
ModuleGroup tag. The ID has to be a single word and should start with your license prefix to avoid mixing
up groups. The existing groups can be enabled and disabled in the Preferences Panel of MeVisLab.

There are a number of predefined groups that are used throughout MeVisLab:

- depr ecat ed = A module that is officially gone, but only remains to make old networks work.
-t est = A module that tests MeVisLab features.

- exanpl e = A module that provides examples.

-internal = Internal MeVisLab modules that are not visible to the public.

To put your module into a defined group, write the following:
M_Mbdul e SoneMdul e {

group = MyOMG oup
}

Now we need extra information on the ModuleGroup to make it appear nicely in the Preferences Panel
of MeVisLab.

Modul eG oup GROUPNAME {

owner = STRI NG

title = STRI NG

comrent = STRI NG

type = [internal | std]
shy = BOOL [No]

}

If you are a MeVisLab core developer at MeVis, you can add your ModuleGroups directly to MeVi sLab/
St andar d/ Modul es/ | DE/ Mbdul eG oups. def.

If you are an external developer, just put the additional ModuleGroups into any . def file in your
UserModulePath; they are read automatically.

3.3. Preloading DLLs

Shared Libraries (DLLs) are loaded by MeVisLab when they are needed by a module in a network (see
the DLL tag of Section 2.6, “MLModule”). The PreloadDLL tag can be used to force MeVisLab to load a
given DLL on startup. This can be useful if your own ML Type Extensions should be loaded on startup
of MeVisLab.

The PreloadDLL tag can appear in any . def file (on the top-level, not nested in other tags):

35

Other Module-
Related MDL Features

Prel oadDLL DLLNAME {}
Il or
Prel oadDLL = DLLNAME

The DLLNAME is given without file extension. On Windows, . dlI | is appended in MeVisLab Release,
and _d. dl | in MeVisLab Debug application. Mac OS X uses | i bDLLNAME. dyl i b to access the shared
library. On Linux, | i bDLLNAME. so is used.

The same library may be specified multiple times; in this case, it will still be loaded only once.

36

Chapter 4. GUI Controls

The following chapters give an overview of all possible GUI Controls and their tags. MeVisLab also
contains a number of example MacroModules that demonstrate the individual features.

4.1. GUI Example Modules in MeVisLab

The following modules demonstrate the use of the most of the GUI controls. (This list may not be
completely up-to-date, try searching for modules starting with Test in the MeVisLab search.)

» TestStyles - How to change the controls appearance (Colors, Fonts, etc.).
» TestPrototypes - How to change tag defaults for given GUI controls.
» TestLayouter - Showing the usage of AlignGroups.
» TestListView - Showing a scripted ListView.
» TestModalDialog - How to create a modal dialog.
» TestHyperText - How to use RichText with hyperlinks.
» TestDefaultStyle - Showing the default spacings, etc.
» TestComboBox - Showing a scripted ComboBox.
e TestViewers - Showing different Inventor viewers.
e TestinventorChildren - Showing how to add inventor nodes dynamically.
e TestDynamicFrames - How to change Frame content via scripting.
» TestTable - Showing how to use tables.
» TestSplitterLayout - Showing the use of splitters between GUI components.
» TestVertical, TestHorizontal - Showing basic layouters.
» TestFieldAccess - Script access to field values, especially vectors, matrices, and image properties.
» TestScriptUtils - Showing the use of global script utility functions.
» TestTimers - How to create scripted timers.
Tip

As an all-in-one example module, the ExampleGUIScripting module should be studied
thoroughly.

4.2. Abstract GUI Controls

Abstract controls cannot be created directly in the MDL, but many concrete GUI controls are derived
from these controls to provide their basic behavior and tags.

4.2.1. Control (Abstract)

37

GUI Controls

Control is the base class for all GUI controls and provides a number of tags supported by every control.
Some tags given here only make sense when used in the context of a layouter, e.g., col span in Table
or x/ y in Grid.

Dynamic scripting: MLABWidgetControl

name = NAME

panel Nane = STRI NG

expandX = ENUM [No]
expandY = ENUM [No]
stretchX = INT [0]
stretchY = INT [0]
vi si bl e = BOOL [Yes]
enabl ed = BOOL [Yes]
dependsOn = FI ELDEXPRESSI ON

vi si bl eOn = FI ELDEXPRESSI ON

style = NAME

styl eSheet String = STRI NG

styl eSheetFil e = FILE

wi dget Nane = NAME

/] Tags that are only handl ed by the MeVisLab Web Tool ki t
htm _cl ass = STRI NG

htm _style = STRI NG

htm _styleField = FI ELD

/1 Wdth and hei ght tags

w = | NT

h = | NT

pw = INT

ph = | NT

mv = | NT

mh = | NT

maxw = | NT

maxh = I NT

fw = INT

fh = INT

/1 Control tags that are read by the owning | ayouter control:
X = INT

y = INT

X2 = INT

y2 = INT

scale = INT [1]
col span = I NT [1]
alignX = ENUM [Aut o]
alignY = ENUM [Aut o]

/] Layouter tags for inter control alignnent:

al i gnG oupX = NAME (alias: alignGoup = NAME)
al i gnGr oupY = NAME

chil dAli gnG oupX = NAME (alias: childAlignGoup = NAVE)
chi | dAIi gnG oupY = NAME

| abel Al'i gnGroup = NAME

tooltip = STRI NG

tool tipField = FI ELD

what sThi s = STRI NG

dr oppedFi | eComrand = SCRI PT

dr oppedFi | esCommand = SCRI PT

dr oppedoj ect Command = SCRI PT

accept Drops = BOOL

resi zeComrand = SCRI PT

i ni t Command = SCRI PT

dest r oyedConmmand = SCRI PT

bgMbde = ENUM [Repeat]

edi t BgMbde = ENUM

but t onBgMbde = ENUM

scr eenshot Comrent Command = SCRI PT

namre = NAME (alias: instanceNane)
Sets the name of the control. The control is registered under this name and can be accessed from
Python under this name. This is done by using the ct x. control (" cont r ol nane") method.

style = NAME
Defines the style to be used for this control and its children, if any.

38

GUI Controls

see also DefineStyle

styl eSheet String = STRI NG
See styleSheetFile, uses the given string instead of reading the CSS definition from a file.

styl eSheetFile = FILE
Defines the Qt Style Sheet to be used for this MDL control and all its children.

Please note that this tag provides direct access to the underlying Qt Style Sheets. You should not
mix using style sheets and the MDL style tag in the same MDL controls, as the resulting effects are
somewhat undefined. This leads to a duality between QPalette/QFont, used for MDL style tags, and
Qt Style Sheets, which do not work well together. This is a known Qt pitfall that we cannot address.

The Qt Style Sheet feature offers complete styling of the MDL controls, but it requires some
knowledge of the underlying Qt widgets. For simple styling purposes, you should better use the
MDL style tag instead. For complete styling of the GUI (e.g., changing the look&feel of TabView or
ListView), the Qt Style Sheet provide possibilities far beyond what the MDL style tag offers.

See Qt Style Sheets Documentation for full details.

Tip

The Widget Explorer is a useful tool for developing and debugging style sheets.

wi dget Nane = NAME
Sets the object name of the Qt widget that is managed by the control. This can be used in the ID
selector (#<obj ect name>) of the Qt Style Sheet to apply style sheet rules.

ht M _cl ass = STRI NG
Sets the CSS class of the DOM element that is created for this control.

This only has an effect in the MeVisLab Web Toolkit, which is not part of the public SDK.

htm _style = STRING
Sets the style attribute of the DOM element that is created for this control to this string.

This only has an effect in the MeVisLab Web Toolkit, which is not part of the public SDK.

htn _styleField = FI ELD
Sets the style attribute of the DOM element that is created for this control to value of the string field.

This only has an effect in the MeVisLab Web Toolkit, which is not part of the public SDK.

panel Name = NAME
Sets a name for this control that can be used by the Panel component to reference this control as
a cloned panel in some other GUI.

expandX = ENUM (default: No)
Defines the space requirements of a control. It depends on the layouter (e.g., Vertical, Table) how
this requirement is met.

Possible values: Yes, No, True, False, 0, 1, Fixed, Minimum, Maximum, Preferred,
MinimumExpanding, Expanding, Ignored

Value Meaning

Fi xed (alternatives: No, False, 0) The control can never grow or shrink (e.g., the vertical
direction of a button).

M ni mum The preferredWidth is minimal and sufficient. The control
can be expanded, but there is no advantage to it being

39

http://doc.qt.io/qt-6/stylesheet.html

GUI Controls

Value Meaning

larger (e.g., the horizontal direction of a button). It cannot
be smaller than the preferredwidth.

Maxi mum The preferredWidth is a maximum. The control can be
shrunk any amount without detriment if other controls need
the space (e.g., a separator line). It cannot be larger than
the preferredwidth.

Preferred The preferredWidth is best, but the control can be shrunk
and still be useful. The control can be expanded, but there
is no advantage to it being larger than preferredWidth (the
default expandX value).

Expandi ng (alternatives: Yes, True, 1) | The preferredWidth is a sensible size, but the control can
be shrunk and still be useful. The control can make use of
extra space, so it should get as much space as possible
(e.g., the horizontal direction of a horizontal slider).

M ni mnunExpandi ng The preferredWidth is minimal and sufficient. The control
can make use of extra space, so it should get as much
space as possible (e.g., the horizontal direction of a
horizontal slider).

| gnor ed The preferredWidth is ignored. The control will get as much
space as possible.

expandY = ENUM
Defines the space requirements of a control. It depends on the layouter (e.g., Vertical, Table) how
this requirement is met.

Possible values: Yes, No, True, False, 0, 1, Fixed, Minimum, Maximum, Preferred,
MinimumExpanding, Expanding, Ignored

See expandX for an analogous explanation of the values.

stretchX = INT (default: 0)
Defines the stretch factor in the X direction.

stretchY = INT (default: 0)
Defines the stretch factor in the Y direction.

vi sible = BOOL (default: Yes)
Sets whether the control is visible initially. It can be set to (in-)visible later by using the
set Vi si bl e(bool) method on the control.

enabl ed = BOOL (default: Yes)
Sets whether the control is enabled. It can be changed by using set Enabl ed(bool) on the control.

dependsOn = FI ELDEXPRESSI ON vi si bl eOn = FI ELDEXPRESSI ON
Makes the control dependent on the given expression. If the expression changes its boolean value,
the control is automatically enabled/disabled (for dependsOn), or shown/hidden (for visibleOn).

Examples:

/1 Normal bool ean field dependency:
dependsOn = soneBool Fi el d

/1 Negated normal boolean field dependency:
dependsOn = ! soneBool Fi el d

/'l Enable only if enumfield has given string val ue:
dependsOn = "* sonmeEnunfi el d == " SonmeVal ue" *"

/! Enable only if enumfield has given string value and the bool field is True:
dependsOn = "* sonmeEnunti el d == "SoneVal ue" && soneBool Field *"

40

GUI Controls

/'l Enable only if enumfield contains one of the given values: (using a regexp)
dependsOn = "* soneEnuntield == /(SonmeVal ue| SoneQ her Val ue)/ *"

/'l Enable only if enumfield is identical to one of the given values: (using a regexp)
dependsOn = "* sonmeEnuntield == /”(SoneVal ue| SomeC her Val ue) $/ *"

/'l The above can also be witten with a nunber of conpares; note that due to the
/'l precendence, no parenthesis are needed:
dependsOn = "* sonmeEnuntield == "SonmeVal ue" || someEnunfield == "SomeC her Val ue" *"

/'l Nunerical conparison:

dependsOn = " sonmeNunberField < 12 "

/1 Nunerical conparison with a function:

dependsOn = " abs(mexField-nminField) >= 1"
Tip
When you use string constants inside the expression, it is easiest to quote the MDL
string with "* ... *" so that you do not have to escape the individual quotes of the
string.
Tip

Besides the standard operators known from C++, there are some predefined functions:

mn(arg0, argl, ...)
Returns the minimum of all given numeric arguments.

max(arg0, argl, ...)
Returns the maximum of all given numeric arguments.

abs(arg)
Returns the absolute value of the numeric argument.

if(condition, argTrue, argFal se)
Returns argument argTrue if condition evaluates to True; otherwise, it returns
argFalse.

repl ace(arg0, argl[, arg2?])
Searches for all occurrences of argl in string arg0 and replaces it with arg2. argl
may be a string or a regular expression. If no arg2 is given, matches are simply
removed.

w = INT (alias: width) h = INT (alias: height)
Sets the width/height in pixels (this implicitly sets the minimum and preferred size).

pw = INT (alias: preferredWdth) ph = INT (alias: preferredHei ght)
Sets the preferred width/height in pixels.

Tip
Not all controls currently support preferred width, some controls have their own default

sizes.

mv = INT (alias: mininmumWdth) mh = INT (alias: mninmnHeight)
Sets the minimum width/height in pixels (a control cannot get any smaller than this size).

maxw = I NT (alias: maxi mumN dth) maxh = INT (alias: maxi muntei ght)
Sets the maximum width/height in pixels (a control cannot get any bigger).

fw=INT (alias: fixedWdth) fh = INT (alias: fixedHeight)
Sets all above width/height sizes to the same value (the control will not change size in any layouter).

41

GUI Controls

scale = INT (default: 1)
Scales all sizes (margin/spacing/fonts) in fixed steps.

Positive integer values enlarge the control, negative values shrink it.

This is also applied to all child controls of a widget; this way, you can scale entire groups of controls
with one scale tag.

This feature works additive and recursive; this way, you can also resize in a hierarchy.
alignGoupX = NAME (alias: al i gnG oup) chil dAlignG oupX = NAME (alias:

chil dAl'i gnGroup) chil dAli gnG oupY = NAME | abel AlignG oup = NAME
See Section 4.9.1, “Align Groups” for details on the usage of these tags.

al i gnG oupY = NAME
Specifies that this control is in a vertical align group.

See Section 4.9.1, “Align Groups”for details on the usage

tooltip = STRI NG
Sets a string used as tooltip. This can be changed by Python with the set Tool Ti p(stri ng) method.

Note that the first sentence of a help text of the mhelp document is used as the tooltip text when no
explicit tooltip is given here (and of course, if an . mhel p file exists).

Instead of using the tooltip tag, rather write the field's help in the mhelp format. Avoid having multiple
places where the field's help has to be modified in case of a change.

‘ Note
The automatic display of the field's help is deactivated by default if the panel is displayed
in an application context, since it is assumed that the help is written for developers
rather than for end users.

If you want to show the field help anyway, you can set the variable
"ShowFieldHelpInApplications" to Yes, either in the preferences file of the application,
or with MLAB. set Vari abl e() (this must be set before a panel is created or shown).
Also note that . mhel p files are excluded from application installers by default.

tooltipField = FIELD
Provides the tooltip for the control, precedes the tooltip tag.

what sThis = STRI NG
Sets a string used as a tooltip. This can be changed by Python with the set What sThi s(stri ng)
method.

Control tags that affect the control's layouters (depending on in which layouter the control is created,
e.g., Table, Grid):

alignX = ENUM (default: Auto)
Specifies the alignment of the control, which automatically means that the control is not expanded
in that direction but aligned in its row/column.

This tag is used by the layouters a control is placed in, e.g., Table , Grid , Vertical and Horizontal.

Possible values: Auto, Left, Right, Center

alignY = ENUM (default: Auto)
Specifies the alignment of the control, which automatically means that the control is not expanded
in that direction but aligned in its row/column.

42

GUI Controls

This tag is used by the layouters a control is placed in, e.g., Table , Grid , Vertical and Horizontal.

Possible values: Auto, Top, Bottom, Center

xl'y = I NT
Sets the column/row position of control in the Grid or sets the x/y position inside a FreeFloat layouter.

Grid and FreeFloat layouters only; here, it is a required tag!

x2/y2 = INT
Sets a multi-cell column/row position for grid, the control spans the column from x to x2.

Grid layouter only.

col span = INT (default: 1)
Sets the column span used in Table layouter.

bgWbde = ENUM (default: Repeat)
edi t BgMbde = ENUM

but t onBgMbde = ENUM
Defines how background images in the style colors bg , editBg, and button are drawn. The default
is repeating the image, which Qt provides for free. All other modes have some kind of performance
or memory penalty, but can give nice background effects. Especially the "smooth" modes are
expensive.

Stretch, SmoothStretch
Stretches the image to the current size of this control.

StretchX, StretchY, SnpoothStretchX, SmoothStretchyY
Stretches the image in X or Y direction, and repeats it in the other direction. This can be used
to create a gradient effect with an image.

Fit, SnoothFit
Resizes the image so that it fits in the available space while keeping the aspect ratio. The border
is filled with the color given in the style.

TopLeft, TopRi ght, BottonlLeft, BottonRight, Center
Image is positioned in corner/center of the control and not resized.

Repeat
Image is repeated continuously (so the image used should match nicely with its borders).

Resi zedBox (Advanced!)
Image is split in nine parts that are stretched differently, *ModeBorderX + *ModeBorderY tags
select the corner box size that is not stretched.

Possible values: Repeat, Stretch, SmoothStretch, Fit, SmoothFit, TopLeft, TopRight, BottomLeft,
BottomRight, Center, ResizedBox

For the specification of background images, see the Style section.
Advanced features:

dr oppedFi | eConmand = SCRI PT (argunent: filenane string)
Defines a script that is executed when a file, directory, or URL is dropped onto the control. If multiple
files are dropped, then this command is called multiple times.

dr oppedFi | esCommand = SCRI PT (argunent: list of filenanes)
Defines a script that is executed when files, directories, or URLS are dropped onto the control.

43

GUI Controls

This is always called in addition to the command above. Usually only one of these commands needs
to be implemented.

dr oppedOnj ect Command = SCRI PT (argunent: qobject object)
Defines a script that is executed when an object is dropped onto the control.

accept Drops = BOOL
Sets whether the object accepts the dropping of objects. If one of the above commands is set, this
is automatically set to 'Yes'.

Typically, this is set to Yes manually if you want to handle drag-and-drop on a very low level, e.g.,
with an EventHandler.

resi zeCommand = SCRI PT (argunent: none)
Defines a script that is executed whenever the control is resized on the screen. This can be used
to make other controls visible/invisible, depending on the available space. It can also be used to
do your own layouting in a FreeFloat by repositioning controls whenever the size of the FreeFloat
changes. See the EventFilter for other things that you can react on.

i nitConmand = SCRI PT (argument: M.ABW dget Control)
Defines a script that is executed when the control was created (and before it is actually shown). The
control is passed with the call of the script.

dest royedConmand = SCRI PT (argunent: M.ABW dget Control)
Defines a script that is executed immediately before the control is destroyed. At this point, the control
is already reduced to the basic control object, so you cannot use any feature provided by derived
controls! The control is passed with the call of the script.

Additional control tags for TabViewltems are given in TabViewltem; any control can be used as a
TabViewltem.

4.2.2. Frame (Abstract)

Frame is an abstract control that allows to set tags that control the frame appearance. A number of
controls are derived from this control.

Frame is derived from Control.

Dynamic scripting: MLABFrameControl

f rameShape = ENUM [NoFr ane]
f rameShadow = ENUM [Plain]
frameLi neWdth = INT [1]
frameM dLi newWdth = I NT [1]

frameShape = ENUM (defaul t: NoFrane)
Sets the shape of the frame. The possible values are:

NoFrame, Box, Panel, WinPanel, HLine, VLine, StyledPanel, PopupPanel, MenuBarPanel,
ToolBarPanel, LineEditPanel, TabWidgetPanel, GroupBoxPanel, MShape

franmeShadow = ENUM (default: Pl ain)
Sets the type of the frame's shadow. The possible values are:

Plain, Raised, Sunken, MShadow

frameLi neWdth = INT (default: 1)
Sets the line width of the frame.

frameM dLi neWdth = INT (default: 1)
Sets the mid line width.

44

GUI Controls

4.2.3. Execute

Execute can be used to execute a script function anywhere in a GUI definition. It can be placed in any
Control that supports children. It does not create a visible control but just executes the given scripting
function, which may be defined via the source tag in the Commands section of the module. For Python,
it is also allowed to execute inline code that starts with py: . The given function can also be a child of an
existing object written in dotted notation, e.g., nyObj ect . nyFunct i on.

Execute = soneFunction
Execute = "*py: MAB.|log("test") *"
Execute = "py: MAB.log('test') "

The Execute statement has access to all controls that are "named" with the name tag and that appear
BEFORE the Execute statement. Controls following after the Execute statement cannot be reached. An
example for accessing a Control is given below.

‘ Note
Generally, using inline code is inadvisable as it can disrupt the functionality of your GUI. It
is not possible to define your own functions and classes in the inline code, so you should
prefer doing the scripting in external files given via source.

Label
Execut e

"Test" { name = nyl abel }
"*py: ctx.control ("label").setTitle("Title Changed"); *"

4.3. Layout Group Controls

The following controls group other control together and define how these child controls are laid out.
Window is a special case, since it is the top level control and can only be declared on the top level of
a module definition.

4.3.1. Window

Window is the base control that contains any other controls. A module can have any number of Windows
in its MDL definition file. The first window (or the one with the name "_default") is used as the standard
parameter panel of the module.

Window is derived from Control.

Dynamic scripting: MLABWindowControl

W ndow NAME {

title = STRING
wakeupCommand = SCRI PT
wi ndowAct i vat edConmmand = SCRI PT
shoul dC oseConmand = SCRI PT
mexi m zed = BOOL [No]
canCGoFul | screen = BOOL [No]
full screen = BOOL [No]
bor der| ess = BOOL [No]

ANYGUI CONTROL { }

}

title = STRI NG
Sets the title shown in the window title bar.

wakeupConmand = SCRI PT
Defines a command that is called when the window is shown. You should better use an Execute
command, which is also called when your Window is extracted via a Panel control.

45

GUI Controls

wi ndowAct i vat edConmand = SCRI PT
Defines a command that is called when the window is activated (i.e., when it gets the keyboard
focus).

shoul dCl oseCommand = SCRI PT
Defines a command that is called when the window is closed by the user or by the program. If you
do not want the window to be closed, you can call

ct x. wi ndow() . set d oseAl | oned(Fal se)
within the script command. The default is that the window can be closed.

nmaxi m zed = BOOL (default: No)
Sets whether the window will always be shown maximized on the screen.

canGoFul | screen = BOOL (default: No)
Sets whether the window will have a fullscreen button in the upper right of its title bar. This feature
is only supported on Mac OS X 10.7 or later, currently. Furthermore, it only works with application
main windows (i.e., use "Run As Application").

full screen = BOOL (default: No)
Sets whether the window will always be shown fullscreen, with no window bar decoration and close
button.

borderl ess = BOCOL (default: No)
Sets whether the window will have no decoration at all, no close button, etc. Use with care because
you cannot close such a window without adding your own close button to it.

ANYGUI CONTROL
Controls defined inside the window are the content of the window. If more than one control is
specified, the window automatically uses a TabView and the controls act as TabViewltems.

Example 4.1. Window

Have a look at the Vi ew3D. scri pt (instantiate a View3D module in MeVisLab, right-click it and choose

Related Files - View3D.script from the context menu). There, you will find four Window sections
defined, namely 'View3D', 'Viewer', 'Settings', and 'LutEditor'. All these windows appear in the module's
context menu under 'Show Window' below the separator. Above the separator, the default window
(always called 'Panel’) and the automatic panel are listed.

In the case of the View3D, no Window is named _def aul t, so the first window ('View3D') is opened as
the default panel on double-clicking the module.

Interface {
Inputs {
...
}

Qutputs {
...
}
Paraneters {
...
}

}

Description {
...
}

Persi stence {
...

}

Commands {
source = $(LOCAL)/ Vi ew3D. py
wakeupConmmand = wakeup

Cont ext Menu {

46

GUI Controls

Menul tem " Show I nventor Inputs" { field = inventorlnputOn }

Fi el dLi stener renderer.inmage {
I
}

1.
}

W ndow Vi ew3D {
1.

}

W ndow Vi ewer {
Vi ewer viewer.self {

nane = viewer
clone = No
}
}
W ndow Settings {
Panel {
panel = Settings
}
}

W ndow Lut Edi tor {
title = "Lut Editor"

Vertical {
Box Editor {
Panel {
nodul e = SoLUTEdi t or
panel = editor
}
}
Box Settings {
Fi el d SoLUTEditor.relativeLut {1}
Fi el d SoLUTEdi t or. al phaFact or { slider = Yes }
Fi el d SoLUTEdi tor.colorlnterpolation { }
}
Box Range {
Panel {
nodul e = SoLUTEdi t or
panel = range
}
}
}

}

4.3.2. Category

Category is an alias of the Vertical with the difference that the Category has a default non-zero margin.

It is recommended use the Category as the top level layouter instead of a Vertical, because otherwise,
inner controls might be clipped slightly by the window's border.

Figure 4.1. Category vs. Vertical

8 == H h 8 == H h
71 Panel Threshold LE.L 1 Panel Threshold LE.L
“If If

Comparison: [= Comparison: [=

Threshold: 0= Threshold: 0%

[~ Use relative threshold [Use relative threshold

~Then

|User Def ite: |User Def

|User Def ite: |User Def

47

GUI Controls

In the image above, the left window uses a Category as the top level layouter while the right window
uses a Vertical instead. Note the clipping of the frames of the boxes by the window to the right.

4.3.3. Vertical

Vertical is a vertical layout group control. Each control inside of the Vertical is laid out according to its
size requirements.

The following children's tags are taken into account:
stretchy, expandY

Vertical is derived from Frame.

Aliases: VerticalNB, Category (see margin, though)

Dynamic scripting: MLABVBoxControl

Vertical {
spacing = I NT [0]
margin = I NT [0 for Vertical, non-zero default for Category]

// Additional tags: see Franme
ANYGUI CONTROL { }

}

spacing = INT (default: 0)
Spacing between the controls.

margin = INT (default: auto)
Spacing between border and controls. The default is 0 pixels for Vertical, but a small non-zero value
for Category.

ANYGUI CONTRCL
All controls declared inside of the group are automatically children of the group.

Example 4.2. Vertical

Have a look at the module TestVerticalLayout. This module features some GUI components that are
arranged vertically.

Figure 4.2. TestVerticalLayout Module

TestVarticallayout

7 GUITest: Veﬂical...élélﬂ

¥ Enable Controls

Some simple Controls in a Vertical

I'm a Button |

[I'm a CheckBox

ToolButton with ToolTip |

You can edit this text

4.3.4. Horizontal

48

GUI Controls

Horizontal is a horizontal layout group control. Each control inside of the Horizontal is laid out according
to its size requirements.

The following children's tags are taken into account:
stret chX, expandX

Horizontal is derived from Frame.

Aliases: HorizontalNB, ButtonGroup

Dynamic scripting: MLABHBoxControl

Hori zontal {
spaci ng
mar gi n

INT [0]
INT [0]

/1 Additional tags: see Frame
ANYGUI CONTROL { }
}

spacing = INT (default: 0)
Spacing between the controls

margin = I NT (default: 0)
Spacing between border and controls

ANYGUI CONTRCL
All controls declared inside of the group are automatically children of the group.

Example 4.3. Horizontal

Have a look at the module TestHorizontalLayout. This module features some GUI components that
are arranged horizontally.

Figure 4.3. TestHorizontalLayout Module

Some simple Controls in a Horizontal: '—J—I 1.500 E-_ |1.5

4.3.5. Table

Table organizes its children in rows. Child controls can span multiple columns and can be aligned within
their row/column position.

Each control inside of the Table is laid out according to its size requirements, the following children tags
are used by the layouter:

stretchX/ Y, expandX/ Y, al i gnX/'Y, col span

Table is derived from Frame.

49

GUI Controls

Dynamic scripting: MLABTableControl

Tabl e {
spacing = I NT [0]
margin = I NT [0]

/1 Additional tags: see Frane

Row {
Vi si bl eOn = FI ELDEXPRESSI ON
dependsOn = F| ELDEXPRESSI ON

ANYGUI CONTROL { }

:

Row {
Vi si bl eOn = FI ELDEXPRESSI ON
dependsOn = F| ELDEXPRESSI ON

ANYGUI CONTROL { }

}

spacing = INT (default: 0)
Sets the spacing between the controls.

margin = INT (default: 0)
Sets the spacing between border and controls.

Row
Specifies a row in the table. The row can contain any number of child controls, which can also span
multiple column (with the colspan tag used in a control).

Each row may also contain a dependsOn and visibleOn expression, as described for normal
controls. Note that if dependsOn/visibleOn expressions are also specified for the children of the
row, unspecified behavior may occur.

50

GUI Controls

Example 4.4. Table

Have a look at the module TestTableLayout. Below you will find the MDL code that defines this example
macro module.

scriptOnly = Yes

W ndow {
title = "GUI Test: Table"
Tabl e {
margin =5
spacing = 3
Row {
Button {
col span = 3
title = "TopLeft 3"
expandX = Yes
expandY = Yes
}
Button {
col span = 2
title = "TopRight 2"
expandX = Yes
expandY = Yes
}
}
Row {
Button {
col span = 2
title = "M dLeft 2"
expandX = Yes
expandY = No
}
Button {
colspan = 1
title = "M dCenter 1"
expandX = No
expandY = Yes
}
Button {
col span = 2
title = "MdRi ght 2"
expandX = Yes
expandY = No
}
}
Row {
Button {
col span = 2
title = "BottonlLeft 2"
expandX = Yes
expandY = Yes
}
Button {
col span = 3
title = "BottonRight 3"
expandX = Yes
expandY = Yes
}
}
Row {

Label "Resize this Wndow " {
colspan = 5
alignX = Center
}
}
} /1 wap
}

51

GUI Controls

Figure 4.4. TestTableLayout Module

Testiablelayout

£ GUITest: Table TestTa... (5=l

TopLeft 3 | TopRight 2 |

MidLeft 2 | MidCenter 1| MidRight 2 |

BottomLeft 2 | BottomRight 3 |

Resize this Window!

4.3.6. Grid

Grid organizes its children in rows and columns. Child controls can be positioned at any row/column
position and can span multiple columns and can be aligned within their row/column position.

Each control inside of the Grid is laid out according to its size requirements, the following children tags
are used by the layouter:

stretchX/ Y, expandX/ Y, alignX'Y, x,y, x2,y2
Grid is derived from Frame.
Dynamic scripting: MLABGridControl
Tip
Each child control needs to have a x/ y position tag.

In contrast to Table, where controls are automatically ordered in rows, the Grid allows for
more complex positioning.

Gid {
spacing = I NT [0]
margin = I NT [0]

/1 Additional tags: see Frane

/1 sinple control:
ANYGUI CONTROL { x = INT y

INT }

/1 multicolum control:
ANYGUI CONTROL { x = INT y

INT x2 = INT y2 = INT }

}

spacing = I NT (default: 0)
Sets the spacing between the controls.

margin = | NT (default: 0)
Sets the spacing between border and controls.

ANYGUI CONTRCL
Specifies a child control (which is positioned at the row and column given by the x and y tags in the
Grid), either as a row in the table, the row can contain any number of child controls, which can also
span multiple column (with the colspan tag used in a control).

52

GUI Controls

Example 4.5. Grid

Have a look at the module TestGridLayout. Below you will find the MDL code that defines this example
macro module.

scriptOnly = Yes

W ndow {
title = "QU Test: Gid"

Gid {
mar gi n
spaci ng

nn
w o

oON O O™

title
expandX
expandY

"<0, 0>- <2, 0>"
Yes
Yes

W
=
x —
—
o
=}

y
X2
y2
title = "<3,0>-<3, 2>"
expandX = Yes
expandY = Yes
al i gnX = Ri ght

NWOow™

}

Button {
x =0
y=1
title = "<0, 1>"
expandX = Yes
alignX = Left

}

Button {
x =1
y=1
title = "<1, 1>"
expandY = Yes
alignY = Top

}

Button {
X =2
y =1
X2 = 2
y2 = 2
title = "<2,1>-<2,2>"
expandX = Yes
expandY = Yes

}

Button {
x =0
y =2
x2 =1
y2 = 3
title = "<0, 2>-<1, 3>"
expandX = Yes
expandY = Yes

}

Button {
X =2
y =3
x2 = 3
y2 = 3
title = "<2,3>-<3,3>"
expandX = Yes
expandY = Yes
alignY = Bottom

}

}
}

53

GUI Controls

Figure 4.5. TestGridLayout Module

— G| e
TestGrdlayout

<0,0>-<2,0>

<3,0>-<3,2>

<0,1> | <1,1> | <2,1>—<2,2>‘

<0,2>-<1,3> ‘ <2,35-<3,3> |

4.3.7. ButtonBox

ButtonBox is a control that presents Button controls in a layout that is appropriate for the operating
system's look & feel. Dialogs typically present buttons in a layout that conforms to the interface
guidelines for that platform. A ButtonBox automatically uses the appropriate layout of the user's desktop
environment, and may change the order in which the child buttons appear.

Dynamic scripting: MLABButtonBoxControl

But t onBox {
orientation = ENUM [Hori zontal]

// Button control:
Button { role = ENUM}

}

orientation = ENUM (default: Horizontal)
Sets the the orientation of the button box.

Possible values: Horizontal, Vertical
Butt on

Specifies a Button control. The role attribute of a Button is used to determine the role of the button
within a dialog window. See Button control for possible values.

If the button does not specify a role, the button title will be evaluated for known role strings. Currently
known strings are: Ok, Open, Save, Cancel, Close, Discard, Apply, Reset, Restore Defaults, Help,
Save All, Yes, Yes To All, No, No To All, Abort, Retry, Ignore

4.3.8. Splitter

Splitter organizes its children in vertical or horizontal direction and allows to resize the contained controls
with draggable handles. The color and shadow of the splitter are customizable.

Each control inside of the Splitter is laid out according to its size requirements. The following children
tags are used by the layouter:

stretchX/ Y, expandX/ Y
Splitter is derived from Frame.

Dynamic scripting: MLABSplitterControl

Splitter {
direction = ENUM
col or = COLOR
shadow = ENUM [Rai sed]
chil drenCol | apsi bl e = BOOL [Yes]

54

GUI Controls

// Additional: tags for frame
ANYGUI CONTROL { }

}

direction = ENUM
Defines layout direction of the Splitter.

Possible values: Vertical, Horizontal

color = COLOR
Sets the the color that the splitter should have.

shadow = ENUM (defaul t: Raised)
Defines the the type of shadow of the splitter. Possible values are Plain, Raised, and Sunken.

childrenCol | apsi bl e = BOOL (defaul t: Yes)
Defines whether the child widgets can be collapsed completely by dragging the splitter.

55

GUI Controls

Example 4.6. Splitter

Have a look at the module TestSplitterLayout. Below you will find the MDL code that defines this
example macro module.

scriptOnly = Yes

W ndow {
title
w
h

"QUI Test: Splitter"
512
384

Splitter {
direction = Vertica

Button {
title
expandX
expandy

wqn
Yes
Yes

}
Splitter {
direction = Horizonta

Button {
title
expandX
expandy

won
Yes
Yes

}
Splitter {
direction = Vertica

Button {
title
expandX
expandy

wgn
Yes
Yes

Splitter {
direction = Horizonta

Button {
title
expandX
expandy

" gn
Yes
Yes

}
Splitter {
direction = Vertica

Button {
title
expandX
expandy

wgn
Yes
Yes

}
Splitter {
direction = Horizonta

Button {
title
expandX
expandy

v g
Yes
Yes

Splitter {
direction = Vertica

Button {
title
expandX
expandy

wn
Yes
Yes

56

GUI Controls

Figure 4.6. TestSplitterLayout Module

4.3.9. Box

Box shows a frame with a title around its children. It can contain any inner layout, selected by the | ayout
tag. If no layout is chosen, a Vertical is implicitly used. Note that all child tags of the Box are also used
by the selected layout, e.g., the mar gi n tag.

Dynamic scripting: MLABBoxControl

Box STRI NG {
title = STRING
titleField = FI ELD
alignTitle = ENUM [Left]
| ayout = NAME [Vertical]
checked = BOOL [No]
checkabl e = BOOL [No]
checkedFi el d = FIELD

ANYGUI CONTROL { }
I

title = STRING
Overwrites the title given in the Box tag.

titleField = FIELD
Provides the title of the Box, precedes the title tag.

alignTitle = ENUM (default: Left)
Sets the alignment of the title.

Possible values: Left, Center, Right

| ayout = NAME (default: Vertical)
Defines a layouter.

Possible values: Category, Vertical, Horizontal, Table, Grid, Splitter, FreeFloat

checkedField = FIELD
The checkedField can be a boolean field. Its value is used to toggle the checked state that enables/
disables the content of the box.

57

GUI Controls

checkabl e = BOOL (default: No)
Sets whether a checkbox appears in the title of the box that enables/disables the content of the box.

checked = BOOL (default: No)
Sets the checked state that indicates whether the content of the box is enabled or disabled. This
attribute will be overwritten if checkedField is given.

Note: There is a known Qt bug that causes the box contents to overlap with the checkbox if the box
has no title

Example 4.7. Box

Have a look at the module TestBoxLayout. Below you will find the MDL code that defines this example
macro module.

scriptOnly = Yes

W ndow {
title = "GU Test: Box"
Vertical {
margin =5

Label "A Box with title and automatic layout:" {}
Box BoxTitle {

spacing = 5
margin =5
Button { title = "A Button" }
Button { title = "B Button" }
Button { title = "C Button" }

}

Label "A Box without title and grid-layout:" {}

Box {
spacing = 2
margin = 2
layout = Gid
Button { title = "A Button" x =2y = 0}
Button { title = "B Button" x =1y = 1}
Button { title = "C Button" x = 0y = 2}

}
}
}

Figure 4.7. TestBoxLayout Module

i GUITest: Box TestBoxL.. | = | [=] X |
TestBoxlayout
A Box with title and automatic layout:
BoxTitle
A Button
B Button
C Button

A Box without title and grid-layout:

A Button
B Button

C Button

4.3.10. ScrollView

ScrollView allows to scroll a bigger control with vertical and horizontal scrollbars. If no layout is specified,
the internal layout is a Vertical layout.

58

GUI Controls

ScrollView is derived from Frame.

Dynamic scripting: MLABScrollViewControl

Scrol | View {

| ayout = NAME [Vertical]
hscrol l er = ENUM [Aut o]
vscrol l er = ENUM [Aut o]

/1 Additional: tags for frame
ANYGUI CONTROL { }

}

hscroll er = ENUM (defaul t: Auto)
Sets whether the horizontal scrollbar is always on, off, or should only appear when needed (auto).

Possible values: Auto, On, Off

vscrol ler = ENUM (defaul t: Auto)
Sets whether the vertical scrollbar is always on, off, or should only appear when needed (auto).

Possible values: Auto, On, Off

|l ayout = NAME (default: Vertical)
Defines a layouter.

Possible values: Vertical, Horizontal, Table, Grid, Splitter, FreeFloat

Example 4.8. ScrollView

The following example adds another window to the View3D, which then becomes available via the
module's context menu (Show Window). It adds the settings panel in a ScrollView with no horizontal
scroller but a vertical scroller if the panel's content exceeds the window (which it does).

W ndow Scrol | Vi ewTest {
Scrol | View {

hscrol ler = O f
vscroller = Auto
Panel {

panel = Settings
}

}
}

Figure 4.8. ScrollView Example

? {1 Panel View3D o= = |
Show Internal Network I General ‘ LuT I Illumination 1 Clipping I A_i

Viewer

@ SoLUlEditor.alpnaracta
d SoLUIEditor.colorInter

Range {

[showwindow —» [P . . Panel { module = SoLUTEditor
View All | Auto view a
View3D Options > Automatic Panel
p— Viewsn wial | sagital | coronal | profie |
Edit Instance Name R Viewer Time Point: 0 E|:
Run In Separate Process e Mode SerollViewTest (

1

LutEditor

ez Mipizleny Mode: Volume Rendering ~ - ozs
= huto
Show Bample Netuwork Interactive Quality: |Medium -
Show Help
Edit Help Diakiy 1] 1 = Settings
Orientation
Reload Definition 5
Restore Defautt Values F Cn
Debugging V Model Cube -
SUN Versioning s Projection Type: [Perspective
— hd|
Related Files (4) ’

Show Enclosing Folder

4.3.11. TabView

59

GUI Controls

TabView shows a TabBar and contains a stack of controls that are visible depending on the selected
Tab. It also offers a mode where the TabBar is not visible, allowing to change the selected Tab by
scripting only (this is often used in applications that group their panels inside an invisible TabView).

The child controls of the TabView can be any control. The additional tags needed for the TabView are
given as extra tags to the child controls. Refer to TabViewltem to see which tags are available.

The selected tab can be changed by using the sel ect TabAt | ndex(i nt) or sel ect Tab(cont r ol nane)
method on the TabView, or by associating the control with a field of type integer, whose value will be
the index of the currently displayed tab (see currentindexField).

TabView is derived from Control.

Dynamic scripting: MLABTabViewControl

TabVi ew {
current!|ndexField = FIELD [None]
node = ENUM [Nor mal]
accept Wheel Events = BOCOL [Yes]

ANYGUI CONTROL { }

}

current | ndexField = FIELD (default: None)
Synchronizes the current tab index with the value of a field of type integer, i.e., the value of the field
changes when the tab is changed and vice versa.

node = ENUM (default: Normal)
Defines whether the TabBar is visible and if it is on the top or bottom of the widget. If the mode
is "toolbox", a ToolBox widget is used instead of a TabView; this has the advantage of internal
scrollbars and the possibility of long tab description. If the mode is "listview", a ListView widget is
shown on the left and shows each tab title as an entry in the list. If the ListView mode is enabled,
the tabHierarchy tag of each TabViewltem can be used to show a tree structure instead of a flat list.

Possible values: Normal, Top, Bottom, Left, Right, Invisible, Toolbox, ListView

accept Wheel Events = BOOL (default: Yes)
Sets whether the TabView should accept mouse wheel events to flip through its TabViewltems.

ANYGUI CONTRCL
Each control in the TabView is treated as a TabViewltem and can contain the tags given in
TabViewltem

60

GUI Controls

Example 4.9. TabView

Have a look at the module TestTabViewLayout. This module features the use of an invisible TabView
where the tabs are changed by using scripting commands that are triggered by pressing a button, and
the use of standard tabs.

Note that each direct child of a TabView is turned into an own tab.
scriptOnly = Yes

Commands {
source = $(LOCAL)/ Test TabVi ewLayout . py

}

W ndow {
title = "QUI Test: TabVi ews"

Vertical "TabView with invisible Tabs" {
Box Sel ect {
| ayout = Hori zontal
Button { title = "Boxes" conmand
Button { title = "Table" conmand
Button { title = "TextView' conmmand

swi t chTabO }
switchTabl }
switchTab2 }

}
TabVi ew {
nane = TabVi ewi nvisible
node = Invisible
Vertical {
tabTitle = "Boxes"
margin =5
Box BoxTitle { ... }
Label "A Box without title and grid-Ilayout:" {}
Box BoxTitle { ... }
}
Table { ... }
Text Vi ew {
tabTitle = TextView
title = Text Vi ewExanpl e
t ext = "Exanpl e for a TextView Control in a TabView'
}

}
}

TabVi ew "TabVi ew wi th visible Tabs" {
Vertical "Boxes" {
margin =5
Box BoxTitle { ... }
Label "A Box without title and grid-Iayout:" {}
Box BoxTitle { ... }
}

Table "Table" { ... }

61

GUI Controls

Figure 4.9. TestTabViewLayout Module

TestiabViewlayout

TabView with invisible Tab: ¢
Select
|7 Boxes |

~BoxTitle

A Button

B Button

C Button

A Box without title and grid-layout:

~BoxTitle
A Button |
B Button |
C Button |

4.3.11.1. TabViewltem

The TabViewltem can be used inside of a TabView to specify the TabView entries. Any other control
can also act as a TabViewltem in the TabView, just add the tags below to the control to pass the needed
information to the TabView.

The TabViewltem is a Vertical layouter and has the following tags:

Dynamic scripting: MLABVBoxControl

TabVi ewl t em STRI NG {

tabl con = FILE

tabTitle = STRING

tablnitial = BOOL

tabTooltip = STRING

tabHi erarchy = STRI NG

t abSel ect edCommand = SCRI PT

t abDesel ect edCormand = SCRI PT

t abEnabl ed = BOOL [Yes]
t abDependsOn = FI ELDEXPRESSI ON

ANYGUI CONTROL { }

}

tablcon = FILE
Sets an icon to show on the TabBar.

tabTitle = STRING
Sets a title to use in the TabBar (overwrites the value of the TabViewltem tag).

62

GUI Controls

tablnitial = BOCOL
Selects a TabViewltem as the initially selected Tab (otherwise, the first Tab is selected).

tabTooltip = STRI NG
Sets a tooltip text on the TabBar.

tabHi erarchy = STRI NG
Defines the hierarchy name of the tab. This can be used in a TabView with mode = ListView to
support nested tabs. The separation character is '/'. For example, a value of 'Root/Settings' means
that the tab is a child of the TabViewltem with the tabHierarchy name 'Root'. The nesting is unlimited,
but the parent TabViewltems need to be declared before the child tab view items. All TabViewltems
are defined on the same MDL level/in the same TabView, the nesting is only available in the ListView
mode and does not influence the title of the tabs, only the nesting.

t abSel ect edCommand = SCRI PT
Defines a script command that is called when this TabViewltem is selected (also called on the initial
selection).

t abDesel ect edComrand = SCRI PT
Defines a script command that is called when this TabViewltem is deselected.

t abEnabl ed = BOOL (default: Yes)
Sets whether this tab is initially enabled.

t abDependsOn = FI ELDEXPRESSI ON
Sets whether this tab is enabled depending on the given field expression. Have a look at the example
of this tag for a more detailed explanation.

4.3.12. FreeFloat

FreeFloat organizes its children at a given integer position. The coordinate system starts with (0,0) in
the upper left corner.

Each control inside of the FreeFloat is positioned with the tags:
xly

The size of the controls is taken from the width/height tags:

w' h

FreeFloat is derived from Frame.

Dynamic scripting: MLABFreeFloatControl
Tip

The FreeFloat should ONLY be used where no other layouter works, since it offers fixed
control positioning, which can have undesired effects when, for example, the font size
changes. It can be used nicely to have a title image and some floating buttons on the image.

FreeFl oat {
aut oSi ze = BOOL

// Additional: tags for frame
ANYGUI CONTROL { }
}
aut oSi ze = BOOL (default: Yes)

Sets whether the FreeFloat automatically calculates its preferred size as the bounding box of all
contained controls.

63

GUI Controls

4.4. User Input GUI Controls

User input control are typically tightly coupled with field in MeVisLab, thus allowing an easy way to
represent a module's parameter field with a desired user interface. If not stated, all controls are derived
from Control and offer its tags.

4.4.1. Field

Field is a very generic control that can show any of the fields in MeVisLab as an editable GUI element.
It typically shows a label with the field name (or a given ti t | e) followed by a number of user-editable
controls, e.g., LineEdit, NumberEdit, VectorEdit, ColorEdit, Slider.

It also allows to have field connections by using drag-and-drop of the title label and a pop-up menu to
work on the underlying field. Whether drag-and-drop is turned on depends on the window the control is
used in. If it is an application window, drag-and-drop is automatically disabled.

Dynamic scripting: MLABFieldControl

Field FIELD {

title = STRI NG

titleField = FI ELD

edit = BOOL [Yes]
val i dat or = RECEXP

sl i der = BOOL [No]
pressedl ndi catorField = Fl ELD

editField = BOOL [Yes]

f or mat = STRI NG

m nLengt h = INT [5]

hi nt Text = STRI NG

trim = ENUM [None]
sunkenVect or Label s = BOOL [Yes]
conponent Titl es = STRI NG

edi tAlign = ENUM [Left]
text Align = ENUM [Left]
step = FLOAT

st epstep = FLOAT

sl i der Snap = FLOAT

spaci ng = INT [0]

al i gnGr oup = STRI NG

enumAut oFor mat = BOOL [Yes]
accept Wheel Event s = BOA [Yes]
conmboBox BOOL [No]
conboEdi t abl e BOOL [Yes]
conmboConpl et es BOOL [Yes]

caseSensi ti veAut oConpl et e
conboSepar at or
conboFi el d

BOOL [Yes]
STRI NG [.,]

conbol tenms {
item {
i mage
title

}

FI LE
STRI NG

appl yBut t on
nor eBut t on
br owseBut t on

BOOL [No]
BOOL [No]
BOOL [No]

fil eDi al ogCr eat esUnexpandedFi | enanes = BOOL [No]
br owseMbde = ENUM [Open]
browseTitl e = STRING

browseFil ter = STRING

br owsi ngG oup = STRI NG

br owseSel ect edConmmand = SCRI PT

useSheet = BOOL [Yes]
fi el dDr aggi ng = BOOL

updat eFi el dWhi | eEdi ti ng = BOOL [No]

}

title = STRING
The title shown on field label.

64

GUI Controls

titleField = FIELD
Sets the title as a field; it is automatically updated when the field changes and shows that field's
string value.

step = FLOAT
Sets a step value used for NumberEdits.

stepstep = FLOAT
Sets a stepstep value used for NumberEdits. The stepstep value is usually smaller than the step
value.

slider Snap = FLOAT
Sets a snap value for the slider. If set to a value != 0, the slider always snaps to a value that is a
multiple of this value starting at the slider's minimum.

edit = BOOL (default: Yes)
Sets whether the fields value can be edited. If set to No, text labels are typically used instead of
editable GUI elements.

This is different from the general Control tag enabl ed, which enables or disables an entire control
(also called "grayed out").

val i dat or = REGEXP
Sets a regular expression to check whether the input is valid when the value is editable and not a
number. A description of the expression syntax can be found here: http://doc.qt.io/gt-6/qregexp.html

slider = BOOL (default: No)
Sets whether a slider is shown. This only works if the field is a number field and has min and max
values.

pressedl ndicatorField = FIELD
Specifies a boolean field that is set to True if the user presses the slider button and to False if the
user releases the slider button.

editField = BOOL (default: Yes)
Sets whether the GUI element is editable. This is typically used to enable the slider without the
NumberEdit to the left.

format = STRI NG
Sets a format string to be used as in sprintf, e.g., %4.5f or %x

‘ Note
You have to use the correct %d,%x ,%f,%g type for float/double/int fields.

m nLength = I NT (default: 5)
Sets a minimum width of characters reserved in the editable GUI element.

hi nt Text = STRI NG
Sets a hint text shown in an editable line edit if the line edit is empty and does not have the focus.

updat eFi el dWhi | eEditing = BOOL (default: No)
Sets whether the attached field is updated while the user types text in the line edit.

trim= ENUM (defaul t: None)
Performs trimming on the string when it is not edited.

Possible values: Left, Center, Right, None

Left
...LongText

65

http://doc.qt.io/qt-6/qregexp.html

GUI Controls

Cent er
Long...Text

Ri ght
LongText...

None
No trimming

sunkenVect or Label s = BOOL (default: Yes)
Sets whether labels are drawn into the same frame as the LineEdit; otherwise, they are drawn
separately.

conponent Titl es = STRI NG
Specifies titles for the separate component edit boxes of a vector value, overriding the default values.
Values must be comma-separated. Extra values will be ignored, if too few values are specified, the
remaining labels will be unchanged. If this is used on a non-vector field, an error is printed.

editAlign = ENUM (default: Left)
Defines the alignment of the text in the Line/NumberEdits. Default depends on whether numbers
or strings are edited.

Possible values: Left, Right, Center

textAlign = ENUM (defaul t: Left)
Defines the alignment of the text in the title label.

Possible values: Left, Right, Center

al i gnG oup = STRI NG
Sets a hint to which other Fields this Field should be aligned. If the Control should never be aligned,
use "None". This is a general feature and is explained in detail in Section 4.9.1, “Align Groups”

enumAut oFor mat = BOCL (default: Yes)
Sets whether enum fields should avoid automatic formatting of enumeration names. Automatic
formatting means that a field called "MyName" receives the automatic title "My Name". If the enum
items have a common prefix, this is also stripped when automatic formatting is active.

accept Wheel Events = BOOL (defaul t: Yes)
Sets whether a ComboBox or a number field (integer, float, or double) should accept mouse wheel
events to adjust its value.

conboBox = BOOL (default: No)
Sets whether a comboBox is used instead of LineEdit.

conboEdi table = BOOL (default: Yes)
Sets whether the ComboxBox string is editable.

conboConpl etes = BOCOL (default: Yes)
Sets whether auto-complete is used when editable.

caseSensi ti veAut oConpl ete = BOOL (default: Yes)
Sets whether the ComboBox auto-completion is case-sensitive.

conboFi eld = FIELD
Specifies a field whose string value is used instead of given conbol t ens. When the comboField
changes, the available combo list is updated. Note that the field respresenting the selected value is
not changed, even if the current value is not in the new combo list.

conboSeparator = STRING (default: ",")
Sets a string value to use for splitting the string value of comboField into individual values.

66

GUI Controls

conbol t ens
Specifies the items shown in the ComboBox, may be omitted if conboFi el d is given.

Each item is specified with the i t emtag.
Each item entry can contain the following tags:

imge = FILE
The image to be used for the item.

title = STRI NG
The title to be used for the item.

appl yButton = BOOL
Sets whether an apply button is generated for VectorEdit. Only the Rotation control has an Apply
Button by default; in all other cases it is off by default.

noreButton = BOCOL (default: No)

Sets whether an additional "..." button is generated that opens a multiline text edit to edit the field's
string value.

browseButton = BOOL (default: No)
Sets whether an additional browse button is generated that opens a file dialog at current field value
(path).

fileDi al ogCreat esUnexpandedFi | enanes = BOOL (default: No)
The file dialog that is shown via the browse button generates absoulte path names, if
fileDialogCreatesUnexpandedFilenames is set to No. Otherwise, it replaces the beginning of the
filename with a variable like $(LOCAL), $(DemoDataPath), if possible.

See also MLABModule::unexpandFilename()

br owseMbde = ENUM (defaul t: Open)
Specifies the type of the file dialog.

Possible values: Open, Save, Directory, OpenReadOnly, DirectoryReadOnly

The ReadOnly variants of these values open a browse dialog that does not allow changes to the
file system. This might use a non-system browse dialog.

browseTitl e = STRI NG
Sets the title of the button for the file dialog.

browseFilter = STRI NG

Specifies the file extension filter that is used in open and save mode. You can specify the file types
as follows:

browseFilter ="All C++files (*.cpp *.cc *.C*.cxx *.c++);; Text files (*.txt);; Al
files (*)"

Filters are separated by double-semicolon. The filter is a space-separated list of glob-style
expressions enclosed in braces that follow the textual description of the filter.

br owsi ngG oup = STRI NG
MeVisLab file dialogs store the last used directory; this way, they can open at the last used location.

If you have applications that load/save data at different locations, you can put the dialogs into
different browsing groups that store the last used direction separately. Just use different group
names (only use letters and numbers in the names).

67

GUI Controls

br owseSel ect edCommand = SCRI PT
Defines the script command to be evaluated when the user made a selection with the file dialog.

useSheet = BOOL (default: Yes)
Sets whether any attached dialog (e.qg., file dialog) is created as a sheet on Mac OS X. A sheet is
a modal dialog attached to a particular document or window.

spacing = INT (default: 0)
Sets the internal spacing between the GUI elements of a FieldControl.

wrap = BOOL
Sets whether step and stepstep wrap the value around when reaching the boundaries.

f

el dDraggi ng = BOOL
Sets whether dragging the field's label onto another field's label is possible to create connections.
The default is Yes for normal panels and No for standalone applications. This also turns on the
connection icons and enables the field context menu on field labels.

// Different |ayouts can be used with certain types of fields:

/1 M.ABStringFi el d:

/'l FieldLabel | <- LineEdit -> | [Browse/ Save Button]

/Il 1f "edit" is "No', LineEdit is just a Label

/1 M_ABBool Fi el d:

/1 FieldLabel | CheckBox
/'l (CheckBox is without |abel on right)

/1 MLABI nt/ Fl oat / Doubl eFi el d:

/'l FieldLabel | NunberEdit | [<- Slider if min/max is set and "slider" tag is 'Yes' ->]
/1 1f "edit" is '"No', NunberEdit is just a Label

/1 MLABEnunFi el d:

/1 FieldLabel | ConmboBox

/1 M.ABTri gger Fi el d:

/'l FieldLabel | Button

/1 MLABCol or Fi el d:

/1 FieldLabel | Col orEdit

/1 MLABVec2f/ 3f [4f [Pl ane/ Rot at i onFi el d:

/1 FieldLabel | x | NunberEdit | y | NunmberEdit | z | NunberEdit | d | NunmberEdit | [Apply Button]
/1 Nami ng for |abels:

/1 MLABVec2f: x,y

/1 MLABVec3f: x,y,z

/Il MLABVec4f: x,y,z,t

/1 M.ABRotation: Xx,y,z,r

/1 M.ABPI| ane: x,y,z,d

/1 1f "edit" is 'No', NunberEdits are just Labels

4.4.2. FieldLabel

FieldLabel shows the draggable label that is used in the Field control. It may be used if one wants to
allow a drag/drop connection, e.g., of a matrix, and does not want to show the value of the field.

Fi el dLabel FIELD {
title = STRI NG
titleField = FIELD

}

68

GUI Controls

title = STRING
Sets the title shown on the field's label.

titleField = FIELD
Sets the title given by a field. It is automatically updated when the field changes and shows that
field's string value.

4.4.3. Button

Button shows a clickable button that can either trigger a MLABTriggerField or MLABBoolField or that
can call a script given as command tag. The button can have multiple images for the different states and
it can be a normal or a toggle button.

Dynamic scripting: MLABButtonControl
Tip

You can use & in the button title to add an ALT keyboard shortcut binding to a button. The
respective letter will be underlined (e.g., "&OKk").

Button [FIELD {

title = STRING

titleField = FI ELD

role = ENUM [Appl yRol €]
i mge = FILE

accel = KEYSEQUENCE

bor der = BOOL [Yes]
aut oRepeat = BOOL [No]
nor mal Onl mage = FILE

normal OfF f Image = FILE

acti veOnl nage = FILE

activeOflmage = FILE

di sabl edOnl mage = FI LE

di sabl edOf f I mage = FI LE

gl obal St op = BOOL [No]
fiel dDraggi ng = BOOL

popupMenu {
/1 See definition of SubMenu
}

conmand = SCRI PT
}

title = STRING
Sets the title on the button.

titleField = FIELD
Sets the title as a field. The title string is automatically updated when the field changes and shows
that field's string value.

role = ENUM (defaul t: Appl yRol e)
Defines the role of the button in the window/dialog. It is evaluated if the button has been placed
within a ButtonBox container.

Possible values are:

Accept Rol e
Clicking the button causes the dialog to be accepted (e.g., OK).

Rej ect Rol e
Clicking the button causes the dialog to be rejected (e.g., Cancel).

DestructiveRol e
Clicking the button causes a destructive change (e.g., for Discarding Changes) and closes the
dialog.

69

GUI Controls

Acti onRol e
Clicking the button causes changes to the elements within the dialog.

Hel pRol e
The button can be clicked to request help.

YesRol e
The button is a "Yes"-like button.

NoRol e
The button is a "No"-like button.

Appl yRol e
The button applies current changes.

Reset Rol e
The button resets the dialog's fields to default values.

i mge = FILE
Specifies a pixmap to use on the button.

accel = KEYSEQUENCE
Sets a CTRL or ALT key sequence that activates this button. For normal ALT keyboard shortcuts,
use the & notation in the title string.
Example:

accel = CTRL+U

border = BOOL (default: Yes)
Sets whether the buttons have a border.

aut oRepeat = BOCL (Default: No)
Sets whether the button sends repeated clicked signal when user holds the button.

nor mal Onl mage = FI LE
normal O f Il mage = FILE
activeOnl mage = FILE
activeOflmge = FILE
di sabl edOnl nage = FI LE

di sabl edOf f 1 mage = FI LE
Specifies different images for all states of the button.

popupMenu
Defines a pop-up menu to show on button press.

gl obal Stop = BOOL (default: No)
Sets whether this button can be used as a global stop button, so that current ML calculations can
be stopped by clicking this button.

To check buttons for a stop request in the scripting, you have to call M_LAB. shoul dSt op() regularly
in you scripting loop. This returns True if a stop button was pressed.

comrand = SCRI PT
Defines a script command that is executed when the button is pressed/toggled.

70

GUI Controls

fiel dDraggi ng = BOOL
Sets whether the dragging of the button onto other buttons is possible to create field connections.
The default is Yes for normal panels and No for standalone applications. This enables the field
context menu on the button.

4.4.4. ToolButton

ToolButton is a quick access button that is typically used in ToolBars. It can have an additional pop-up
menu that pops up after a given delay. It has mainly the features from Button, but additionally supports
aut oRai se, which lets the border be highlighted when the mouse moves over it. The title is typically not
shown. It can either trigger a MLABTriggerField or MLABBoolField, or can call a script given as command
tag. The button can have multiple images for the different states and it can be a normal or a toggle button.

Dynamic scripting: MLABToolButtonControl

Tool Button [FI ELD] {

i mage = FILE

title = STRI NG

titleField = FI ELD

t ext Posi tion = ENUM [Bot t oni
aut oRepeat = BOOL [No]
aut oRai se = BOOL [No]
aut oScal e = BOOL [No]
accel = KEYSEQUENCE

scal el conSet ToM nSi ze = BOOL [No]
nor mal Onl mage = FILE

nor mal Of f | mage = FILE

acti veOnl mage = FILE

activeOf f | mage = FILE

di sabl edOnl mage = FILE

di sabl edOf f | mage = FILE

gl obal St op = BOOL [No]
inlineDraw ng = BOOL [No]

popupMenu {
/] See definition of SubMenu

}
popupDel ay = FLOAT (depr ecat ed)
popupMdde = [I| nstant| Del ayed| MenuBut t on]

comrand = SCRI PT
}

title = STRING
Sets a title string on the button (typically not shown).

titleField = FIELD
Specifies a field that provides the text for the button; the text is updated when that field changes.

imge = FILE
Specifies a pixmap to use on the button.

text Position = ENUM (default: Bottom
Sets the position of the title relative to the image.

Values: Right, Bottom

accel = KEYSEQUENCE
Sets a CTRL or ALT key sequence that activates this button. For normal ALT keyboard shortcuts,
use the & notation in the title string.

Example:
accel = CTRL+U

aut oRepeat = BOCOL (default: No)
Sets whether the button sends repeated clicked signal when user holds the button.

71

GUI Controls

aut oRai se = BOOL (default: No)
Sets whether the border is shown only on mouse-over.

autoScal e = BOOL (default: No)
Scales the images to the MeVisLab global default tool button size.

scal el conSet ToM nSi ze = BOOL (default: No)
If autoScale is set to Yes and this tag is also set to Yes, the Images from the following six ImageTags
are not scaled to the default tool button size but to the minimum size of the tool button as set by
the tags mw and mh:

nor mal Onl mage = FI LE
normal O f Il mage = FI LE
activeOnl mage = FILE
activeO flmage = FILE
di sabl edOnl nege = FI LE

di sabl edO f I nage = FI LE
Specifies different images for all states of the button.

popupMenu
Defines a pop-up menu to show on button press.

popupDel ay = FLOAT (deprecated)
Sets the delay to show the pop-up menu. This is deprecated, use popupMode instead.

popupMbde = [Instant, Del ayed, MenuBut t on]
Sets the mode of the pop-up menu. If set to Instant, the pop-up menu shows when the button is
pressed. If set to Delayed, the pop-up menu shows if the button is pressed for a system dependend
time span. If set the MenuButton, an extra menu button is rendered next to the normal ToolButton.

gl obal Stop = BOCOL (default: No)
Defines whether this button can be used as a global stop button, so that current ML calculations
can be stopped by clicking this button.

To check buttons for a stop request in the scripting, you have to call MLAB. shoul dSt op() regularly
in you scripting loop. This returns True if a stop button was pressed.

inlineDrawi ng = BOOL (default: No)
Enables inline drawing, which disables the drawing of the button frame and the sunken state.

This is useful if used as an inline widget of a LineEdit.

command = SCRI PT
Defines a script command that is executed when the button is pressed/toggled.

4.4.5. CommonButtonGroup

CommonButtonGroup cannot be used directly. It implements the common functionality for button
groups, which are PushButtonGroup, RadioButtonGroup and ToolButtonGroup.

Button groups are GUI elements to group buttons together because they share a common purpose. For
example, a panel where the user has to select one or more filters to be applied to an image. The buttons
would be checkable and not exclusive. The button group can be synchronized with an enum field, an
integer field, and it can be used without any field.

CommonBut t onG oup [FI ELD] {
bor der = BoOL [No]

72

GUI Controls

but t ond i ckedCommand = SCRI PT

but t onPressedCommand = SCRI PT

but t onRel easedCommand = SCRI PT

equal But t onW dt hs = BOOL [No]

equal But t onHei ght s = BOOL [No]

excl usi veBut t ons = BOOL [No, with fields Yes]
mar gi n = U NT [2]
orientation = ENUM [Hori zontal]
showBut t onNanes = BOOL [No]

showl consOnl y = BOOL [No]

spaci ng = U NT [4]

stri pEnunl t enPrefi x = BOOL [Yes]

strips = U NT [1]

title = TRANSLATEDSTRI NG

items {

i tem [NAVE| VALUE] {
command = SCRI PT

BOCOL
BOCL

enabl ed =
visible =
dependsOn
Vi si bl eOn

FI ELDEXPRESSI ON
FI ELDEXPRESSI ON

| MAGEFI LE
TRANSLATEDKEYSEQUENCE
TRANSLATEDSTRI NG
TRANSLATEDSTRI NG
TRANSLATEDSTRI NG

i mge
short cut
title
tooltip
what sThi s

| MAGEFI LE
| MAGEFI LE
| MAGEFI LE
| MAGEFI LE
| MAGEFI LE
| MAGEFI LE

acti veOnl mage
activeOf f | mage
di sabl edOnl mage
di sabl edOf f | mage
nor mal Onl mage
nor mal O f | mage

/1 ... nore items may follow ...

border = BOOL (default: No)
Sets whether a rectangular border is drawn around the buttons.

' Note
A border is required if a title is given. Setting border to No and specifying a title will
result in an error message and border will be set to Yes.

butt onC i ckedCommand = SCRI PT
Defines a script command that is called when any button has been clicked. The button name is
passed as argument.

but t onPressedCommand = SCRI PT
Defines a script command that is called when any button has been pressed. The button name is
passed as argument.

but t onRel easedCommand = SCRI PT
Defines a script command that is called when any button has been released. The button name is
passed as argument.

equal ButtonW dths = BOOL (default: No)
If set to Yes, then the widths of all buttons in the group are resized to match the widest button.

equal Butt onHei ghts = BOCOL (default: No)
If set to Yes, then the heights of all buttons in the group are resized to match the highest button.

excl usiveButtons = BOOL (default: No, with field: Yes)
Sets whether only the last clicked buttons is checked and all others are released. This is only
supported if buttons are checkable.

73

GUI Controls

‘ Note
If an enum field or integer field is used, then this is always Yes, because the field can
have only one state.

margin = U NT (default: 2)
Sets the margin of the button group widget. It is applied to all four sides: top, left, bottom, right.

orientation = ENUM (default: Horizontal)
Specifies whether the buttons are vertically or horizontally laid out.

showBut t onNames = BOOL (defaul t: No)
Sets whether the button name is appended to the title.

show consOnly = BOCOL (default: No)
Sets whether the button name and title are not displayed.

spacing = U NT (default: 4)
Sets the amount of space between the buttons.

stripEnum tenPrefix = BOOL (default: Yes)
Sets whether title prefixes are removed. For example, if the enum titles are "AutoUpdate" and
"AutoLoad", the titles will be "Update" and "Load". "Auto_Update" and "Auto_Load" will also be
"Update" and "Load". This is only evaluated if the button group is assigned to an enum field.

strips = UNT (default: 1)
Specifies how many buttons are added to a row if the orientation is horizontal, or to a column if the
orientation is vertical.

title = STRING
Specifies the title of the button group. If it is not empty, border must be set to Yes, since it this
required. Otherwise, a warning is printed.

itens
Specifies the items of an enumeration. Their values must correspond to a field value, or, if no field is
given, it can be freely choosen. The value will be the button name and is used to access the buttons
through the scripting API (see Button Access Slots in MLABCommonButtonGroupControl).

comrand = SCRI PT
Defines a script command that is called when the button has been clicked.

enabl ed, visible = BOOL
Sets whether the button is initially enabled/visible.

dependsOn, visibleOn = FlI ELDEXPRESSI ON
Determines whether the button is disabled/hidden; otherwise, it is enabled/visible. See
dependsOn/visibleOn of the generic Control for a more detailed explanation of the expression.

i mge = | MAGE
Specifies an image file to add an icon to the button.

title = STRING
Specifies the text of the button.

tooltip = STRI NG
Sets a text that pops up if the button receives a tooltip event. For example, this happens when
the mouse cursor stays over the button.

what sThis = STRI NG
Sets an additional help text.

74

GUI Controls

activeOnl mage, activeO flmage, disabl edOnl mage, di sabl edOflmage, normal Onl nage,
normal O f | mage = | MAGEFI LE
Specifies image files that are displayed as the icon of the button, depending on its modes and
states.

The button is active when the user is interacting with the button, for example, moving the mouse
over it or clicking it.

disabled means that the functionality of the button is not available.

normal is the default mode. The user is not interacting with the button, but the functionality is
available.

The on and off states correspond to the ckecked state of the button.

Dynamic scripting: MLABCommonButtonGroupControl

4.4.6. PushButtonGroup

PushButtonGroup is derived from CommonButtonGroup.

PushButtonGroup supports these additional tags:

PushButt onG oup [FI ELD] {

aut oScal el cons = BOOL [No]

checkabl eBut t ons = BOOL [No, with field Yes]
fl at Buttons = BOOL [No]

i conW dt h = | NTEGER

i conHei ght = | NTEGER

useOriginal |l conSi zes = BOOL [No]

/1 .. nore tags of CommonButtonG oup ...

aut oScal el cons = BOCOL (default: No)
Sets whether the icons are scaled to the default icon size of MeVisLab.

checkabl eButtons = BOOL (default: No, with field: Yes)
Sets whether the buttons are checkable and are automatically raised after clicking on them.

‘ Note
If an enum field or integer field is used, then this is always Yes, because the field has
a state.

flatButtons = BOOL (default: No)
Sets whether the border of the button is not raised.

iconWdth = | NTEGER
Sets the maximum width of the button icons. Requires that iconHeight is also set.

i conHei ght = | NTEGER
Sets the maximum height of the button icons. Requires that iconWidth is also set.

useOriginallconSizes = BOOL (default: No)
Sets whether the original image size is used as the icon's size.

Dynamic scripting: MLABPushButtonGroupControl

4.4.7. RadioButtonGroup

75

GUI Controls

RadioButtonGroup is derived from CommonButtonGroup.

‘ Note
The radio buttons are always checkable and the default value for exclusiveButtons is Yes.

Radi oButt onGroup [FI ELD] {
/1 .. tags of CommonButtonG oup ...
}

Dynamic scripting: MLABRadioButtonGroupControl

4.4.8. ToolButtonGroup

ToolButtonGroup is derived from CommonButtonGroup.

ToolButtonGroup supports these additional tags:

Tool Butt onGroup [FlI ELD] {

aut oScal el cons = BOOL [No]

aut oRai seBut t ons = BOOL [Yes]

checkabl eBut t ons = BOOL [No, with field Yes]
i conWdt h = | NTEGER

i conHei ght = | NTEGER

useOriginal |l conSi zes = BOOL [No]

/1 .. nore tags of CommonButtonG oup ...

aut oScal el cons = BOCL (default: No)
See autoScalelcons of PushButtonGroup.

aut oRai seButtons = BOOL (default: Yes)
Sets whether tool buttons are automatically raised.

checkabl eButtons = BOOL (default: No, with field: Yes)
See checkableButtons of PushButtonGroup.

iconWdth = | NTEGER
Sets the maximum width of the button icons. Requires that iconHeight is also set.

i conHei ght = | NTEGER
Sets the maximum height of the button icons. Requires that iconWidth is also set.

useOriginallconSizes = BOOL (default: No)
Sets whether the original image size is used as the icon's size.

Dynamic scripting: MLABToolButtonGroupControl

4.4.9. ButtonBar

‘ Note
This control is deprecated. Use PushButtonGroup, RadioButtonGroup, ToolButtonGroup or
ComboBox instead.

ButtonBar is a control that has different appearances for a given number of entries being read from an
enum field or integer field. It can be vertically or horizontally laid out. It is synchronized with the field
bidirectionally.

76

GUI Controls

Available modes are:
* A group of Buttons with icons and/or titles
» A group of RadioButtons with icons and/or titles

» A ComboBox that shows a pop-up bar showing the possible options as items. Items are given as list
of items in the i t ens tag group. Each item either gives an enum string value or an integer number. If
no items are given for an enum field, all enums are automatically shown with their titles.

Dynamic scripting: MLABButtonBarControl

Tip
If you use the radio value for the show mode, you can generate nice one-of-many radio
groups.
But t onBar FI ELD {
title = STRI NG
show = ENUM [AT]
enumAut oFor mat = BOCOL [Yes]
direction = ENUM [Hori zontal]
bor der = BOCOL [Yes]
showl t em nternal s = BOCOL [No]
strips = INT [1]
aut oScal e = BOCOL [No]
items {
i tem [NAME| VALUE] {
i mge = FILE
title = STRI NG
tooltip = STRING
what sThi s = STRI NG
accel = KEYSEQUENCE
nor mal Onl mage = FILE
nor mal Of f | mage = FILE
activeOnl nage = FILE
activeOflnmage = FILE
di sabl edOnl mage = FI LE

di sabl edOf f | mage FI LE

}
}

show = ENUM (default: All)
Defines how the ButtonBar should show its items.

Possible values: One, All, Radio, Toolbuttons

One
Shows the pop-up menu.

Al l
Shows all entries as buttons.

Radi o
Shows radio buttons.

Tool but t ons
Shows tool buttons.

direction = ENUM (default: Horizonal)
Defines the layout direction of the buttons.

Possible values: Vertical, Horizontal

border = BOOL (default: Yes)
Sets whether buttons should have a border (not selectable in all show options).

77

GUI Controls

show tem nternals = BOOL (default: No)
Sets whether items show their internal name.

title = STRING
Sets the title of the ButtonGroup frame, if any (if used, implicitly sets border = Yes).

strips = INT (default: 1)
Sets the number of "strips" in which the buttons are organized.

spacing = INT (default: 4)
Sets the spacing between buttons (not used in all show options).

autoScal e = BOOL (default: No)
Sets the scaling of the images of toolbuttons to the MeVisLab global default tool button size.

enumAut oFor mat = BOCL (default: Yes)
Sets whether the enumeration item names should be automatically formatted.

itemns
Specifies the items shown in the ButtonBar. If not specified, it uses the items from enum field
automatically.

Each item is specified with the i t emtag that need to have a string value for an enum field and an
integer for an integer field.

Each item entry can hold the following tags:

i mge = FILE
Sets the image to be used for the item.

title = STRING
Sets the title to be used for the item. To have a toolbutton that only shows its icon, set this
explicitly to an empty string.

tooltip = STRING
Sets the tooltip shown on the item (for the pushbutton, radiobuttons).

what sThis = STRI NG
Sets an additional help text for the item (for the pushbutton, radiobuttons).

accel = STRING
Sets an accelerator key for this item.

nor mal Onl mage = FI LE
normal Of f 1 mage = FI LE
activeOnl mage = FILE
activeO flnmage = FILE
di sabl edOnl nage = FI LE

di sabl edO f1 mage = FI LE
Specifies images for the different states of the buttons (not supported in all show modes).

Il Integer field as radio buttons
But t onBar sonelntField {

show = Radi o
direction = Vertical
title = "Sel ect child"

78

GUI Controls

items {
item-1{ title = "Auto" }
item 0 { title ="Child 0" }
item 2 { title ="Child 2" }
item 4 { title ="Child 4" }

}

/1 Enumfield as buttons
But t onBar soneEnunfiel d {

show = Al

direction = Vertical

items {
item " ADD' { image = $(LOCAL)/add.png [title= ...]}
item "SUBTRACT" { inmge = $(LOCAL)/subtract.png }
item " BLEND" { image = $(LOCAL)/ bl end. png }

}
}

4.4.10. CheckBox

CheckBox is a checkbox with a label or image to the right. It can be synchronized with an MLABBoolField
or MLABIntegerField. If a FIELD is given, the label of the checkbox also supports drag-and-drop the
same way as field controls.

Dynamic scripting: MLABCheckBoxControl
Tip

A CheckBox is used to implement a many-of-many choice, while a one-of-many choice is
done with a RadioButtonGroup or a ComboBox.

CheckBox [FIELD] {

title = STRI NG
checked = BOOL [No]
i mge = FILE

edi tabl e = BOOL [Yes]
t oggl edCommand = SCRI PT
fieldDragging = BOOL

}

checked = BOCOL (default: No)
Specifies the intially checkbox state.

title = STRING
Sets the label text next to the checkbox (RichText).

i mge = FILE
Specifies a pixmap to use next to the checkbox.

editable = BOOL (default: Yes)
Sets whether editing of the value is allowed. If set to No the value is not editable, but the text is
displayed normally.

This is different from the general Control tag enabl ed, which enables or disables an entire control
(also called "grayed out").

t oggl edConmand = SCRI PT (argunent: toggl edState)
Sets a script command that is called when checkbox is checked or unchecked, passing the new
state as argument.

fiel dDraggi ng = BOOL
Sets whether the dragging of the fields label onto other field label is possible to create connections.
The default is Yes for normal panels and No for standalone applications. This also turns on the
connection icons and enables the field context menu on field labels.

79

GUI Controls

4.4.11. ComboBox

ComboBox is a control that allows a string to be edited and also supports a pop-up of possible values.
If editing is disabled, only selecting a preset is possible. If the ComboBox has a given field, it is
synchronized in both directions. The field can be an enum field or a field of any type that reacts in a
meaningful way with a setStringValue/stringValue.

Dynamic scripting: MLABComboBoxControl

ConboBox [FlI ELD] {

edi tabl e = BOOL [Yes]
val i dat or = RECEXP
aut oConpl et e = BOOL [Yes]
caseSensi ti veAut oConpl ete = BOOL [Yes]
enumAut oFor mat = BOOL [Yes]
accept Wheel Event s = BOOL [Yes]
maxCount = INT
insertPolicy = ENUM [At Bot t on
dupl i cat esEnabl ed = BOOL [Yes]
conboFi el d = FIELD
conboSepar at or = STRI NG [,]
act i vat edCommand = SCRI PT
t ext ChangedCommand = SCRI PT
items {
item {
i mge = FILE
title = STRING

}

;o
}

editable = BOOL (default: Yes)
Sets whether the ComboBox string is editable.

val i dat or = REGEXP
Sets a regular expression to check whether the input line is valid when the ComboBox is editable.
A description of the regular expression syntax can be found here: http://doc.qt.io/qt-6/gregexp.html

Note: Items from the drop-down box should match the regular expression.

aut oConpl ete = BOOL (default: Yes)
Sets whether the ComboBox auto-completes if it is editable.

caseSensi ti veAut oConpl ete = BOOL (default: Yes)
Sets whether the ComboBox auto-completion is case-sensitive.

enumAut oFormat = BOCOL (default: Yes)
Sets whether enum fields should avoid automatic formatting of enumeration names. Automatic
formatting means that a field called "MyName" receives the automatic title "My Name". If the enum
items have a common prefix, this is also stripped when automatic formatting is active.

accept Wheel Events = BOOL (default: Yes)
Sets whether the ComboBox should accept mouse wheel events to adjust its value.

t ext ChangedCommand = SCRI PT(argunent: string)
Defines a script command that is executed when the text in the ComboBox changes (every time
the user types something).

activat edCommand = SCRI PT (argunent: string)
Defines a script command that is executed when a ComboBox item is selected or entered by typing
and pressing RETURN.

maxCount = | NT
Sets the maximum number of items.

80

http://doc.qt.io/qt-6/qregexp.html

GUI Controls

insertPolicy = ENUM (defaul t: AtBottom
Defines where new items are inserted when ComboBox is editable.

Possible values: Nolnsertion, AtTop, AtCurrent, AtBottom, AfterCurrent, BeforeCurrent
dupl i cat esEnabl ed = BOOL (default: Yes)
Sets whether duplicate items are allowed to be entered when editable (does not apply to script

methods that insert items).

conboField = FIELD
Specifies a field whose string value is split and used instead of given items.

When the comboField changes, the available combo list is updated.

conboSeparator = STRING (default:",")
Sets a string value to use for splitting the string value of conboFi el d into individual values.

itens
Specifies the items shown in the ComboBox. May be omitted if conboFi el d is given.

Each item is specified with the i t emtag.
Each item entry can hold the following tags:

imge = FILE
Defines an image to be used for the item

title = STRING
Defines a title string to be used for the item

Example 4.10. ComboBox

Have a look at the module TestComboBox. This module features a ComboBox and some scripting for
adding new items dynamically, as well as clearing all items by scripting. The module also features the
use of icons in a ComboBox.

Because the major portion of this example module is implemented in scripting, the code is not printed
here.

4.4.12. MenuBar

MenuBar is a control that shows a menu bar with a number of pop-up menus. It can contain n SubMenu
entries. See SubMenu for details on the menu definition.

Typically a MenuBar should only be used on the top of a window, but there is no layout restriction on that.

Dynamic scripting: MLABMenuBarControl

MenuBar {
SubMenu NAME {

}

/1 nore SubMenus ...

}

Example 4.11. MenuBar

Have a look at the module TestPopupMenu. This module shows how to setup various menues on a
module's GUI. The first menu created on that module uses a MenuBar with only one entry.

81

GUI Controls

4.4.13. ColorEdit

ColorEdit shows a colored box and allows to edit an RGB color. If the user double-clicks on the colored
box, a ColorDialog pops up and you can pick a color. The given field has to be of type MLABColorField.
The field is synchronized with the ColorEdit in both directions.

Dynamic scripting: MLABColorEditControl
Tip
You can also drag colors between color edits.

Col or Edit FI ELD {
node = ENUM [Box]
}

node = ENUM (defaul t: Box)
Defines the type of editor. Possible values are box and triangle, where box just shows a colored
box and triangle shows a HSV color triangle for in-place editing.

Example 4.12. ColorEdit

Have a look at the module TestVerticalLayout. This module features, among others, the use of a
ColorEdit.

4.4.14. LineEdit

LineEdit shows a single line with an editable string that can typically be modified. If you want a non-
editable text, use Label instead. LineEdit typically is synchronized bidirectionally with a given field, but
it can also be used in scripting only.

Dynamic scripting: MLABLineEditControl

LineEdit [FIELD] {

val ue = STRI NG

text Ali gnment = ENUM [Left]
m nLengt h = INT [10]
maxLengt h = INT

hi nt Text = STRI NG

trim = ENUM [None]
edi t Mode = ENUM [Nor mal]
ret ur nPr essedConmand = SCRI PT

t ext ChangedConmand = SCRI PT

| ost FocusCommand = SCRI PT

val i dat or = REGEXP

updat eFi el dWhi | eEdi ti ng = BOOL [No]
inlineWdgetsMargin = U NT

i nl'i neW dget sSpaci ng = U NT

leftlInlineWdgets {
/1 MDL Controls

}
rightlnlineWdgets {
/1 MDL Controls

}

val ue = STRI NG
Sets the value of the line edit if FIELD is omitted.

m nLength = INT (default: 10)
Sets the minimum number of characters that should be visible in the LineEdit.

82

GUI Controls

maxLength = I NT
Sets the maximum allowed length of text.

hi nt Text = STRI NG
Defines a text shown in editable line edit if line edit is empty and does not have the focus.

updat eFi el dWhi |l eEditing = BOOL (default: No)
Sets whether the attached field is updated while the user types text in the line edit.

text Ali gnment = ENUM (default: Left)
Defines how the text is aligned.

Possible values: Auto, Left, Right, Center

edi t Mode = ENUM (default: Nornmal)
Defines the mode, can be set for use for password editing.

Possible values: Normal, Password

trim= ENUM (default: None)
Defines the trimming mode of the string when it is not edited. Trimming only works if there is an
attached field.

Possible values: Left, Center, Right, None

Left
...LongText

Cent er
Long...Text

Ri ght
LongText...

None
No trimming

returnPressedCommand = SCRI PT
Defines a script command that is called when RETURN is pressed.

t ext ChangedCommand = SCRI PT
Defines a script command that is called when the text has changed (including pressing RETURN).

| ost FocusCommand = SCRI PT
Defines a script command that is called when the focus is lost. Use the i svbdi fi ed method to
check if the text was edited by the user

val i dat or = REGEXP
Specifies a regular expression to test if the entries are valid. A description of the regular expression
syntax can be found here: http://doc.qt.io/qt-6/gregexp.html

inlineWdgetsMargin = U NT
Specifies the margin of the inline widgets.

i nl i neW dget sSpaci ng = U NT
Specifies the spacing of the inline widgets.

leftlnlineWdgets
Specifies the MDL controls to be used as inline widgets on the inner left of the line edit.

83

http://doc.qt.io/qt-6/qregexp.html

GUI Controls

A typical control to use is a ToolButton with inlineDrawing set to Yes.

rightlnlineWdgets
See leftInlineWidgets (but for the right side of the line edit)

Example 4.13. LineEdit

Have a look at the module TestVerticalLayout. This module features, among others, the use of a
LineEdit.

4.4.15. NumberEdit

NumberEdit shows a edit box for integers, floats and doubles. It also has a step up/step down button (if
a step value is given). A field has to be given to which the NumberEdit is synchronized bidirectionally.
If the field has a min/max value, the edited value is automatically clamped to these values. If no format
is given, floating point precision is 3.

Dynamic scripting: MLABNumberControl

Nunber Edit FI ELD {

step = FLOAT

st epst ep = FLOAT

showSt epBut t ons = BOOL

f or mat = FORMATSTRI NG

m nLengt h = INT [5]

edi tAlign = ENUM [Ri ght]
wr ap = BOOL [No]
accept Wheel Events = BOOL [Yes]

}

step = FLOAT
Defines a step value for step buttons.

stepstep = FLOAT
Defines an extra step value for stepping smaller steps.

showSt epButt ons = BOOL
Sets whether step buttons are shown (only applicable if step is not 0).

format = STRI NG
Defines a format to be printed as in sprintf, e.g., %4.5f or %x .

‘ Note
You have to use the correct %d,%x ,%f,%g type for float/double/int fields

m nLength = I NT (default: 5)
Sets the minimum number of characters that should be visible in the LineEdit.

editAlign = ENUM (default: Right)
Defines the alignment of the text in the Line/NumberEdits.

Possible values: Left, Right, Center
wrap = BOOL
If FIELD has min/max value, this option sets whether step and stepstep wrap the value around when

reaching the boundaries.

accept Wheel Events = BOOL (default: Yes)
Sets whether the NumberEdit should accept mouse wheel events to adjust its value.

84

GUI Controls

Example 4.14. NumberEdit

Have a look at the module TestHorizontalLayout. This module features, among others, the use of a
NumberEdit.

4.4.16. VectorEdit

VectorEdit allows displaying and editing of a Vec2f/3f/4f/Color/Plane/Rotation field's value. It has n labels
and number edits depending on the type of the field. The VectorEdit is synchronized in both directions.
Typical layout: x | NumberEdit | y | NumberEdit | z | NumberEdit | d | NumberEdit | [Apply Button]

The Apply button is only needed for the Rotation field, because the rotation vector is always normalized
immediately. The Apply button can be enabled for other fields if needed.

Dynamic scripting: MLABVectorControl

VectorEdit {

edit = BOOL [Yes]

f or mat = STRING

m nLengt h = | NT [3]
editAlign = ENUM [Ri ght]
appl yBut t on = BOOL

sunkenVect or Label s = BOOL [Yes]
conponent Titles = STRI NG

spaci ng = | NT [0]

}

edit = BOOL (default: Yes)
Sets whether Labels are used instead of NumberEdits.

format = STRI NG
Defines the format to be printed as in sprintf, e.g., %4.5f or %x .

‘ Note
You have to use the correct %d,%x ,%f,%g type for float/double/int fields.

m nLength = INT (default: 3)
Sets the minimum number of characters that should be visible in the NumberEdits.

editAlign = ENUM (defaul t: Right)
Defines the alignment of the text in the NumberEdits.

Possible values: Left, Right, Center

appl yButton = BOOL
Sets whether the field has an Applybutton. It is enabled for Rotation fields, otherwise the default is
disabled. If turned on, you can edit all fields of a vector and apply it afterwards at once by pressing

"Apply”.

sunkenVect or Label s = BOOL (default: Yes)
Sets whether labels are drawn into the same frame as the LineEdit, otherwise they are drawn
separately.

conponent Titl es = STRI NG
Specifies titles for the separate component edit boxes, overriding the default values. Values must
be comma-separated. Extra values will be ignored, if too few values are specified the remaining
labels will be unchanged.

spacing = INT (default: 0)
Sets the internal spacing between the GUI elements of a VectorEdit.

85

GUI Controls

Example 4.15. VectorEdit

Have a look at the module DRR. This module uses two VectorEdit controls in a Grid layout.

Figure 4.10. VectorEdit Example

WarldVoxe!Canvert ’—_|
PR m -

Voxi ition

Vector: |)< 0 |',r

single: X | oY
I™ Integer voxel coordinates

World position

|Vector: |)< 0 |',r

single: X | oY

4.4.17. DateTime

DateTime allows to display and edit a date, a time or a combined date/time value. These date/time
values must be provided as a string in a field and can have one of a few formats.

Please note that the display of the values happens with the currently selected locale and may change
with your language settings.

Dat eTi me Fl ELD {

node = ENUM [Dat eTi ne]
f or mat = ENUM [Di coni
editabl e = BOCOL [Yes]
enabl eCal ender Popup = BOOL [Yes]

wi thM ['|i Seconds = BOOL [5]

}

node = ENUM (defaul t: DateTine)
Defines if the values are just date, just time or both date and time.

Possible values: Date, Time, DateTime

format = ENUM (default: Dicom
Defines the string format of the values, to interpret/format the values in the associated field.

ISO means ISO 8601, Dicom is the date/time value format of the DICOM standard, and ML is a
modification of ISO with a space instead of the middle 'T".

Possible values: ISO, Dicom, ML

editable = BOOL (default: Yes)
Defines whether the date/time should be editable. If a field is associated with this control, this value
defaults to the editable state of the field.

enabl eCal ender Popup = BOOL (default: Yes)
Defines whether the date should offer a calender popup. The calender popup currently does not
work if the control is used in a GraphicsView, so it should be disabled in this case.

withM 1 1liSeconds = BOOL (default: No)
Defines whether time should be displayed with milliseconds. This might be useful for DICOM values,
which come with microsecond precision.

86

GUI Controls

Example 4.16. DateTime

Have a look at the module TestDateTime. This module lists different configurations of the DateTime
control.

4.4.18. Slider

Slider shows a slider control for integers, floats and doubles. It can be arranged vertically or horizontally.
A field has to be given to which the Slider is synchronized bidirectionally. Min/max values are taken from
the field and will be adjusted automatically when the field's min/max value changes.

Dynamic scripting: MLABSIliderControl

Slider FIELD {

pageSt ep = FLOAT

snap = FLOAT

aut oPageStep = FLOAT

direction = ENUM [Hori zont al]
f or mat = FORMATSTRI NG

tickmarks = BOOL [No]

tracki ng = BOOL [Yes]

pressedl ndi catorField = Fl ELD
}

pageStep = FLOAT
Sets a step value that is used when the user clicks left or right of the slider.

snap = FLOAT
Sets a snap value for the slider. If set to a value != 0, the slider always snaps to a value that is a
multiple of this value starting at the sliders minimum.

pressedl ndicatorField = FIELD
Specifies a boolean field that is set to True if the user presses the slider button and to False if the
user releases the slider button.

aut oPageSt ep = FLOAT
Sets a step value as percentage 0..1 of min/max value, overwrites pageSt ep.

direction = ENUM (default: Horizontal)
Defines the layout direction of the slider.

Possible values: Vertical, Horizontal

format = FORVATSTRI NG
Specifies how the value of the slider is shown in the tool tip, in sprintf format. Set this to a string
containing only one space to suppress the tooltip completely.

ti ckmarks = BOCL (default: No)
Sets whether tick marks are enabled. Only useful if pageStep is also set.

tracking = BOOL (default: Yes)
Sets whether the slider updates the field while the slider is being dragged.

Example 4.17. Slider

Have a look at the module TestHorizontalLayout. This module shows the use of various controls for
a float number.

4.4.19. IntervalSlider

87

GUI Controls

IntervalSlider shows a double slider control for integers, floats and doubles. It can be arranged vertically
or horizontally. A widthField and centerField pair or a lowerField and upperField pair has to be given to
which the Slider is synchronized bidirectionally. Min/Max values are taken from the lower/upper fields
or from the center field and will be automatically adjusted when field's min/max value changes.

If width/center is given, the slider acts in window/level mode so that the window can be of (max/min) size.
If lower/upper is given, it allows choosing lower and upper values and is bound strictly to min/max values.

Dynamic scripting: MLABIntervalSliderControl
Tip
Only width/center or lower/upper field pairs can be given, NOT both!

Interval Slider {

step = FLOAT

shap = FLOAT

direction = ENUM [Hori zontal]
tracki ng = BOOL [Yes]
centerField = FIELD

widthField = FIELD

upperField = FlIELD

lowerField = FlIELD

pressedl ndi catorField = FlI ELD
}

step = FLOAT
Sets a step value that is used when the user clicks left or right of the slider.

snap = FLOAT
Sets a snap value. If set to a value != 0, the slider always snaps to a value that is a multiple of this
value starting at the sliders minimum.

pressedl ndicatorField = FIELD
Specifies a boolean field that is set to True if the user presses the slider button and to False if the
user releases the slider button.

direction = ENUM (default: Horizontal)
Specifies the ayout direction of slider.

Possible values: Vertical, Horizontal

tracking = BOOL (default: Yes)
Sets whether the slider updates the field while the slider is being dragged.

centerField = FIELD
Specifies the center (alias level) field of the interval (min and max values are also taken from this
field).

wi dt hField = FIELD
Specifies the width (alias window) field of the interval.

| owerField = FIELD
Specifies the lower field of the interval (min value is also taken from this field).

upperField = FIELD
Specifies the upper field of the interval (max value is also taken from this field).

Example 4.18. IntervalSlider

Have a look at the module View3D. If the window 'View3D' (the default window) is opened,
IntervalSliders are used on the 'Clipping' tab for adjusting the size of a subimage.

88

GUI Controls

Figure 4.11. IntervalSlider Example

SubVolume
Range

| —
| s T

| Ll
Reset Sub Volume

4.4.20. ThumbWheel

ThumbWheel shows a wheel that can be turned. When the wheel is turned, it changes the associated
Field that can be an Integer, Float, Double or Rotation field. The ThumbWheel adapts to the given
min and max value of a field automatically. For Rotation fields (which have not min/max value), it
automatically takes 0-359 degrees as min/max values. This can also be used for Float and Double fields
by setting rotationMode to Yes. Otherwise the field's min/max values are used.

Dynamic scripting: MLABThumbWheelControl

ThunbWieel FIELD {

snap = FLOAT

tracki ng = BOOL [Yes]

wr apsAround = BOOL [No]
direction = ENUM [Hori zont al]
ratio = FLOAT [1]

rotati onMbde = BOOL [No]

pressedl ndi catorField = FlI ELD
}

snap = FLOAT
Sets the snap value. The value of the wheel always snhaps to a multiple of the snap value. If not
set, an automatic value is calculated.

tracking = BOOL (default: Yes)
Sets whether the wheel updates the field while being dragged

pressedl ndicatorField = FIELD
Specifies a boolean field that is set to True if the user presses the slider button and to False if the
user releases the slider button.

direction = ENUM (default: Horizontal)
Defines the layout direction of slider.

Possible values: Vertical, Horizontal

ratio = FLOAT (default: 1)
Defines the ratio between turning the wheel one whole turn and the min/max range.

wr apsAround = BOOL (default: No)
Sets whether the slider wraps around when min/max is reached.

rotati onMbde = BOOL (default: No)
Sets whether the field's min/max values are set to 0 to 359 degrees (in radian), to allow for an easy
setup for rotations.

Example 4.19. ThumbWheel

Have a look at the module DRR. There, ThumbWheels are used for adjusting the beam path rotation
around the z- and x-axis.

89

GUI Controls

Figure 4.12. ThumbWheel Example

Light
¥ Replace lighting

Diffuse Color: |
Azimuth: ’m
Altitude: [=-99.0
Penumbra Angle: 1

[v Attach light to camera

4.4.21. TextView

TextView shows a text, which may be simple text or RichText. It can be editable or just a display, and
it is scrollable. It typically shows a title and an Apply button. If a field is given, the fields string value is
shown. If a field is given, it is synchronized bidirectionally. Typically the user has to press the "Apply"
button to set the text to the field. If autoApply is on, each change to the text changes the field's string
value. The "Apply" button is only visible if edi t is set to Yes.

Dynamic scripting: MLABTextViewControl

Text Vi ew [FI ELD] {

title = STRI NG

text = STRING

edit = BOOL [Yes]
aut oAppl y = BOOL [No]
hscrol | er = ENUM [Aut o]
vscrol | er = ENUM [Aut o]
t ext For mat = ENUM [Aut o]
consol e = BOOL [No]
tabStopWdth = I NT [80]
wr ap = ENUM [W dget]
wr apCol umm = | NT [80]
Vi si bl eRows = INT

showLi neNunber s = BOOL [No]
synt axHi ghl i ghti ng = STRI NG

fi el dDr aggi ng = BOOL

}

title = STRING
Sets a string to show as title (otherwise the title is the name of the field).

text = STRING
Sets a string to show if no field is given.

edit = BOOL (default: Yes)
Sets whether the text field is editable. Otherwise, it is a display only.

aut oApply = BOOL (default: No)
Sets whether the entered value is applied to the field whenever it changes.

t ext Format = ENUM (defaul t: Auto)
Defines the format of the text. The default is 'Auto’, which searches the first text line for <> tags
and switches between Rich and Plain. In Rich mode (RichText), you can use HTML-like syntax for
the text.

Possible values: Auto, Rich, Plain

hscroller = ENUM (default: Auto)vscroller = ENUM (default: Auto)
Defines when a vertical/horizontal scrollbar is shown.

Possible values: Auto, On, Off

90

GUI Controls

console = BOOL (Default: No)
Sets whether to scroll to the end of the buffer on each append. Otherwise, it is scrolled to the new
field value.

tabStopWdth = INT (Default: 80 pixels)
Sets the width of a tab stop in pixels.

wap = ENUM (Default: Wdget)
Defines the wrap mode of the TextView. The default "Widget" wraps at word boundaries inside the

visible portion of the widget. "Off" switches off wrapping, "Column" wraps at a column specified by
wrapColumn.

Possible values: Widget, Column, Off

wrapCol um = I NT (Default: 80)
Sets the column where to wrap words if wrap is set to "Column®.

vi si bl eRows = I NT
Sets the preferred size of the TextView to hold n visible rows.

showLi neNunbers = BOOL (default: No)
Sets whether line numbers are shown. Only filled lines are numbered if enabled. Numbering starts
with 1.

synt axHi ghl i ghti ng = STRI NG
Activates syntax highlighting for the specified language.

Possible values: MDL, Python, GLSL, JavaScript
fiel dDraggi ng = BOOL
Sets whether the dragging of the fields label onto other field label is possible to create connections.

The default is Yes for normal panels and No for standalone applications. This also turns on the
connection icons and enables the field context menu on field labels.

4.4.22. HyperText

HyperText shows a RichText that can be any size and is scrollable when it is larger than the available
space. In contrast to TextView, the text is always read-only. The text can contain hyperlinks of various
kinds. The shown text can be specified directly in the text tag, from a text file or from a field. If a field
is used, the text is updated whenever the field changes.

Dynamic scripting: MLABHyperTextControl

Examples of hyperlinks:

e Mevis Hone Page

e MeVi sLab Mil </ a>

* Li nk inside this docunent

* Li nk anchor inside this docunent

e A call to the conmmand script with "somecommand" as
ar gunent </ a>

e Alink that shows a What sThi s bubbl e t hat cont ai ns
Ri chText </ a>

For details, see the example module TestHyperText.

91

GUI Controls

HyperText is derived from Frame.

Hyper Text {
t ext = RI CHTEXT
textField = FI ELD
textFile = FILE
conmand = SCRI PT

/1 Additional: tags from Frane

}

text = RI CHTEXT
Sets the text that is shown. If you want to reference local files or images, use the $(LOCAL) / variable
to address these.

textField = FIELD
Specifies a field that provides the text. The text is updated whenever the field changes.

textFile = FILE
Specifies a file that provides the text. Local links in the text are resolved local to that file, so you
can link to other documents and images.

command = SCRIPT (arg: string)
Defines a script command that is called for each "usercmd:" hyper link when the link is clicked. The
string after the "usercmd:" is passed to the command.
This tag allows to create dynamic scripts that are executed when a link is clicked. All clicks are

mapped to the given command, in which you can do different things depending on the argument
after the "usercmd:"

Example 4.20. HyperText

Have a look at the module TestHyperText. This module features a HyperText and documents some
of the available options.

Figure 4.13. TestHyperText Module

MeVis Home

’rHyperLabeI used as WebLink

~HyperText from File

What you can do with RichText

The RichtText supports all the tags supported by QT, which you find here.

In the HyperText GUI control you can use all of the following:

* Simple markup

* Lists

* Images

* Tables

® HyperLinks to http: mailto:,ftp: etc.
* Embedded JavaScripting on links

* Anchors to navigate in the document

Example of Images

Images can be of type PNG, TIFE JPG. The files can be adressed locally to the directory of the file or with an absolute path. In the MDL
script you can use the ${LOCAL) syntax to access the local path.

~HyperText from MDL

Possible link types:

* WhatsThis text

* A user command

® Http link: MeVis Home

* mailto: florian@mevis.de
*® Show files via MeVislab

92

GUI Controls

4.4.23. HyperlLabel

HyperLabel is identical to HyperText in its features, but shows the text as a label. Therefore it is not
scrollable and automatically gets as big as the contained text. It behaves like a normal label but has
the features of dynamic scripted links. Another advantage over a normal label is that the text can be
selected and copied. For details see the HyperText control above. Note that title, titleField and titleFile
are aliases for text, textField and textFile of HyperText. If the displayed text should be arranged in one
line, it has to be enclosed in "<nobr></nobr>".

HyperLabel is derived from Frame.

Dynamic scripting: MLABHyperLabelControl

Hyper Label {
title = RI CHTEXT
titleField = FIELD
titleFile = FILE
comand = SCRI PT

// Additional: tags from Frane

}

title = RI CHTEXT
Sets the text that is shown. If you want to reference local files or images, use the $(LOCAL) / variable
to address these.

titleField = FIELD
Specifies a field that provides the text. The text is updated whenever that field changes.

titleFile = FILE

Specifies a file to provide the text. Local links in the text are resolved local to that file, so you can
link to other documents and images.

Example 4.21. HyperLabel

Have a look at the module TestHyperText. This module features a HyperLabel at the very top of its GUI.

4.4.24. ListBox

ListBox shows a list of single line items. The list can be set by scripting or from fields providing the items
via splitting the string. The ListBox takes the string value of the val ues tag or of the given field and
creates items out of these strings. If a field is given, the list box is updated on the field's string value
changes. Scripting methods can be found in the MeVisLab Scripting reference.

Dynamic scripting: MLABListBoxControl

Li st Box [FIELD] {

val ues = STRI NG

Vi si bl eRows = INT

sel ecti onMbde = ENUM [Single]
r owSepar at or = STRI NG [@

sel ecti onChangedCommand = SCRI PT

sel ect edCommand = SCRI PT

cur r ent ChangedComrand = SCRI PT

doubl eC i ckedConmand = SCRI PT

ret ur nPr essedComrand = SCRI PT

cont ext MenuOnEnpt yLi st = BOOL [Yes]

cont ext Menu {
/1 See definition of SubMenu
}

93

GUI Controls

}

val ues = STRI NG
Sets a string that is used for the values instead of the FIELD.

rowSeparator = STRING (default "@)
Sets a separator string used for columns.

vi si bl eRows = I NT
Sets a minimum height to show at least number of visible rows.

sel ecti onMbde = ENUM (defaul t: Single)
Defines whether selection is possible and if multiple items can be selected at a time.

Possible values: Single, Extended, Multi, NoSelection

Si ngl e
Only a single item can be selected at any time.

Ext ended
When the user selects an item in the usual way, the selection is cleared and the new item
selected. However, if the user presses the CTRL key when clicking on an item, the clicked
item gets toggled and all other items are left untouched. If the user presses the SHIFT key
while clicking on an item, all items between the current item and the clicked item are selected
or unselected, depending on the state of the clicked item. Multiple items can be selected by
dragging the mouse over them.

Ml ti
When the user selects an item in the usual way, the selection status of that item is toggled and
the other items are left alone. Multiple items can be toggled by dragging the mouse over them.

NoSel ecti on
No item can be selected.

cont ext Menu
Defines a context menu to show on right-clicking the list. See SubMenu on how to define a menu.

cont ext MenuOnEnpt yLi st = BOOL (default: Yes)
Sets whether the context menu should be shown on an empty list.

sel ecti onChangedComand = SCRI PT
Defines a script command that is called when the selection has changed.

sel ect edConmand = SCRI PT (argument: index)
Defines a script command that is called when an item is selected (RETURN is pressed or double-
click on the item).

current ChangedCommand = SCRI PT (argument: index)
Defines a script command that is called when the current item has changed.

doubl ed i ckedCommand = SCRI PT (argunent: index)
Defines a script command that is called when an item is double-clicked.

returnPressedCommand = SCRI PT (argunent: index)
Defines a script command that is called when RETURN is pressed on an item.

Example 4.22. ListBox

Have a look at the module TestListBox. This module features a dynamic setting and clearing of items,
and it shows how to display items with icons.

94

GUI Controls

Figure 4.14. TestListBox Module

—
i Panel TestlistBox -IEIM
TestlistEox :

Value:

4.4.25. ListView

ListView shows a list containing strings in rows/columns. The list can be set by scripting or from fields
providing the items via splitting the string. The ListView takes the string value of the val ues tag or of the
given field and creates items out of these strings. If a FIELD is given, it updates everything (even the
number of columns) from the field's string value changes. The first row in the string is taken as header
titles if headerTitles is not specified, further rows can contain fewer columns. The header titles have to
be present even if the header visibility is turned off.

Limitations: Currently, CheckBox items cannot contain RichText (see ri chText tag).

Dynamic scripting:

ListView [FIELD] {

MLABListViewControl and MLABListViewltem

val ues = STRI NG

headerTitles = STRI NG

r owSepar at or = STRI NG [\n]

col umSeparator = STRI NG Q

| ayout = STRI NG

vi si bl eRows = INT

cel | Spaci ng = INT

sel ecti onMbde = ENUM [Single]
tabDirection = ENUM [Vertical]
sort ByCol uim = INT [-1]
sort Ascendi ng = BOCOL [Yes]
header = BOCOL [Yes]

/'l advanced:

ri chText = BOCOL [No]
toggleField = FIELD

checklLi st = BOCOL [No]
updat eDel ay = U NT [0]

root | sDecorated = BOOL [No]
cont ext MenuOnEnpt yLi st = BOOL [Yes]

cont ext Menu {

/1 See definition of SubMenu

}

/'l scripting:

sel ecti onChangedComrand
cur r ent ChangedCommrand
doubl ed i ckedConmand

r et ur nPr essedComrand

cl i ckedCommand

SCRI PT
SCRI PT
SCRI PT
SCRI PT
SCRI PT

/| advanced scripting

95

GUI Controls

i t emRenanedConmand = SCRI PT
i t enCol | apsedConmand = SCRI PT
i t emExpandedConmmand = SCRI PT
checkLi st I t enChangedCommand = SCRI PT
pr epar eEdi t Command = SCRI PT
cont ext MenuRequest edCommand = SCRI PT

}

val ues = STRI NG
Sets a string that is used for the values instead of the FIELD.

headerTitl es = STRI NG
A string that is used for the header titles instead of the first row item of values or the content of the
FIELD. The same columnSeparator is used.

rowSeparator = STRING (default "\n")
Sets a separator string that is used for rows.

col umSeparator = STRING (default "@)
Sets a separator string that is used for columns.

| ayout = STRI NG
Sets a string that defines the layout of the columns "ricet, ricet, ..." ("right", "left", "center", "edit",
"toggle").

rl ¢ - Results in different alignment (right, left, center).
e - Column is editable.

t - One of the columns may have the "t" toggle flag, which means that a CheckBoxListltem is used
and the toggleField updates checkbox states.

vi si bl eRows = I NT
Specifies a minimum size to fit number of visible rows (+ header) into the ListView.

cel | Spacing = INT
Sets an extra spacing value to all items.

sel ecti onMbde = ENUM (defaul t: Single)
Defines if selection is possible and if multiple items can be selected at a time.

Possible values: Single, Extended, Multi, NoSelection
See selectionMode for details.

tabDirection = ENUM (default: Vertical)
Defines the direction when jumping to the next editable field through the use of the Tab key. When
Horizontal is selected, the cursor automatically switches to the next row when reaching the table
border.

Possible values: Vertical, Horizontal

sortByCol unmm = INT (default: -1)
Sets the column number by which to sort (default -1 means no sorting).

sort Ascending = BOOL (default: Yes)
Sets whether the sorting should be in an ascending order.

header = BOOL (default: Yes)
Selects whether the header row is visible. If set to No, the header is not shown, while the titles still
have to be provided via headerTitles, values or FIELD.

richText = BOOL (Default: No)
Sets whether the items in the list are used as RichText, allowing to change font type, size, colors, etc.

96

GUI Controls

See Section 4.9.2, “RichText” for details on RichText.

toggl eField = FI ELD
Specifies a field to set the toggle state encoded in 0/1 chars (field is updated/updates in both
directions).

checkLi st = BOOL (default: No)
Sets whether the ListView uses CheckListitems. Normally this flag is not used; the ListView is a
ToggleList if a toggleField is specified.

updat eDel ay = U NT (default: 0)
Sets the delay in milliseconds of the ListView update when the given FIELD is changed. If set to
zero, the update is immediate. This flag can be useful if the ListView is updated very often due
to user interaction since it is slow to update. If you set, e.g., a value of 100, the ListView will only
update 10 times a second.

root| sDecorated = BOOL (default: No)
Sets whether icons are shown if a node (item) is collapsed or expanded.

cont ext Menu
Defines a context menu to show on right-clicking the list. See SubMenu on how to define a menu.

cont ext MenuOnEnpt yLi st = BOOL (default: Yes)
Sets whether the user's contextMenu is shown if the list has no entries.

sel ecti onChangedComand = SCRI PT
Defines a script command that is called when the selection has changed. If you want to get the
selected item, call sel ect edl t en() on the ListView.

curr ent ChangedConmand = SCRI PT (argument: itemn
Defines a script command that is called when the current item has changed.

doubl ed i ckedCommand = SCRI PT (argunent: item colum)
Defines a script command that is called when an item is double-clicked; column is the index of the
column where the double click happened.

returnPressedCommand = SCRI PT (argunent: item
Defines a script command that is called when RETURN is pressed.

cl i ckedCommand = SCRI PT (argunents: item col um)
Defines a script command that is called when an item is clicked (press+release of mouse button);
column gives into which column the user clicked.

nmouseBut t onCl i ckedCommand = SCRI PT(argunments: button, item position, columm)
This command is like clickedCommand, but provides more information. "button" is a number: 1 is the
left mouse button, 2 is the right mouse button, and 4 the middle mouse button. "position" indicates
the click position inside the clicked cell.

. Note
Since the switch to Qt5, this is not called for the right mouse button anymore;
if you used this to open a context menu for the current item you should use
contextMenuRequestedCommand instead.

i t emRenamedConmand = SCRI PT (argunent: item columm, newal ue)
Defines a script command that is called when an item is renamed.

i tenCol | apsedCommand = SCRI PT (argunent: item
Defines a script command that is called when an item with children is collapsed.

97

GUI Controls

i t emExpandedConmand = SCRI PT (argunent: iten)
Defines a script command that is called when an item with children is expanded.

checkLi st 1t enChangedComand = SCRI PT (argument: item col um)
Defines a script command that is called when a check list item is toggled. The column
parameter is important if you have created checkboxes on other columns than the first with
item.setCheckBoxOn().

pr epar eEdi t Conmand = SCRI PT (argunent: item col um)
Defines a script command that is called when a cell in the list view is about to be edited. This is mainly
intended for use with the method setStringEditorValues() on the list view control, which allows to
provide a ComboBox instead of a simple line edit widget for editing of cells with string content.

cont ext MenuRequest edComand = SCRI PT(argunents: item position, colum)
This command is called when the context menu is requested, usually by pressing the right mouse
button, but, e.g., on Windows, there is also a key for this. This is called before showing the context
menu defined by the contextMenu attribute. "position” indicates the global position where the context
menu should be opened.

Example 4.23. ListView

Have a look at the module TestListView. This module features the dynamic creation and removal of
different list items.

Figure 4.15. TestListView Module

Print state | Print all items

Remove item | Change item

| 2
|
|
|

Create 1000 items | Clear all

Create rich text i‘temsl Hide/show oolumnl

Create CheckBoxes and RadioEu‘ttonsl

Create item | Create child item |

Value: |ttt

Deselect all |

Previous item | Next item |

Set item filter | Unset item filter |

Ttem Filter: |.*1$

Align left | Align right |

4.4.26. lconView

IconView shows a grid of icons with text. The items can be set by using the dynamic scripting API.

Dynamic scripting: MLABIconViewControl

I conVi ew {
al | owRenam ng = BOOL [No]
aut oArrange = BOOL [Yes]

98

GUI Controls

wor dW ap = BOCOL [No]
maxText Length = | NT [255]
maxltemN dth = | NT

sel ecti onMbde = ENUM [Single]
arr angenent = ENUM [TopToBot t onj
resi zeMode = ENUM [Fi xed]

i t eniText Pos = ENUM [Ri ght]
spaci ng = INT

sel ecti onChangedCommand = SCRI PT

cur r ent ChangedConmmand = SCRI PT

sel ect edCommand = SCRI PT

doubl ed i ckedConmand = SCRI PT

r et ur nPr essedConmmand = SCRI PT

i t emRenanedConmand = SCRI PT

cl i ckedConmand = SCRI PT

ri ght ButtonC i ckedCommand = SCRI PT

pr essedConmand = SCRI PT

ri ght ButtonPressedCommand = SCRI PT

cont ext MenuOnEnpt yLi st = BOOL [Yes]
cont ext Menu {
/1 See definition of SubMenu
}
}

al | owRenani ng = BOOL (default: No)
Sets whether in-place renaming of items is allowed.

aut oArrange = BOOL (default: Yes)
Sets whether items should be arranged anew when new items are inserted.

resi zeMbde = ENUM (defaul t: Fixed)
Sets whether the items should be arranged when the view is resized.

Possible values: Fixed, Adjust

wor dWap = BOCL (default: No)
Sets whether words are wrapped in the text.

maxText Length = I NT (default: 255)
Sets the maximum number of displayed chars.

maxltemW dth = I NT
Sets the maximum width an item can have.

sel ecti onMbde = ENUM (defaul t: Single)
Defines whether selection is possible and if multiple items can be selected at a time.

Possible values: Single, Extended, Multi, NoSelection
See selectionMode for details.

arrangement = ENUM (default: TopToBottom
Defines how items are arranged.

Possible values: LeftToRight, TopToBottom

i tenText Pos = ENUM (defaul t: Right)
Sets the position of the text.

Possible values: Right, Bottom

spacing = | NT
Defines the spacing between items.

cont ext Menu
Defines a context menu to show on right-clicking the list. See SubMenu on how to define a menu.

99

GUI Controls

cont ext MenuOnEnpt yLi st = BOOL (default: Yes)
Sets whether the user's contextMenu should be shown if the list has no entries.

sel ecti onChangedConmand = SCRI PT
Defines a script command that is called when the selection has changed. If you want to get the
selected item, call sel ect edl t en() on the IconView.

sel ect edConmand = SCRI PT (argunent: index)
Defines a script command that is called when a single item is selected (in Single selection mode).

current ChangedCommand = SCRI PT (argunent: index)
Defines a script command that is called when the current item has changed.

doubl ed i ckedComrand = SCRI PT (argument: index)
Defines a script command that is called when an item is double-clicked.

returnPressedCommand = SCRI PT (argunent: index)
Defines a script command that is called when RETURN is pressed.

i temRenamedConmand = SCRI PT (argurent: index, newal ue)
Defines a script command that is called when an item is renamed.

cli ckedConmmand = SCRI PT (argunent: index)
Defines a script command that is called when an item is clicked with the left mouse button (mouse
button pressed and released).

ri ght Buttond i ckedConmand = SCRI PT (argument: index)
Defines a script command that is called when an item is clicked with the right mouse button (mouse
button pressed and released).

pressedCommand = SCRI PT (argunent: index)
Defines a script command that is called when the left mouse button is pressed on an item. This can,
e.g., be used to initiate dragging.

ri ght Butt onPressedConmand = SCRI PT (argument: index)
Defines a script command that is called when the right mouse button is pressed on an item. This
can, e.g., be used to initiate dragging.

Example 4.24. IconView

Have a look at the module TestlconView. This module features the dynamic adding and removing of
icon items, as well as a scripting example on how to react on clicking an icon.

Figure 4.16. TestlconView Module

-
i Panel TestlconView -IEIM
TasticanViaw

N

Smiley2

Smileyl

Test2

Add Tems | Clear tems |

Sort | Modify first item|

maxlconWidth Increase | Decrease

maxTextLength Increase | Decrease

100

GUI Controls

4.5. Decoration GUI Controls
4.5.1. Label

Label shows a RichText label that can be multiline. The label content can be given as a text or by the
string value of a field.

Label is derived from Frame.

Dynamic scripting: MLABLabelControl

Label STRI NG {

title = STRI NG
titleField = FI ELD

i mage = FILE

i ndent = INT

buddy = NAME

text Al i gnnent = ENUM

t ext Wap = ENUM [Si ngl eLi ne]
t ext For mat = ENUM [Aut o]
trim = ENUM [None]
sel ectabl e = BOOL [No]
al | owLi nks = BOOL [No]

I'i nkAct i vat edCommand = SCRI PT

I'i nkHover edConmand = SCRI PT

/1 Additional: tags for Frane

}

title = STRI NG
Sets the text of the label.

titleField = FIELD
Specifies a field that provides the text for the label; the text is updated when that field changes.

imge = FILE
Specifies a pixmap that is shown on the label.

indent = INT
Sets the number of pixels to indent the text.

buddy = NAME
Sets the name of another control that is used as a "buddy"” of the label, which gets the input focus
when the label gets the focus (e.g., by pressing an ALT key). Use the & char to set a keyboard
shortcut.

text Al i gnment = ENUM
Defines the alignment of the text in the label.

Possible values: Auto, TopLeft, Top, TopCenter, TopRight, Left, Center, Right, BottomLeft, Bottom,
BottomCenter, BottomRight

text Wap = ENUM (defaul t: SingleLine)
Defines how the text in the label is wrapped.

Possible values: SingleLine, WordBreak

text Format = ENUM (defaul t: Auto)
Defines the text format. The default is Auto, which searches the first text line for <> tags and switches
between Rich and Plain. For keyboard shortcuts, write an & char in the plain text (&& means a literal
&). In Rich mode, you can use HTML-like syntax for the label.

Possible values: Auto, Rich, Plain

101

GUI Controls

trim= ENUM (defaul t: None)
Trims the string.

Possible values: Left, Center, Right, None

Left
...LongText

Cent er
Long...Text

Ri ght
LongText...

None
No trimming

sel ectabl e = BOOL (default: No)
Sets whether the selection of text is allowed with the mouse.

al | owLi nks = BOOL (default: No)
Sets whether clicking on hyperlinks is allowed. It also enables linkHoveredCommand and
linkActivatedCommand. If the linkActivatedCommand is not set, the links are opened via the external
program given in MeVisLab preferences.

| i nkHover edConmand = SCRI PT (argunents: String)
Defines a command that is called when the user hovers over a link and allowLinks is set to Yes.

i nkAct i vat edCommand = SCRI PT (arguments: String)
Defines a command that is called when the user clicks on a link and allowLinks is set to Yes.

4.5.2. Image

Control that shows an image. The image can be automatically resized to fit the available space.
Image is derived from Frame.

Dynamic scripting: MLABImageControl

I mage {
i mage = FILE
scal eFactor = FLOAT [1.0]
aut oResi ze = BOOL [No]

/1 Additional: tags for Frane

}

imge = FILE
Specifies the image to be shown. The recommended image format is PNG.

scal eFactor = FLOAT (default: 1.0)
Sets the scale factor of the image. Not used for SVG images.

aut oResi ze = BOCL (default: No)
Sets whether the image is resized according to its aspect ratio to fit the available space.

4.5.3. Separator

Separator is a visual separator (like <HR> in HTML). It has a direction and a frame style. Depending on
the direction, expandX and expandY are automatically set to expanding.

102

GUI Controls

Separator is derived from Frame.

Dynamic scripting: MLABSeparatorControl

Separat or {
direction = ENUM [Hori zontal]

// Additional: tags for Frame

}

direction = ENUM (default: Horizontal)
Defines the direction of the separator.

Possible values: Vertical, Horizontal

4.5.4. Empty

Empty is a control that represents empty space. Depending on its size policy, it will extend or be of fixed
size. Its tags are derived from the basic control, typically one only uses the given tag.

There are four aliases that have useful presets in vertical and horizontal direction:

VSpacer , Spacer X - control that fills the space vertically by expanding (if you have a control with a stretch
factor, you might want to change the stretch factor as well).

HSpacer, Spacer Y - control that fills the space horizontally by expanding (if you have a control with a
stretch factor, you might want to change the stretch factor as well).

Empty is derived from Control.

Enpty {
expandX = ENUM
expandY = ENUM
stretchX = I NT
stretchY = I NT
w = INT
h = INT

}

4.5.5. ProgressBar

ProgressBar shows the current status as a bar between 0% and 100%. The status is controlled by a
FloatField or DoubleField, which should yield values from 0 to 1.0. The field needs priority O to cause
an update of the progress immediately; otherwise, the update is not guaranteed.

If a MLABBoolField is used, the progress bar starts to show a busy indicator instead, after the field is
set to True. To force updating the busy indicator, MLAB.processEvents(True) must be called for each
update.

ProgressBar is derived from Frame.

Dynamic scripting: MLABProgressBarControl

ProgressBar FIELD {
textVisible BOCL [Yes]
orientation ENUM [Hori zontal]

// Additional: tags for frame

}

textVisible = BOOL (default: Yes)
Sets whether the current completed percentage should be displayed.

103

GUI Controls

orientation = ENUM (default: Horizontal)
Sets the the orientation of the progress bar.

Possible values: Horizontal, Vertical

Example 4.25. ProgressBar

Have a look at the module WEMIsoSurface. On this module, a ProgressBar is used to display the
progress of scanning the slices of the input image.

Figure 4.17. ProgressBar Example

‘ v World coordinates [v Interpolate ‘

L 25%) _cancel |

o

[Auto apply Update Mode: |Off =l Apply |

Generate in Backgroundl

4.6. Menu GUI Controls

Menus can be created at various GUI controls, e.g., as a context menu. All these menus start at the
level of a SubMenu as given in the following section.

Example 4.26. PopupMenu, SubMenu, and Menultem

For the use of the controls PopupMenu, SubMenu, and Menultem, have a look at the module
TestPopupMenu.

Figure 4.18. TestPopupMenu Module

P — —
M1 Panel TestPopupMe: -LE.L

—Standard Popups
MenuBar

ToolButton with popup,[

Button with popup v|

~Dynamic Popups

Button with popup v|

Button with popup v|

~As context menu on any control
Press right mouse —

4.6.1. PopupMenu

A PopupMenu defines a menu that can be popped up via scripting. It is derived from the SubMenu
control and is not visible by default. It should be given a name and then be shown via the popup()
method. It pops up at the cursor position or at a screen point given by the caller.

Dynamic scripting: MLABPopupMenuControl

PopupMenu {
nanme = NAME
showCommand = SCRI PT

104

GUI Controls

hi deCommand = SCRI PT

/'l possible children:

Separ at or =
SubMenu = NAME { ... }
Menul t em = NAME { ... }

/1 advanced chil dren:
Acti on = NAME
}

name = NAME
Sets the internal name used in scripting (like Control name/instanceName).

showConmand

SCRI PT

hi deConmand = SCRI PT
Defines script commands that are called when SubMenu is shown/hidden.

4.6.2. SubMenu

A SubMenu can contain multiple Menultems, SubMenus, Separators, and Actions. When an item is
selected, a script command is called on the item. An ALT keyboard shortcut can be assigned with the
"&" character.

Actions are an advanced concept and are currently only supported for the internal MeVisLab menus.

Dynamic scripting: MLABPopupMenuControl

SubMenu STRI NG {

name = NAME
showCommand = SCRI PT
hi deCommand = SCRI PT

i temAct i vat edCommand = SCRI PT

/'l possible children:

Separator =
SubMenu = NAME { ... }
Menultem = NAME { ... }

/1 advanced children:
Acti on = NAME
}

name = NAME
Sets the internal name used in scripting (like Control name/instanceName).

showComand

SCRI PT

hi deCommand = SCRI PT
Defines script commands that are called when SubMenu is shown/hidden.

i temAct i vat edCommand = SCRI PT
Defines a script command that is called when a direct child of the SubMenu is activated.

4.6.2.1. Menultem

Menultems can be declared inside of a SubMenu or a tag used as a submenu (e.g., cont ext Menu,
menuBar).

Dynamic scripting: MLABPopupMenuControl, using the name of the menu item.

Menul t em STRI NG {

command = SCRI PT
name = NAME
field = NAME

105

GUI Controls

enabl ed = BOOL [Yes]
dependsOn = FI ELDEXPRESSI ON

vi si bl eOn = FI ELDEXPRESSI ON

checked = BOCOL [No]
i con = FILE

accel = KEYSEQUENCE

what sThis = STRI NG

/'l advanced:

sl ot = QrsLor

receiver = NAME

/'l possible child:
TouchBarltem{ ... }
}

command = SCRI PT (argunents: nane)
Defines a script command that is called when the item is selected.

nane = NAVE
Sets a name for this item that can be used in the interface of the SubMenu to interact with the item
via scripting.

field = NAVE
Sets an existing field that can be of type bool or trigger. If this is used, selecting this menu item
either toggles the boolean value or notifies the trigger field.

accel = KEYSEQUENCE
Sets an additional accelerator key sequence.

enabl ed = BOOL (default: Yes)
Sets whether the item is enabled (or disabled/grayed out otherwise).

dependsOn, visibleOn = FI ELDEXPRESSI ON
Determines whether the button is disabled/hidden; otherwise, it is enabled/visible. See dependsOn/
visibleOn of the generic Control for a more detailed explanation of the expression.

what sThis = STRI NG
Sets an additional explanation text.

icon = FILE
Specifies an additional icon that is shown.

checked = BOOL (default: No)
Sets the initial state for toggle items.

slot = QIrSLOT
Specifies a Qt slot instead of a script command (used for MeVisLab internal menus). This is an
advanced feature.

recei ver = NAME
Specifies the name of an Qt receiver object (used for MeVisLab internal menus). This is an advanced
feature.

4.6.2.2. Separator

Creates a separator in the menu.

Separator = ""

4.7. Complex GUI Controls
4.7.1. Panel

106

GUI Controls

Panel is a control that can "clone" a subregion of a given module's windows. If panel and
panel ByG oupTi t | e are not specified, the control shows the window of a module given by its name. If
the window is not specified, the entire default window is shown.

This also clones all FieldListeners contained in the cloned code; this way, a cloned panel should work
like the original one. The window you get when you call wi ndow() in the context of the cloned script
will be the window in which the Panel is.

Note that no field connections can be established between fields that are shown on a macro's GUI
because of a panel declaration. In order to be able to establish a field connection to such a field, you
need to declare the according field in the macro module's interface section.

Panel is derived from Control.
Dynamic scripting: MLABPanelControl
Tip

If you use the Panel control, you should use the panel tag and use the panel Nare tag in
the module to mark the region you want to clone. This allows the developer of the module
to see that someone is using that part of the module panel somewhere else.

Warning
panel ByG oupTi t | e is deprecated and should not be used in new scripts (see above tip).
Panel {
nodul e = NAMVE
panel = NAME

wi ndow = NAVE

/1 tags that should not be used any nore in new panel s:
panel ByGroupTitl e = NAMVE
}

modul e = NAME (required)
Sets the name of the module in the network.

panel = NAME
Sets a name to search for in the given module by looking for a panel Nane tag with the name NAME.

wi ndow = NAME
Sets the name of the window to clone.

panel ByGroupTitl e = NAME (deprecated!)
Sets a hame to search for by comparing NAME with the values of all group tags in the module's
window.

Example 4.27. Panel

Have a look at the module View3D. As explained in the W ndow example, the View3D module defines
four different windows. The first window (named 'View3D") defines a viewer and a settings panel. The
latter has its panel Nane set to 'Settings'. The third window of the module (named 'Settings') just cuts
out the settings part of the first window by using the Panel tag.

4.7.2. DynamicFrame

DynamicFrame shows a user-defined MDL script file or dynamically generated string. Its contents can
be changed interactively from Python. This gives the user the power to create and update dynamic user
interfaces in an application without the need to specify the complete GUI when the application script
is started.

107

GUI Controls

The controls in the content of the frame (named with the nane tag) are visible in the global scope of
the window.

You can use the Python methods set Content Fil e(string) or setContentString(string).

Dynamic scripting: MLABDynamicFrameControl

Have a look at the module TestDynamicFrames that shows how to use dynamic frames in scripting.
Tip

If you dynamically add modules to your application network, you can use this control to
clone a panel of the new module or to show fields of the new module on-the-fly.

Dynam cFrame {
aut oSi ze
contentFile

}

BOOL [Yes]
FI LE

aut oSi ze = BOOL (default: Yes)
Sets whether the current sizes of the contained GUI should be used.

contentFile = FILE
Specifies the initially shown MDL file. If no file is specified, the DynamicFrame is empty.

4.7.3. Viewer

Viewer shows an Openinventor viewer. Typically, the Inventor viewer is taken from a SoViewerNode
module in the network, especially SoExaminerViewer, SoRenderArea, etc. A viewer has to be attached
to a SoNode field, typically the "self" field of an InventorModule. If you specify a t ype, the viewer is
generated independent from any viewer node in the network.

Dynamic scripting: MLABInventorViewerControl
Tip
If you want to access the internal Inventor viewer, you should use the viewer together with a

SoExaminerViewer or a SoRenderArea on a network and use the 'self' field of that module
for the viewer.

Vi ewer FIELD {

Vi ewi ng = BOOL [Yes]
hi ResRendering = BOOL [No]
backgroundCol or = COLOR

type = NAME

cl one = BOOL [No]
del ay = BOOL [Yes]
val ues = STRI NG

popup = BOCOL [No]
popupMenu {

/'l see tags for SubMenu
}
}

vi ewi ng = BOOL (default: Yes)
Sets whether the viewer is in viewing mode.

hi ResRenderi ng = BOOL (default: No)
Sets whether the viewer enables OpenGL for high-resolution drawing on supported systems.
Because adding more pixels to renderbuffers has performance implications, you must explicitly opt
in.

108

GUI Controls

popup = BOOL (default: No)
Sets whether the viewer has a pop-up menu.

backgroundCol or = COLOR
Specifies the background color of the viewer.

type = NAME
Sets the type of the viewer if the SoNodeField is not from a SoViewerNode module.

Possible values: SoExaminerViewer, SoRenderArea, SoCustomExaminerViewer

clone = BOOL (default: No)
Sets whether the viewer shoud be cloned (this is automatically done when two viewers are shown
from the same module in the network).

delay = BOOL (default: Yes)
Sets whether the viewer is created in delayed mode. That means that its content is rendered AFTER
the window is drawn the first time to avoid waiting for the drawing of the rest of the GUI.

val ues = STRI NG
Sets the field values of the viewer in Inventor style (you need to know what you are doing and which
fields are available).

popupMenu
Defines a menu that is shown when the user clicks the right mouse button on the viewer. The internal

pop-up menu of the viewer (from Openlinventor) has to be turned off; otherwise, this menu will not
be shown. See SubMenu for details on how to define a menu.

Example 4.28. Viewer

Have a look at the module TestViewers. This module shows the use of the Vi ewer tag in different
settings.

Figure 4.19. TestViewers Module

O3

TastViewers

9 Viewer Test TestViewers

Rotx Roty Dolly

Rotx Roty Dolly

4.7.4. PathBrowser

109

GUI Controls

PathBrowser displays a directory tree for browsing. Clicking a directory will open and show its
subdirectories. Double-clicking a directory selects a directory.

Pressing r on a PathBrowser always resets the current path to the original root path.
PathBrowser is derived from Control.

Dynamic scripting: MLABPathBrowserControl

Pat hBrowser {

root = PATH

Vi si bl eRows = | NT

m nLengt h = INT

sort By = STRI NG [Nane]
cd = STRI NG

pat hSel ect edCommand = SCRI PT
pat hDbl O i ckedCommand = SCRI PT

}

root = PATH
Specifies the root path of the PathBrowser. If not given, or if PATH does not exist or is not readable,
the current working directory is used.

vi si bl eRows = I NT
Sets the minimum number of visible rows (defining the minimum height).

m nLength = I NT
Sets the minimum width to show INT characters.

sortBy = ENUM (default: Nane)
Specifies the sorting order of directories.

Possible values: Name, Size, Time, Unsorted

cd = PATH
Specifies the relative path from r oot to the initially opened subdirectory.

pat hSel ect edCommand = SCRI PT (argunent: absol ute path) pat hDbl O i ckedConmand = SCRI PT
(argunment: absol ute path)
Defines a script command that is called when the path is selected/double-clicked with left mouse
button.

4.7.5. MoviePlayer

The MoviePlayer allows to play AVI movies. The movie can be given as a filename and the control can
be controlled interactively by Python.

MoviePlayer is derived from Control.

Dynamic scripting: MLABMoviePlayerControl

Movi ePl ayer {

filename = FILE
autoStart = BOCOL [No]
enabl eCont ext Menu = BOCL [Yes]
showControl s = BOCOL [Yes]

}

filename = FILE
Specifies the filename of the movie (should be an AVI).

autoStart = BOOL (default: No)
Sets whether the movie should start immediately.

110

GUI Controls

enabl eCont ext Menu = BOOL (default: Yes)
Sets whether a context menu with advanced control functions is enabled.

showControls = BOOL (default: Yes)
Sets whether play, stop, pause, etc., controls are shown to the user.

4.7.6. ScreenshotGallery

The ScreenshotGallery can be used in an application to collect screenshots for that application. It can
be used via scripting to obtain a list of taken screenshots and movies, to control the directory where
these files are written, and more.

ScreenshotGallery is derived from Control.

Dynamic scripting: MLABScreenshotGalleryControl

Screenshot Gal l ery {
appl i cati on = NAME
}

appl i cati on = NAME
Defines the name of the application (i.e., the macro module) whose screenshots should be stored.

4.7.7. WebEngineView

The MDL WebEngineView provides a complete web engine to the MDL developer. It is based on the
open-source Chromium engine, which powers most browsers nowadays.

We recommend that you use this control only to display content controlled by you, since we cannot
provide the same level/frequency of security updates as the main browser applications. However, it
uses the same broad code base, which is subject to intense scrutiny for code flaws.

It offers:

» A standards compliant web browser.

« ECMAScript 2021, CSS2, CSS3, and HTMLS5.

 Scripting interface to control the browser content, text selection, menu, etc.

 Scripting interface to call browser JavaScript from MeVisLab Python.

» Access to MeVisLab objects from within JavaScript through the WebChannel API (see the "Scripting”
demo in the TestWebEngineView example module).

» Weblnspector for debugging HTML, CSS, and JavaScript (Inspect option on context menu).

* PDF Viewing.

. Note
This requires setting a special flag from Python code after the control has been created:

from Pyt honQt . @ WebEngi neW dgets i nport QWAbEngi nePage, QAebEngi neSetti ngs

webControl = ctx.control ("yourwebvi ew")
webCont rol . webPage() . settings().setAttribute(QMbEngi neSettings. Pl ugi nsEnabl ed, True)

You might call this, e.g., from an Execute command in your panel.

111

http://www.chromium.org/

GUI Controls

Note that this enables support for all Pepper API plugins!

WebEngineView is derived from Control.

Dynamic scripting: MLABWebEngineViewControl

WebEngi neVi ew {

content Url = URL
contentFile = FILE
content String = STRI NG
content StringBaseUr | = URL

| oadSt ar t edCommand = SCRI PT
| oadPr ogr essConmmand = SCRI PT
| oadFi ni shedCommand = SCRI PT
I'i nkd i ckedCommand = SCRI PT
ur | ChangedConmand = SCRI PT
sel ecti onChangedCommand = SCRI PT
| ogConsol eQut put = BOCOL
enabl ePrinting = BOOL [No]
I'i nkDel egati on = ENUM

content Ul = URL
Sets the content of the WebEngineView to the given URL, e.g., ht t ps: // www. nevi sl ab. de

contentFile = FILE
Sets the content of the WebEngineView to the given local file, e.g., $(LOCAL) / SoreFi | e. ht m

contentString = STRI NG
Sets the content of the WebEngineView to the given HTML string. If no contentStringBaseUrl is
given, the $(LOCAL) MDL variable is used as baseUrl for the string, so relative links are resolved
relative to $(LOCAL) .

content StringBaseUrl = URL
Sets a different base URL when using contentString.

| oadSt art edConmand = SCRI PT
Defines a script command that is called when the WebEngineView starts loading a document.

| oadPr ogressCommand = SCRI PT (argunent: float progress)
Defines a script command that is called with values from 0.0 to 1.0 while the WebEngineView loads
the document.

| oadFi ni shedCommand = SCRI PT (argunent: bool success)
Defines a script command that is called when the document has finished loading.

l'i nkd i ckedCommand = SCRI PT (argunents: QUrl)
Defines a script command that is called for all clicked links.

ur | ChangedComand = SCRI PT (argunents: QUrl)
In contrast to the command above, this command is always called when the displayed URL changes,
not only if a link was clicked. This may also incorporate page forwarding.

sel ecti onChangedConmand = SCRI PT
Defines a script command that is called whenever the text selection in the WebEngineView changes.

enabl ePrinting = BOCOL (default: No)
Defines whether a JavaScript call of wi ndow. pri nt () results in opening a print dialog and printing
of the content. It will also add a print entry to the context menu of the view if enabled.

I'i nkDel egati on = ENUM (default: depends on |inkd i ckedConmand)
Defines how clicks on links are handled. All links that are delegated are passed to the
linkClickedCommand instead of switching the WebEngineView to the URL internally. By default,

112

https://doc.qt.io/qt-6/qtwebengine-features.html#pepper-plugin-api

GUI Controls

links are delegated if the |inkd ickedCommand is set. If the Iinkd ickedCommand is not
implemented, but | i nkDel egat i on is set to All, the delegated URLs are passed to MeVisLab, which
uses the default programs registered for the scheme of the URL to open the URL.

None
No links are delegated.

All
All clicked links are delegated.

4.7.8. GraphicsView

The MDL GraphicsView offers a freely configurable area that can contain:
» Graphics items (Lines, Pixmaps, RichText, etc.)

» MDL panels

* Inventor render areas

* WebKit HTML

 Vertical, Horizontal, Grid, and Anchor layouts

» HotArea layout with HotAreas

These items can be arranged and blended over each other as desired. This allows to create new types
of interactive GUIs including animated transitions.

For detailed examples, have a look at the TestGraphicsView and TestGraphicsViewHotArea
modules, which demonstrate some of the possibilities.

GraphicsView is derived from Control.

Dynamic scripting: MLABGraphicsViewControl

G aphi csVi ew {
}

4.7.9. ltemModelView

The ItemModelView provides a view of the ItemModel base object contained in the specified field,
representing an abstract hierarchical item model with generic named attributes. The user can select
which attributes are displayed in the resulting table and how they are displayed.

This control resembles the ListView control in appearance but takes a more abstract approach and
clearly differentiates between model and view.

I't emvbdel Vi ew FI ELD {

sel ectionField = FIELD

currentField = FI ELD

doubl eC i ckedField = FIELD
clickedColumField = FIELD

sel ectabl eAttribute = NAME [none]
idAttribute = NAME [none]

i dAsFul | Pat h = BOOL [No]

i dPat hSepar at or = STRI NG

i dSepar at or = STRI NG

sel ecti onMbde = ENUM [Singl e]
tabDirection = ENUM [Vertical]
sort ByCol uim = INT [-1]
sort Ascendi ng = BOCOL [Yes]
header = BOOL [Yes]

113

GUI Controls

al t er nat i ngRowCol or s= BOOL [No]

aut oExpandAl | = BOOL [No]

aut oExpandToDepth = I NT [0]

Vi si bl eRows = INT [5]

edi t Tri gger = STRI NG [Sel ect edCl i cked and Edit KeyPr essed]
editabl eAttribute NAVE [No]

checkboxEdi t abl eAttri bute
aut omat i cPar ent CheckboxSt at e
colorAttribute

tool tipAttribute

NAVE [No]
BOOL [No]
NAVE [none]
NAVE [none]

bol dFont Attri bute [No]
italicFontAttribute NAVE [No]
f | oat Deci mal Pl aces I NT [-1]

aut omat i cResi ze BOOL [Yes]

s
G

align ENUM [Left]
header Al i gn ENUM [Left]
DerivedAttri bute NAVE {
sourceAttribute = NAME
def aul t Val ue = STRI NG
def aul t Pat hval ue = FILE
Case STRI NG {
val ue = STRI NG
pat hval ue = FILE
}
}
Conput edAttri bute NAME {
expr essi on = EXPRESSI ON

}

Col um STRI NG {
di splayAttribute
di spl ayAsCol or
editAttribute
editabl eAttribute
checkboxAttribute
checkboxEdi t abl eAttri bute
aut omat i cPar ent CheckboxSt at e
iconAttribute
tool tipAttribute
colorAttribute
sortAttributes
conboboxAttribute
conboboxTool ti psAttribute

NAME (see text)
BOOL [No]

NAME (see text)
NAME (see text)
NAME (see text)
NAME (see text)
BOOL [No]

NAME [none]
NAME [none]
NAME [none]
STRI NG (see text)
NAME [none]
NAME [none]

conbobox! tenDel i miter STRING []]

bol dFont At tri but e NAVE [No]
italicFontAttribute NAVE [No]

Vi si bl eOn FI ELDEXPRESSI ON [1]
f | oat Deci mal Pl aces I NT [-1]

autonat i cResi ze BOOL (see text)

align ENUM (see text)
header Al i gn ENUM (see text)
}
}
sel ectionField = FI ELD

A string field that will contain the currently selected items.
How items are identified must be specified with the i dAt t ri but e and following tags.

currentField = FIELD
A string field that will contain the current (focused) item.

doubl ed i ckedFi el d = FI ELD
A string field that will receive the last double-clicked item.

clickedCol umField = FIELD
An integer field that can be used in conjunction with the doubl eCl i ckedFi el d and that contains
the index of the column where the last click happened. This will be updated before the
doubl ed i ckedFi el d is touched but the cl i ckedCol uimFi el d may not be touched if the column
did not change.

114

GUI Controls

sel ectabl eAttribute = STRI NG
Specifies the name of an attribute that will determine if an item can be selected. If no attribute is
specified, the default is True.

idAttribute = STRI NG
Specifies the name of an attribute that can be used to clearly identify items from the model, e.g.,
a unique name or a numerical ID.

i dAsFul | Pat h = BOOL
Sets whether the i dAt t ri but es of all parents are needed to clearly identify an item.

i dPat hSepar at or = STRI NG
Ifi dAsFul | Pat h is set, use this string to separate identifying value of the item and its parents. For
an ItemModel representing the file system, this would ideally be the slash character, leading to a
natural path ID.

i dSeparat or = BOOL
If several items must be specified (in the selectionField), use this string to separate the IDs.

sel ecti onMbde = ENUM
The selection model of the control. The following values exist:

Single
Only a single item can be selected at any time.

Ext ended
When the user selects an item in the usual way, the selection is cleared and the new item
selected. However, if the user presses the CTRL key when clicking on an item, the clicked
item gets toggled and all other items are left untouched. If the user presses the SHIFT key
while clicking on an item, all items between the current item and the clicked item are selected
or unselected, depending on the state of the clicked item. Multiple items can be selected by
dragging the mouse over them.

Ml ti
When the user selects an item in the usual way, the selection status of that item is toggled and
the other items are left alone. Multiple items can be toggled by dragging the mouse over them.

NoSel ecti on
No item can be selected.

tabDirection = ENUM (default: Vertical)
Defines the direction when jumping to the next editable field through the use of the Tab key. When
Horizontal is selected, the cursor automatically switches to the next row when reaching the table
border.

Possible values: Vertical, Horizontal

sortByCol utm = I NT
Specifies which column to sort by initially. By default, the items are sorted by the value used for
the di spl ayAt t ri but e but this can be overridden with the sort At t ri but e. Set this to -1 to disable
sorting.

sort Ascendi ng = BOCL
Specifies whether sorting should initially be ascending or descending.

header = BOOL
Specifies whether the column headers should be shown.

al t er nati ngRowCol ors = BOCOL
Sets whether alternating background colors for the rows of the table are used.

115

GUI Controls

aut oExpandAl | = BOOL
Specifies whether all items with subitems should be expanded by default. This takes precedence
over autoExpandToDepth if both are specified.

aut oExpandToDepth = | NT
Specifies the depth to which items should be automatically expanded. Top-level items have depth
1. If you want to expand all items regardless of depth, you should rather use aut oExpandAl | .

vi si bl eRows = | NT
Specifies the minimum number of visible rows.

editTrigger = STRI NG
Specifies what triggers editing of editable cells. This tag can appear multiple times to specify multiple
edit triggers.

The available edit triggers are:

NoEdi t Tri gger s
No editing possible.

Cur r ent Changed
Editing start whenever the current item changes.

Doubl ed i cked
Editing starts when an item is double-clicked.

Sel ect edd i cked
Editing starts when clicking on an already selected item.

Edi t KeyPr essed
Editing starts when the platform edit key has been pressed over an item.

AnyKeyPr essed
Editing starts when any key is pressed over an item.

Al'l Edi t Tri ggers
Editing starts for all above actions.

edi tabl eAttribute = NAME
Gives the name of an item attribute that specifies if cells should be editable by default. This can
be overridden for single columns.

You can use pseudo-attribute names "True/Yes" or "False/No" here to enable or disable editing
independent from specific items.

checkboxEdi t abl eAttribute = NAME
The same as editableAttribute for columns. You still need to specify a checkboxAttribute in the
columns to display checkboxes.

aut omat i cPar ent CheckboxSt at e = BOCL
The same as automaticParentCheckboxState for columns.

colorAttribute = NAME
Gives the name of an item attribute that shall provide the default color for all columns.

Colors can also be provided as strings, either as #r r ggbb (hexadecimal notation, e.g., #f f 0000), or
as a color name as defined in the list of SVG color keyword names.

toolti pAttri bute = NAME
Same as the tooltipAttribute for columns, but this value applies to all columns.

116

http://www.w3.org/TR/SVG/types.html#ColorKeywords

GUI Controls

bol dFont Attri bute = NAME
Same as the boldFontAttribute for columns, but this value applies to all columns.

italicFontAttribute = NAVE
Same as the italicFontAttribute for columns, but this value applies to all columns.

f | oat Deci mal Pl aces = | NT
Same as the floatDecimalPlaces for columns, but this value applies to all columns.

aut omat i cResi ze = BOOL
Specifies whether all columns should resize automatically if their content changes. This can be
overridden in single columns.

align = ENUM
Specifies the default alignment for all columns. Possible values are Left, Right, or Center

header Al'i gn = ENUM
Specifies the default alignment of the header content for the entire table. Possible values are Lefft,
Right, or Center

DerivedAttribute NAME
Sometimes it is necessary to change the color of a row depending on an item's attribute or
display an icon, but the color or icon should belong to the view, not to the model. In this situation,
DerivedAttributes can be used to create a pseudo-attribute that depends on another real (or
another derived) attribute. This new derived attribute can be accessed under the name given after
DerivedAttribute.

Derived attributes can be used everywhere where real attributes can be used.

sourceAttri bute = NAME
Gives the source attribute to derive the value from.

def aul t Val ue = STRI NG
Provides a default value if no other case fits.

def aul t Pat hVal ue = FI LE
Provides a default value if no other case fits. File path-specific manipulations may occur to
achieve the desired result. Only used if defaultValue is not specified.

Case STRI NG
Specifies the value to use if the sourceAttribute has the value given after Case.

val ue = STRI NG
Returns this value in this case.

pat hval ue = FI LE
Returns this value in this case. File path-specific manipulations may occur to achieve the
desired result.

Conput edAtt ri bute NAME
Computed attributes are another kind of DerivedAttribute where you can specify an expression
instead of a value table.

They can be used everywhere where real attributes can be used.

expressi on = EXPRESSI ON
Specifies the expression to compute. This is basically a field expression, but instead of field
names you can use every attribute name of the displayed item model, or any DerivedAttribute
or ComputedAttribute that has been defined before this one.

Additionally, you can use the pseudo-attribute dept h, which gives the tree depth of the current
item, with top-level items having the depth 1.

117

GUI Controls

Col utmm STRI NG
Adds a column to the view. The string given after Column will be used as the header string.
If not specified otherwise, it will also be used for for the names of the di spl ayAttri bute and
edi tAttribute.

di spl ayAttribute = NAME
Specifies the name of the attribute to show as the value of this column cell.

You can specify the pseudo-attribute none if you do not want to have text displayed in this
column.

di spl ayAsCol or = BOOL
Specifies that the attribute given in displayAttribute (and editAttribute) should be
interpreted as a color and displayed accordingly.

Editing a color is possible and will always produce a string in the format #r r ggbb.

editAttribute = NAME
Specifies the name of the attribute to use when editing a cell value (if this is different from the
di spl ayAttri bute).

Note that the edi t abl eAt t ri but e must still be set to enable editing for a column and item.

edi tabl eAttribute = NAME
Specifies the name of the attribute to decide whether the column text should be editable. This
might override the default given on level of the control.

You can use pseudo-attribute names Tr ue/Yes or Fal se/No here to enable or disable editing
independent from specific items.

checkboxAttribute = NAME
Specifies the name of a bool attribute to display a checkbox in this column.

checkboxEdi t abl eAttri bute = NAME
Specifies the name of the attribute to decide whether the checkbox should be editable. This
might override the default given on level of the control.

You can use pseudo-attribute names Tr ue/Yes or Fal se/No here to enable or disable editing
independent from specific items.

aut onat i cPar ent CheckboxSt ate = BOCL
Parent items show the cumulative checkbox state of all their children with checkboxes, and may
display a "partially checked" state.

The checkbox is only shown if the checkboxAttribute is defined for the parent item, regardless
of its value.

If there are no direct child items with checkboxes in this column, the checkbox state is
determined by the value given through the checkboxAt t ri but e.

iconAttribute = NAVE
Specifies the name of a attribute that contains an image or the file path of an image to display
an icon in this column.

Note: For many use cases, this might be a DerivedAttribute. If a flename is chosen for the icon,
then "pathValue" should be set instead of "value" in the derived attribute.

toolti pAttri bute = NAME
Specifies the name of a attribute that contains the text that is used to display tooltips in this
column.

118

GUI Controls

Note: For many use cases, this might be a DerivedAttribute.

colorAttribute = NAME
Specifies the name of a attribute that contains a color or color name to change the text color in
this column. This will override the col or At t ri but e specified on the control level.

Note: For many use cases, this might be a DerivedAttribute.

sortAttributes = STRI NG
Specifies the names of attribute to sort the items by if this column is selected for sorting. Several
attributes may be specified (separated by comma) if values of single attributes may be the same.
The first attribute takes precedence over later attributes. The sort order for certain attributes
may be inverted by prepending an exclamation mark (!) before the attribute name.

Note: Attributes used for sorting do not necessarily need to be used for display.

conmboboxAttribute = NAME
Specifies an attribute that contains the items of a ComboBox that will be used for editing string
values. Use this if you only want to allow certain values while editing. If your list of possible
items is static for the entire column, you can define a DerivedAttribute with only a def aul t Val ue
and use that.

Note: You still need to set the edi t abl eAt t ri but e to allow editing.
Note: An empty list of items will allow free editing.

conboboxTool ti psAttri bute = NAME
Specifies an attribute that contains the items of tooltips for the ComboBox items specified via the
conmboboxAt t ri but e. Will be used for editing string values. If your list of possible items is static
for the entire column, you can define a DerivedAttribute with only a def aul t Val ue and use that.

Note: Only useful in combination with conboboxAt t ri but e. Make sure both strings contain the
same amount of values.

conboboxl temDel i miter = STRI NG
Specifies the character (or an entire string) that separates items in the comboboxAt t ri but e and
conmboboxTool ti psAttri bute. The default is the | character.

bol dFont Attri bute = NAME
Specifies an attribute that evaluates to True or False. If this is True for an item, the displayed
text is shown with a bold font.

italicFontAttribute = NAME
Specifies an attribute that evaluates to True or False. If this is True for an item, the displayed
text is shown with an italic font.

vi si bl eOn = FI ELDEXPRESSI ON
Same meaning as with visibleOn tag of a control, but applied on the column.

f | oat Deci mal Pl aces = | NT
Specifies the number of digits after the decimal point to show for floating-point numbers. -1
means show all (relevant) digits, possibly selecting scientific notation.

aut onat i cResi ze = BOOL
Specifies whether this column should resize automatically if the content of the column changes.
This overrides the value given on the control level.

align = BOOL
Specifies the alignment of text in this column. Possible values are Left, Right, or Center. This
overrides the value given on the control level.

119

GUI Controls

header Al i gn = BOCL
Specifies the alignment of text in the header of this column. Possible values are Left, Right, or
Center. This overrides the value given on the control level.

For detailed examples, have a look at the FileSystemltemModelData and FileSystemltemModelView

modules, which demonstrate some of the possibilities of this control. This example is taken from
FileSystemltemModelView:

I t emvbdel Vi ew i nput {

sel ectionField = selection
idAttribute name
i dAsFul | Pat h Yes

i dPat hSepar at or
i dSepar at or
sort ByCol utm

o

0
DerivedAttribute "icon" {
sourceAttribute = directory
case "1" {
pat hvVal ue = "$(M.AB_M:Vi sLab_| DE) / Modul es/ | DE/ i mages/ fi | eopen. png"

}
}

Col um "nane" {
sortAttributes = "!directory, name_nocase"
iconAttribute = icon

}

Col um "si ze" {
align = right

}

Colum "writable" {
di spl ayAttribute
checkBoxAttribute
checkBoxEdi t abl eAttri bute

}

}

none
writable
Yes

Also have a look at MLStandardltemModelWrapper for a way to generate a custom item model from
scripting.

ItemModelView is derived from Control.

4.8. Event Handling Controls
4.8.1. Accel

Accel allows to add keyboard shortcuts that trigger fields or execute a Python command when pressed.
They are local to the window they are declared in, thus they are only triggered when their parent window
is active.

Accel can appear inside of all Group GUI controls. The field and command tags are both optional. Note
that Accel should be specified before the other GUI controls for which the defined shortcuts should
be available. For instance, if a certain shortcut should be available for an entire window, place the
corresponding Accel statement at the beginning, just after the Window statement.

Dynamic scripting: MLABAccelControl

Accel {
key = KEYSEQUENCE
field = FIELD
command = SCRI PT

}

key = KEYSEQUENCE
Defines a shortcut that triggers the accelerator, e.g., CTRL+X, ALT+Z, CTRL+SHIFT+U.

120

GUI Controls

field = FIELD
Defines a trigger field that is touched when the keyboard shortcut is pressed.

command = SCRI PT
Defines a script command that is called when the keyboard shortcut is pressed.

4.8.2. EventFilter

The EventFilter is a non-GUI control that can be placed anywhere in the GUI. It allows to listen to the
events that other controls (and optionally their children) receive and can then either prevent the event
from being delivered or just pass through the event. It is a very powerful control since it allows to react on
GUl events on alow level. You can, e.g., use it to implement drag-and-drop features for other controls, to
notice when a window gets visible/hidden, when a control gets entered with the mouse, and much more.

Dynamic scripting: MLABEventFilterControl

EventFilter {

namne = NAME
command = SCRI PT
filter = NAMELI ST
eat Event = BOCOL [No]
children = BOOL [No]
debug = BOOL [No]
control = NAME

}

name = NAME

Sets the name of the EventFilter, for usage with the ct x. control () method.

command = SCRI PT (argunent: eventPropertyMap [, control, QEvent])
Defines a script command that is called for each event that matched the filter. For details on the event
properties, see below. The optional control parameter can be used to directly access the EventFilter
control. The optional QEvent parameter allows to directly access the Qt event for advanced usage.
Make sure to i nport PythonQ . Q Gui in your Python code if you want to access the QEvent
directly.

filter = NAMELI ST
A list of event names that should be filtered.

eat Event = BOOL (default: No)
Sets whether the filtered events are eaten automatically (i.e., eaten events are not delivered to other
controls).

children = BOOL (default: No)
Sets whether the filter is applied to all subwidgets or just to the given controls.

debug = BOOL (default: No)
Sets whether all events are printed to the console (just to see which events happen and which you
might be interested in).

control = NAME
Sets the name of the control to filter events on. This tag can appear multiple times so that the filter
listens to multiple controls at a time.

The filter can contain a number of Event names. These names are taken from Qt. You can find the event
details at http://doc.qt.io/qt-6/gevent.html.

All events share the t ype property, which can be checked if multiple events are filtered. To print all
properties of an event, just print the passed event property map in Python.

The most useful events are:

121

http://doc.qt.io/qt-6/qevent.html

GUI Controls

MouseBut t onPr ess, MuseButtonRel ease, MuseButtonDbl dick, NMuselMve
Reacts on mouse button press or release and movement.

Event properties: x, y, globalX, globalY, button (one of "left", "mid", "right"), ctriKey, shiftkey, altkey

Show, Hide
Reacts on a control being shown or hidden.

Event properties: none (except type)

Enter, Leave
Reacts on mouse entering or leaving the control area.

Event properties: none (except type)

DragEnter, DragMove, Drop
Handles drag-and-drop on a low level.

Event properties: x, y, globalX, globalY

Wheel
Handles the mouse wheel event.

Event properties: X, y, globalX, globalY, delta, orientation (one of "vertical”", "horizontal"), ctriKey,
shiftkey, altKey

Resi ze
Handles resize event.

Event properties: width, height, oldWidth, oldHeight

KeyPress, KeyRel ease
Handles the key press event, where "ascii" is the ASCII char, the text is unicode, and the key can
be used to access special keys, e.g., "Left", "Right" for cursor keys. See the Qt key defines or have
a look at the example in TestEventFilter.

Event properties: ascii, text, key, ctriKey, shiftKey, altkey
Example 4.29. EventFilter

Have a look at the module TestEventFilter. This module features the reacting of certain areas of the
GUI on defined mouse actions (button pressed, mouse enter, mouse leave, etc.) and the implementation
of dragging and dropping of files or images.

Figure 4.20. TestEventFilter Module

TestEventritar

_—)
Main | Drag+Drop|

~Context Menu anywhere

Press right mouse
~Key Grabbing
Press a key here
~Event Viewer
type Show

122

GUI Controls

4.9. Other Design Options

This chapter explains other options used in many GUI controls: the layout engine, RichText, and the
MDL styles.

4.9.1. Align Groups

By default, various GUI Controls are laid out depending on each other, e.g., Field controls in a Vertical
automatically get the same label size. This behavior can explicitly be specified by the concept of "Align
Groups". A group is specified by its unique name that you have to choose. All controls in the same group
are aligned according to the type of the group.

There are three type of groups (given by their tag names):

» alignGroupX (alias: alignGroup) - All child widgets of the control get the maximum width of all child
widgets in that column.

« alignGroupY - All child widgets of the controls get the maximum height of all child widgets in that row.
* labelAlignGroup - All controls get the same maximum label size.

In simpler terms: if two controls, e.g., Fields in the same Vertical, have the same alignGroup tag, all
the subwidgets in the Field controls are aligned well in their widths.

The labelAlignGroup can be used to just align the labels, so that the other children of a Control will not
be aligned. Have a look at the Test Layout er MacroModule in MeVisLab, which shows the differences.

Important

Please note that the term "alignment" in this section might be misleading. In this context,
alignment means getting the same width or height as another control. This does not
necessarily mean a visual alignment, since the controls may be located at completely
different positions. Also note that the alignment is a one-time process when the window
is created, so it might get unaligned if you allow expanding of the controls via expandX,
expandy.

In addition to the above tags, which are used directly inside of a control that should be aligned, you can
also use the childAlignGroupX (alias childAlignGroup) and childAlignGroupY tags, which can be
specified in any control that has children. This causes all "simple" controls inside this control to get the
specified align group. This way, you can just see it as a helper tag that helps you write less tags:

Vertical {
chi | dAli gnG oup = groupl
Box {
Field testl { }
Field test2 { }
}
Box {
Field test3 { }
Field test4 { }
}
}

This is identical to the following, note that the boxes do not get the alignGroup and that the
childAlignGroup tag works recursively.

Vertical {

Box {
Field testl { alignGoup = groupl }
Field test2 { alignGoup = groupl }

}

Box {
Field test3 { alignGoup = groupl }
Field test4 { alignGoup = groupl }

}

123

GUI Controls

}

The labelAlignGroup tag can also be used at a higher level and it causes all "simple" controls to get their
labels aligned. See the Test Layout er MacroModule in MeVisLab for an example of the above tags.

4.9.2. RichText

The following tables give you an overview of which tags are available in RichText. The RichText can be
used in tooltips, whatsthis boxes, Label, HyperText, HyperLabel, and various other places. The syntax
is a simple subset of HTML, including lists, tables, images, and links. Have a look at the Test Hyper Text
module in MeVisLab to see some examples.

Table tags Notes

<table>. ..</table> |A table. Tables support the following attributes:
* bgcol or -- The background color.

« wi dt h -- The table width. This is either an absolute pixel width or a relative
percentage of the table's width, for example wi dt h=80%

* border -- The width of the table border. The default is O (= no border).
» cel | spaci ng -- Additional space around the table cells. The default is 2.

« cel | paddi ng -- Additional space around the contents of table cells. The
default is 1.

<tr>...</tr> A table row. This is only valid within a table. Rows support the following
attribute:

* bgcol or -- The background color.

<th>...</th> A table header cell. Similar to t d, but defaults to center alignment and a bold
font.
<td>...</td> A table data cell. This is only valid within a table row. Cells support the

following attributes:
 bgcol or -- The background color.

* wi dt h -- The cell width. This is either an absolute pixel width or a relative
percentage of table's width, for example wi dt h=50%

 col span -- Specifies how many columns this cell spans. The default is 1.
e rowspan -- Specifies how many rows this cell spans. The default is 1.

e align -- Horizontal alignment; possible values are left, right, and
center. The defaultis | eft.

« val i gn -- Vertical alignment; possible values are t op, ni ddl e, and bot t om
The default is i ddl e.

Special tags Notes

<i ng> An image. The image name for the MIME source factory is given in the
source attribute, for example, <i ng src="qt. xpnt >. The image tag also
understands the attributes width and height that determine the size of
the image. If the pixmap does not fit the specified size, it will be scaled
automatically. The align attribute determines where the image is placed. By
default, an image is placed inline just like a normal character. Specify left or
right to place the image at the respective side.

124

GUI Controls

Special tags

Notes

<hr> A horizontal line.

 A line break.

<nobr>. .. </ nobr > No break; prevents word wrap.
Style tags Notes

<enp...</ene

Emphasized. By default, this is the same as <i >. . . </i > (italic).

. .. </ strong>|Strong. By default, this is the same as . . . </ b> (bold).
<i>.. Italic font style.

... Bold font style.

<u>...</u> Underlined font style.

<s>...</s> Strike out font style.

<bi g>. .. </ bi g> A larger font size.

<smal | >...</smal | >

A smaller font size.

<code>. .. </code>

Indicates code. By default, this is the same as <tt>...</tt> (typewriter).
For larger chunks of code, use the block-tag <pr e>.

<tt>...</tt>

Typewriter font style.

...

Customize the font size, family, and text color. The tag can have the following
attributes:

e col or -- The text color, for example, col or ="red" or col or =" #FF0000" .

 si ze -- The logical size of the font. Logical sizes 1 to 7 are supported. The
value may either be absolute (for example, si ze=3) or relative (si ze=- 2).
In the latter case, the sizes are simply added.

« face -- The family of the font, for example, f ace="ti mes".

Anchor tags

Notes

<a>...

An anchor or link.

« A link is created by using an href attribute, for example, Li nk Text. Links to targets within a document
are written in the same way as for HTML, for example, Li nk Text.

* A target is created by using a name attribute, for example, 9<h2>Sub Titl e</h2>.

Structuring tags

Notes

<qt>...</qt>

A Qt RichText document. It can have the following attributes:
e title--The caption of the document.

* type -- The type of the document. The default type is " page" . It indicates
that the document is displayed in a page of its own. Another style is
"det ai | ", which can be used to explain certain expressions in more detail
in a few sentences. Note that links will not work in documents with <qt
type="detail ">...</qt>.

e bgcol or -- The background color, for example, bgcol or="yel | ow' or
bgcol or =" #0000FF" .

125

GUI Controls

Structuring tags Notes

e background -- The background pixmap, for example,
background="grani te. xpnt. The pixmap name needs to have an
absolute path, e.g., use $(LOCAL) / i nage. png.

e text -- The default text color, for example, t ext ="red" .

e link -- The link color, for example, | i nk="gr een".

<h1>...</h1l> A top-level heading.

<h2>...</h2> A sub-level heading.

<h3>...</h3> A sub-sub-level heading.

<p>...</p> A left-aligned paragraph. Adjust the alignment with the align attribute.

Possible values are | ef t, ri ght and center.

<center>...</center>|A centered paragraph.

<bl ockquote>. .. </ An indented paragraph that is useful for quotes.

bl ockquot e>

... An unordered list. You can also pass a type argument to define the bullet
style. The default is t ype="di sc"; other types are ci rcl e and square.

... An ordered list. You can also pass a type argument to define the enumeration
label style. The default is t ype="1"; other types are "a" and " A".

.. A list item. This tag can be used only within the context of or .

<pre>...</pre> For larger chunks of code. Whitespaces in the contents are preserved. For

small bits of code, use the inline-style code.

4.9.3. Styles

Styles can be defined globally but also locally in a user interface to change the GUI appearance. Every
control supports the st yl e tag, where you can give a style by its name (declared with DefineStyle) or
by just opening a local style and deriving from the current style.

Example: See TestStyles macro module in MeVisLab.

Figure 4.21. TestStyles Module

TestStyles

9 Panel TestStyles E@ﬂ

Colors | Background
Test

D
Test

Name:
vame: |

4.9.3.1. DefineStyle

DefineStyle allows to define a new GUI style, either complete or just extending an existing style. The style
provided with MeVisLab is called "default". Old ILAB4 styles are also supported, being defaultVerySmall,
defaultSmall, defaultBig, defaultHuge. These styles should no longer be used and are replaced by the

126

GUI Controls

scale tag, with which you can resize all fonts in a GUI control by just giving the scale tag and a positive
or negative integer for bigger/smaller fonts and spacings.

Styles can be used to change the entire user interface appearance or just to change a single color/font
in a given control. See below for an example on how to do that.

A style contains Fonts, Colors, and Prototypes. You can specify a different font for each of the following
roles:

e Titles (titl eFont tag)
 Editable text (edi t Font tag)
e TabBar text (t abFont tag)

» Box group titles (boxFont tag)

There are two different sets of colors, the default col or s and the di sabl edCol or s, which specify which
colors a control uses when it is drawn. The disabledColors are used when a control is not enabled (also
called "grayed out").

DefineStyl e NAMVE {
derive = NAME

// Font for titles in the GU (Buttons, Labels, etc.)

titleFont {
famly = NAME
si ze = INT
wei ght = ENUM
italic = BOOL
fixedPitch = BOOL

}

/1 Font for editing conponents in the GU (NunberEdit, TextView, etc.)
edi t Font {
/1 see titleFont

}

/1 Font for TabVi ews
tabFont {
/1 see titleFont

}

/1 Font for Box group titles
boxFont {
/1 see titleFont

}

colors {
fg = COLOR
bg = COLOR
butt on = COLOR
but t onText = COLOR
edi t Text = COLOR
edi t Bg = COLOR
base = COLOR
al t er nat eBase = COLOR
i ght = COLOR
m dl i ght = COLOR
dar k = COLOR
md = COLOR
shadow = COLOR
hi ghl i ght = COLOR
hi ghl i ght edText = COLOR
bri ght Text = COLOR
i nk = COLOR
linkVisited = COLOR
boxText = COLOR
t abText = COLOR
t ool Ti pBase = COLOR
t ool Ti pText = COLOR

}
di sabl edCol ors {
// same as above colors

}

127

GUI Controls

derive = NAME
Selects a style to derive from, all attributes are copied and you may overwrite any of the tags, e.qg.,
just the font sizes, an individual color.

titleFont, editFont, boxFont, tabFont
Defines properties of a font. You do not need to specify all tags, reasonable defaults are taken from
the underlying system settings.

famly = NAME
Specifies a font family name; possible names are: Helvetica, Courier, etc.

size = INT
Sets the point size of the font.

wei ght = ENUM
Sets the weight of the font.

Possible values: Light, Normal, DemiBold, Bold, Black

italic = BOOL
Sets whether font should be italic.

fixedPitch = BOCOL
Sets whether the font should be fixed pitch (depends on the font family).

col ors, disabl edCol ors
Defines the normal colors and the disabled colors for all controls in this style.

The syntax for COLOR in the style is:
colorname[:imagefilename]

where colorname can be one of:

e #rrggbb

» X11 color name (also on Windows)

» A name specified in the Colors section

and imagefilename can be an extra image used as a brush for that color. Using images is especially
interesting for the background colors bg, editBg, and button.

Examples:

bg = bl ack: $(LOCAL) / soneBackgr oundl mage. png

editBg = white

fg = COLOR
The foreground text color used in Labels, etc.

Aliases: foreground, windowText

bg = COLOR
The background color.

Aliases: background, window

button = COLOR
The background color of buttons.

buttonText = COLOR
The text color on buttons.

128

GUI Controls

edit Text = COLORedi tBg = COLOR
The color for editable text and background for text edits and list views.

base = COLOR
Same as editBg.

al t ernat eBase = COLOR
Defines the alternate background color for temModelViews that have the alternatingRowColors
attribute set.

light = COLOR midlight = COLOR dark = COLOR mid = COLOR shadow = COLOR
Colors used for drawing sunken and raised panels and buttons.

hi ghl i ght = COLOR hi ghl i ght edText = COLOR
Highlight background and text color, e.g., for text selection and ListViews.

bri ght Text = COLOR
Text with good contrast to "dark” color.

link = COLOR l'inkVisited = COLOR
The color used for drawing links and visited links (in RichText).

boxText = COLOR
The color of box titles.

t abCol or = COLOR
The color of TabBar titles.

t ool Ti pBase = COLORt ool Ti pText = COLOR
The background and text color of tooltips.

129

Chapter 5. Translations

MeVisLab supports translations by using the _internationalization framework of Qt.

Modules that use translations must have the tag hasTranslation set to Yes. The languages for the
translations must be declared using the translationLanguages tag. It is also possible to provide the
names of other modules that will also be translated: translationModules.

Strings to translate are taken from MDL tags and from occurrences of ctx.translate() in Python scripts
of the translated modules. Please only use direct strings as argument for ctx.translate, do not use
expressions or variables. Panels of other modules that are incorporated into the GUI of referenced
modules through the Panel control will also automatically be searched for translatable strings.

After changing the MDL scripts and Python code, it is necessary to create the translation files (. t s).

This is done from the context menu of the MeVisLab module: Translations — Create/Update. The
translation files can then be edited with the Qt Linguist tool, which is available through Translations

- Edit.

The translation files must be compiled into runtime translation files (. gm) before they can be used. This

can be done with the Qt Linguist tool from the main menu: File » Release. This step is not necessary
when building standalone applications, because MeVisLab will then automatically compile the . t s files
to . gmfiles. The . gmfiles will be included in the installer.

Usually, the operating system localization will determine which language is chosen. To force MeVisLab
to select a different language, it is possible to provide the preferences variable Local e, e.g., to en_EN.
For testing this can also be achieved by selecting Translations — Set Language And Reload and
then selecting the desired language value.

130

http://doc.qt.io/qt-6/internationalization.html
http://doc.qt.io/qt-6/qtlinguist-index.html

Chapter 6. Test Cases

The MDL syntax for defining test cases is explained in the Test Center Reference.

131

boxText, 129

I n d eX brightText, 129
browseButton, 67
browseFilter, 67

M browseMode, 67
MDL Tags browseSelectedCommand, 68
All browseTitle, 67

accel, 70, 71, 78, 106 browsingGroup, 67
acceptDrops, 44 buddy, 101
acceptWheelEvents, 60, 66, 80, 84 Button, 33
activatedCommand, 80 button, 43, 128
activelnputindex, 19 buttonBgMode, 43
activeOfflmage, 70, 72, 75, 78 buttonClickedCommand, 73
activeOnlmage, 70, 72, 75, 78 buttonPressedCommand, 73
activeOutputindex, 19 buttonReleasedCommand, 73
align, 117, 119 buttonText, 128
alignGroup, 42, 66, 123 callLater, 32
alignGroup), 123 canGoFullscreen, 46
alignGroupX, 42, 123 Case, 117
alignGroupy, 42, 123 caseSensitiveAutoComplete, 66, 80
alignTitle, 57 cd, 110
alignX, 42 cellSpacing, 96
alignX/Y, 49, 52 centerField, 88
aligny, 42 checkable, 58
allowedTypes, 22 checkableButtons, 75, 76
allowLinks, 102 checkboxAttribute, 118
allowRenaming, 99 checkboxEditableAttribute, 116, 118
alternateBase, 129 checked, 58, 79, 106
alternatingRowColors, 115 checkedField, 57
application, 111 checkList, 97
applyButton, 67, 85 checkListitemChangedCommand, 98
arrangement, 99 childAlignGroup, 42, 123
associatedTests, 18 childAlignGroupX, 42, 123
author, 16, 18 childAlignGroupY, 42, 123
autoApply, 90 children, 121
autoArrange, 99 childrenCollapsible, 55
autoComplete, 80 class, 29, 30
autoExpandAll, 116 clickedColumnField, 114
autoExpandToDepth, 116 clickedCommand, 97, 100
automaticParentCheckboxState, 116, 118 clone, 109
automaticResize, 117, 119 color, 33, 55
autoPageStep, 87 colorAttribute, 116, 119
autoRaise, 71, 72 colors, 127
autoRaiseButtons, 76 colors disabledColors, 128
autoRepeat, 70, 71 colspan, 38, 43, 49
autoResize, 102 Column, 118
autoScale, 72, 78 columnSeparator, 96
autoScalelcons, 75, 76 comboBox, 66
autoSize, 63, 108 comboboxAttribute, 119
autoStart, 110 comboboxItemDelimiter, 119
backgroundColor, 109 comboboxTooltipsAttribute, 119
base, 129 comboCompletes, 66
bg, 43, 128 comboEditable, 66
bgMode, 43 combokField, 66, 67, 81, 81, 81
boldFontAttribute, 117, 119 comboltems, 66, 67
border, 70, 73, 77 comboSeparator, 66, 81
borderless, 46 command, 31, 32, 33, 69, 70, 71, 72, 74, 92,
boxFont, 128 106, 121, 121

132

Index

comment, 9, 17, 18, 21, 24 equalButtonWidths, 73
componentTitles, 66, 85 exampleNetwork, 18
ComputedAttribute, 117 exclusiveButtons, 73
console, 91 expandX, 39, 49, 102, 123
contentFile, 108, 112 expandX/Y, 49, 52, 54
contentString, 112 expandY, 40, 48, 102, 123
contentStringBaseUrl, 112 exportedWindow, 19
contentUrl, 112 expression, 117
contextMenu, 94, 97, 99, 105 externalDefinition, 18, 30, 31
contextMenuOnEmptyList, 94, 97, 100 family, 128
contextMenuRequestedCommand, 98 fg, 128

control, 121 field, 9, 106, 121
currentChangedCommand, 94, 97, 100 fieldDragging, 68, 71, 79, 91
currentField, 114 FieldListener, 27
currentindexField, 60 fields, 27

dark, 129 file, 28

debug, 121 fileDialogCreatesUnexpandedFilenames, 67
defaultPathValue, 117 filename, 110
defaultValue, 117 filter, 9, 9, 121

delay, 109 finalizeCommand, 26
dependsOn, 22, 24, 33, 40, 74, 106 fixedHeight, 41
deprecatedName, 9, 18, 23, 23, 24, 25 fixedPitch, 128

derive, 128 fixedWidth, 41
DerivedAttribute, 117 flatButtons, 75
destroyedCommand, 44 floatDecimalPlaces, 117, 119
direction, 55, 77, 87, 88, 89, 103 format, 65, 84, 85, 86, 87
directory, 28 frameLineWidth, 44
disabledColors, 127 frameMidLineWidth, 44
disabledOfflmage, 70, 72, 75, 78 frameShadow, 44
disabledOnlmage, 70, 72, 75, 78 frameShape, 44
displayAsColor, 118 fullscreen, 46
displayAttribute, 118 fw, 41

DLL, 9, 28, 29, 30 genre, 9, 16, 34
doubleClickedCommand, 94, 97, 100 Genre, 34
doubleClickedField, 114 globalStop, 70, 72
droppedFileCommand, 26, 43 group, 9, 17, 35
droppedFilesCommand, 26, 43 h, 41
droppedObjectCommand, 44 hasGrouplnputs, 30
duplicatesEnabled, 81 hasTranslation, 18
eatEvent, 121 hasViewer, 30

edit, 65, 85, 90, 90 header, 96, 115

editable, 22, 24, 79, 80, 86 headerAlign, 117, 120
editableAttribute, 116, 118 headerTitles, 96

editAlign, 66, 84, 85 height, 41

editAttribute, 118 hidden, 21, 24

editBg, 43, 129 hideCommand, 105, 105
editBgMode, 43 highlight, 129

editField, 65 highlightedText, 129
editFont, 128 hintText, 65, 83

editMode, 83 hiResRendering, 108
editText, 129 hscroller, 59, 90
editTrigger, 116 HSpacer, 103
enableCalenderPopup, 86 html_class, 39
enableContextMenu, 111 html_style, 39

enabled, 40, 65, 74, 79, 106 html_styleField, 39
enablePrinting, 112 hybridMLModule, 30
enumAutoFormat, 66, 78, 80 icon, 106
equalButtonHeights, 73 iconAttribute, 118

133

Index

iconHeight, 75, 76 mh, 41

iconWidth, 75, 76 mid, 129

idAsFullPath, 115 midlight, 129

idAttribute, 115 min, 22, 24

idPathSeparator, 115 minimumHeight, 41

idSeparator, 115 minimumWidth, 41

image, 67, 70, 71, 74, 78, 79, 81, 101, 102 minLength, 65, 82, 84, 85, 110
importPath, 26 mode, 60, 82, 86

indent, 101 module, 9, 28, 107

info, 32 Module, 27

init, 32 moduleltemCreatedCommand, 27
initCommand, 25, 25, 26, 44 moreButton, 67

inlineDrawing, 72 mouseButtonClickedCommand, 97
inlineWidgetsMargin, 83 mw, 41

inlineWidgetsSpacing, 83 name, 9, 38, 45, 105, 105, 106, 108, 121
insertPolicy, 81 normalOffimage, 70, 72, 75, 78
internalName, 20, 22, 22 normalOnimage, 70, 72, 75, 78
isFilePath, 22, 24 objectWrapper, 28

italic, 128 onlyOnelnstance, 31
italicFontAttribute, 117, 119 orientation, 74, 104

item, 9, 23, 25, 67, 78, 81 pageStep, 87, 87
itemActivatedCommand, 105 panel, 9, 107, 107, 107, 107
itemCollapsedCommand, 97 Panel, 107
itemExpandedCommand, 98 panelByGroupTitle, 107, 107, 107
itemRenamedCommand, 97, 100 panelName, 39, 107, 107, 107
items, 23, 23, 24, 74, 77, 78, 81 pathDblClickedCommand, 110
itemTextPos, 99 pathSelectedCommand, 110

key, 120 pathValue, 117

keywords, 17 persistent, 22, 24
labelAlignGroup, 42, 123 ph, 41

layout, 57, 57, 59, 96 popup, 109

leftinlineWidgets, 83 popupDelay, 72

legacyValue, 21, 24 popupMenu, 70, 72, 109

library, 28 popupMode, 72

light, 129 preferredHeight, 41

link, 129 preferredWidth, 41
linkActivatedCommand, 102 preloadDLL, 29
linkClickedCommand, 112 prepareEditCommand, 98
linkDelegation, 112 pressedCommand, 100
linkHoveredCommand, 102 pressedindicatorField, 65, 87, 88, 89
linkVisited, 129 priority, 22, 24

listenField, 31, 32 projectSource, 29, 30
loadFinishedCommand, 112 pw, 41

loadProgressCommand, 112 ratio, 89

loadStartedCommand, 112 receiver, 106

lostFocusCommand, 83 relatedFile, 18

lowerField, 88 remoteBaseHandler, 29

margin, 48, 49, 50, 52, 57, 74 removed, 24

max, 22, 24 resizeCommand, 44

maxCount, 80 resizeMode, 99

maximized, 46 restoredFromUndoHistoryCommand, 27
maximumHeight, 41 returnPressedCommand, 83, 94, 97, 100
maximumWidth, 41 richText, 95, 96

maxItemWidth, 99 rightButtonClickedCommand, 100
maxLength, 83 rightButtonPressedCommand, 100
maxTextLength, 99 rightinlineWidgets, 84

maxw, 41 root, 110, 110

menuBar, 105 rootlsDecorated, 97

134

Index

rotationMode, 89 tabDeselectedCommand, 63
Row, 50 tabDirection, 96, 115
rowSeparator, 94, 96 tabEnabled, 63
runApplicationCommand, 27 tabFont, 128

scale, 42, 127 tabHierarchy, 63

scaleFactor, 102 tablcon, 62
scalelconSetToMinSize, 72 tablnitial, 63

scriptExtension, 29 tabSelectedCommand, 63
scriptOnly, 31, 31 tabStopWidth, 91

seeAlso, 18 tabTitle, 62

selectable, 102 tabTooltip, 63
selectableAttribute, 115 text, 90, 92

selectedCommand, 94, 100 textAlign, 66
selectionChangedCommand, 94, 97, 100, textAlignment, 83, 101

112 textChangedCommand, 80, 83
selectionField, 114 textField, 92

selectionMode, 94, 96, 99, 115 textFile, 92

shadow, 55, 129 textFormat, 90, 101
shouldCloseCommand, 46 textPosition, 71

show, 77, 77 textVisible, 103
showButtonNames, 74 textWrap, 101

showCommand, 105, 105 tickmarks, 87

showControls, 111 title, 9, 23, 25, 45, 57, 64, 64, 67, 69, 69, 71
showlconsOnly, 74 74,74, 78,78, 79, 81, 90, 93, 101
showlteminternals, 78 titleField, 57, 65, 69, 69, 71, 93, 101
showLineNumbers, 91 titleFile, 93

showStepButtons, 84 titteFont, 128

size, 128 toggledCommand, 79

slider, 65 toggleField, 97

sliderSnap, 65 toolTip, 9

slot, 106 tooltip, 42, 74, 78

shap, 87, 88, 89 tooltipAttribute, 116, 118
sortAscending, 96, 115 toolTipBase, 129

sortAttributes, 119 tooltipField, 42

sortBy, 110 toolTipText, 129
sortByColumn, 96, 115 tracking, 87, 88, 89

source, 25, 26, 45 translationLanguages, 18
sourceAttribute, 117 translationModules, 18
SpacerX, 103 trim, 65, 83, 102

SpacerY, 103 type, 20, 22, 22, 108, 109
spacing, 48, 49, 50, 52, 68, 74, 78, 85, 99 updateDelay, 97

status, 17 updateFieldwhileEditing, 65, 83
step, 65, 84, 88 upperField, 88

stepstep, 65, 84 urlChangedCommand, 112
storingToUndoHistoryCommand, 26 useOriginallconSizes, 75, 76
stretchX, 40, 49 UserGenres, 34

stretchX/Y, 49, 52, 54 useSheet, 68

stretchY, 40, 48 validator, 65, 80, 83
stripEnumltemPrefix, 74 value, 21, 24, 82, 117

strips, 74, 78 values, 23, 93, 94, 95, 96, 109
style, 38, 126 Viewer, 109

styleSheetFile, 39 viewing, 108

styleSheetString, 39 visible, 40, 74
sunkenVectorLabels, 66, 85 visibleOn, 22, 24, 33, 40, 74, 106, 119
symbol, 33 visibleRows, 91, 94, 96, 110, 116
syntaxHighlighting, 91 vscroller, 59, 90

tabColor, 129 VSpacer, 103

tabDependsOn, 63 w, 41

135

Index

w/h, 63

wakeupCommand, 25, 25, 26, 45

weight, 128

whatsThis, 9, 42, 74, 78, 106

widgetControl, 28
widgetName, 39
width, 41
widthField, 88
window, 107
Window, 107

windowActivatedCommand, 46

withMilliSeconds, 86
wordWrap, 99

wrap, 68, 84, 91
wrapColumn, 91
wrapsAround, 89

X, 43, 43, 52, 52

xly, 52, 63

X2, 43, 43, 52

y, 43,52, 52

y2, 43, 52

Complex

Accel, 120

Box, 57

Button, 69
ButtonBar, 76
ButtonBox, 54
Category, 47
CheckBox, 79
ColorEdit, 82
ComboBox, 80
Commands, 25
CommonButtonGroup, 72
Control, 37
DateTime, 86
DefineStyle, 126
Deployment, 28
Description, 23
DynamicFrame, 107
Empty, 103
EventFilter, 121
Execute, 45

Field, 64
FieldLabel, 68
FieldListener, 31
Frame, 44
FreeFloat, 63
GraphicsView, 113
Grid, 52
Horizontal, 48
HyperLabel, 93
HyperText, 91
IconView, 98
Image, 102
Interface, 19
IntervalSlider, 87
InventorModule, 30
ltemModelView, 113

Label, 101

LineEdit, 82

ListBox, 93

ListView, 95
MacroModule, 30
MenuBar, 81
Menultem, 105
MLModule, 29
MoviePlayer, 110
NetworkPanel, 32
NumberEdit, 84
Panel, 106
PathBrowser, 109
Persistence, 27
PopupMenu, 104
PreloadDLL, 35
ProgressBar, 103
PushButtonGroup, 75
RadioButtonGroup, 75
ScreenshotGallery, 111
ScrollView, 58
Separator, 102
Slider, 87

Splitter, 54
SubMenu, 105
Table, 49

TabView, 59
TabViewltem, 62
TextView, 90
ThumbWheel, 89
ToolButton, 71
ToolButtonGroup, 76
VectorEdit, 85
Vertical, 48

Viewer, 108
WebEngineView, 111
Window, 45

136

	MeVisLab Definition Language (MDL) Reference
	Table of Contents
	Chapter 1. MDL Syntax
	1.1. Tags and Values
	1.2. Tag Data Types
	1.3. Groups
	1.4. Variables
	1.5. Including Files
	1.6. Conditions and Special Statements
	1.7. Comments
	1.8. Naming Conventions and Limitations
	1.9. Validation

	Chapter 2. Module (Abstract) Declaration
	2.1. Interface
	2.2. Description
	2.3. Commands
	2.4. Persistence
	2.5. Deployment
	2.6. MLModule
	2.7. InventorModule
	2.8. MacroModule
	2.9. FieldListener
	2.10. NetworkPanel

	Chapter 3. Other Module-Related MDL Features
	3.1. Module Genre Definition
	3.2. ModuleGroup Definition
	3.3. Preloading DLLs

	Chapter 4. GUI Controls
	4.1. GUI Example Modules in MeVisLab
	4.2. Abstract GUI Controls
	4.2.1. Control (Abstract)
	4.2.2. Frame (Abstract)
	4.2.3. Execute

	4.3. Layout Group Controls
	4.3.1. Window
	4.3.2. Category
	4.3.3. Vertical
	4.3.4. Horizontal
	4.3.5. Table
	4.3.6. Grid
	4.3.7. ButtonBox
	4.3.8. Splitter
	4.3.9. Box
	4.3.10. ScrollView
	4.3.11. TabView
	4.3.11.1. TabViewItem

	4.3.12. FreeFloat

	4.4. User Input GUI Controls
	4.4.1. Field
	4.4.2. FieldLabel
	4.4.3. Button
	4.4.4. ToolButton
	4.4.5. CommonButtonGroup
	4.4.6. PushButtonGroup
	4.4.7. RadioButtonGroup
	4.4.8. ToolButtonGroup
	4.4.9. ButtonBar
	4.4.10. CheckBox
	4.4.11. ComboBox
	4.4.12. MenuBar
	4.4.13. ColorEdit
	4.4.14. LineEdit
	4.4.15. NumberEdit
	4.4.16. VectorEdit
	4.4.17. DateTime
	4.4.18. Slider
	4.4.19. IntervalSlider
	4.4.20. ThumbWheel
	4.4.21. TextView
	4.4.22. HyperText
	4.4.23. HyperLabel
	4.4.24. ListBox
	4.4.25. ListView
	4.4.26. IconView

	4.5. Decoration GUI Controls
	4.5.1. Label
	4.5.2. Image
	4.5.3. Separator
	4.5.4. Empty
	4.5.5. ProgressBar

	4.6. Menu GUI Controls
	4.6.1. PopupMenu
	4.6.2. SubMenu
	4.6.2.1. MenuItem
	4.6.2.2. Separator

	4.7. Complex GUI Controls
	4.7.1. Panel
	4.7.2. DynamicFrame
	4.7.3. Viewer
	4.7.4. PathBrowser
	4.7.5. MoviePlayer
	4.7.6. ScreenshotGallery
	4.7.7. WebEngineView
	4.7.8. GraphicsView
	4.7.9. ItemModelView

	4.8. Event Handling Controls
	4.8.1. Accel
	4.8.2. EventFilter

	4.9. Other Design Options
	4.9.1. Align Groups
	4.9.2. RichText
	4.9.3. Styles
	4.9.3.1. DefineStyle

	Chapter 5. Translations
	Chapter 6. Test Cases
	Index

